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Abstract

Coupling between sensory neurons impacts their tuning properties and correlations in their
responses. How such coupling affects sensory representations and ultimately behavior remains
unclear. We investigated the role of neuronal coupling during visual processing using a realistic
biophysical model of the vertical system (VS) cell network in the blow fly. These neurons are
thought to encode the horizontal rotation axis during rapid free flight manoeuvres. Experimental
findings suggest neurons of the vertical system are strongly electrically coupled, and that several
downstream neurons driving motor responses to ego-rotation receive inputs primarily from a
small subset of VS cells. These downstream neurons must decode information about the axis of
rotation from a partial readout of the VS population response. To investigate the role of coupling,
we simulated the VS response to a variety of rotating visual scenes and computed optimal
Bayesian estimates from the relevant subset of VS cells. Our analysis shows that coupling leads
to near—optimal estimates from a subpopulation readout. In contrast, coupling between VS cells
has no impact on the quality of encoding in the response of the full population. We conclude
that coupling at one level of the fly visual system allows for near—optimal decoding from partial
information at the subsequent, pre-motor level. Thus, electrical coupling may provide a general
mechanism to achieve near—optimal information transfer from neuronal subpopulations across
organisms and modalities.

1 Introduction

Flying organisms require fast, reliable feedback regarding ego-motion. This information is extracted
from the optic flow — the motion of the external world as perceived by the organism (Lee and
Kalmus, 1980; Borst and Bahde, 1988). In the visual system of the fly, neurons of the lobula
plate receive as input a two-dimensional, retinotopic representation of the optic flow, allowing
them to encode rotational and translational velocities (Borst and Haag, 2002; Borst and Weber,
2011). The lobula plate serves as a primary relay between early vision and downstream motor
centers (Strausfeld and Bassemir, 1985; Haag et al., 2007; Wertz et al., 2008).

Approximately sixty large tangential cells responsive to wide-field motion have been identified
within the lobula plate of each hemisphere of the blow fly (Hengstenberg, 1982; Hausen, 1984).
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Figure 1: The VS network extracts motion parameters from optic flow-related infor-
mation. (A) (Left) The ten VS cells in one lobula plate (LoP) as reconstructed from two-photon
image stacks. Each neuron is T-shaped, with an elongated dendrite sampling a thin vertical stripe
in the retinotopically organized LoP (VS 1 to 10 arranged from distal to proximal in the LP, Heng-
stenberg et al., 1982). Inset indicates approximate orientation (a: anterior, p: posterior, l: lateral,
m: medial, d: dorsal, v: ventral). Adapted from Cuntz et al. (2007). (Right) Connectivity scheme
of the VS network. VS cell axons are electrically coupled to nearest neighbors. There is a function-
ally mutually inhibitory (or “repulsive”) interaction between VS1 and VS10. Receptive field (RF)
centers indicate azimuthal position in the horizontal equatorial plane of right side VS neurons, tak-
ing 0° to represent the anteroposterior axis of the fly. Left side VS neuron receptive field centers are
given by reflection across 0°. (B) The marginalization problem: Parameters of ego-motion (such
as the axis of rotation, parametrized by Os,) are first probabilistically embedded in the external
world (Image), and additional layers of variability (noise) are imposed by the processing in VS cells
at the dendritic (De) and axonal (Ax) stages (V denotes time-averaged membrane potential; see
Methods). Reading-out the azimuthal rotation axis from the VS population response amounts to
marginalization — extracting the posterior distribution of the stimulus from the axonal responses.
(C) Example images used to generate the optic flow stimuli presented to the VS network model.
Details of image generation are described in the Methods, along with the procedure for generating
the rotational optic flow stimuli.

Ten of these neurons comprise the vertical system (VS) which is thought to encode the azimuthal
direction of rotations in the horizontal plane (Figure 1A; Krapp and Hengstenberg, 1996). These
cells were the focus of our study.

The visual information available to the fly is rich, but only part of it is essential to control
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flight. The VS cells encode an essential parameter from this complex input — the horizontal axis of
ego-rotation. Estimating this parameter is a problem of marginalization, as the quantity of interest
must be disentangled from irrelevant visual information (Figure 1B).

Electrical coupling between adjacent VS cells shapes their responses (Haag and Borst, 2004;
Farrow et al., 2005). Our goal was to examine the impact of coupling on the representation of the
azimuthal angle of rotation in the VS population response. Our results build on previous qualitative
observations about the role of coupling (Cuntz et al., 2007; Weber et al., 2008; Elyada et al., 2009).

To examine the role of coupling we presented random rotating images (Figure 1C) as input to
a biophysically-plausible model of the VS cell network (Borst and Weber, 2011). In contrast to
previous studies, we considered transient responses and applied probabilistic modeling methods to
compute optimal Bayesian estimators from VS activity instead of using heuristic or suboptimal
estimators.

Anatomical and electrophysiological studies of lobula plate neurons have characterized a pair
of pre-motor neurons at the next stage of processing of the fly’s nervous system. The strongest
projections of the VS population onto these descending neurons originate from a subset of the VS
population (Wertz et al., 2009a). When considering such a partial readout, we found that coupling—
induced changes in tuning, correlations and reliability were crucial for an accurate representation
of the angle of rotation. Surprisingly, we also found that the quality of the optimal estimate from
the collective response of VS cells does not depend on coupling strength.

Gap junction coupling between VS cells can thus impact the accuracy of a subpopulation read-
out, and hence the fly’s ability to navigate. Our results suggest that across species and modalities
electrical coupling can distribute information across a neural population, and significantly increase
the performance of estimates extracted from a subpopulation response.

2 Materials and Methods

2.1 Model of the VS network

Our study is based on a model of the vertical system tangential cells closely related to that of Borst
and Weber (2011). We briefly describe the model, and note the differences between the specific
implementations. Parameters not explicitly stated, and details of the model not discussed are
identical to those given by Borst and Weber (2011).

To mimic stimulation of the fly visual system under a variety of conditions, including natural
flight, we started by projecting a random image onto the surface of a sphere. We considered images
which consist of randomly arranged bars of varying sizes, as well as random checkerboard images
and compositions of natural scenes. Spherical images were rotated about a horizontal axis with
varying azimuthal angle, thereby generating a pattern of optic flow (Figure 2A). Details on image
and optic flow stimulus generation are given below.

Processing of these stimuli by the fly visual system is captured by several successive computa-
tional steps. The rotated image sequences (‘optic flow stimuli’) were first filtered by an array of
vertically oriented local motion detectors (LMDs or ‘Reichardt detectors’; Reichardt, 1987; Borst
et al., 2003; Haag et al., 2004). The LMDs were spaced approximately evenly on the surface of the
sphere. There were 5,000 detectors per hemisphere, corresponding approximately to the number of
facets on the left and right eyes (Hengstenberg, 1992). The input to a single detector was composed
of luminance signals from two vertically-aligned pixels separated by an elevation of 2°. First-order
filtered low- and high-pass versions of the input from the two pixels were cross-multiplied and
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Figure 2: Schematic of the VS network model. (A) Spherical image rotation sequences
(red curved arrow) were presented to the model fly vertical system (VS). The rotation axis in the
equatorial plane is characterized by its azimuth, Ogin. Lower right inset shows how the Reichardt
detectors were arrayed on the surface of the sphere. (B) Schematics of the Reichardt detector. LP
and HP indicate first order low- and high- pass linear filters, respectively, while x and — represent
elementary signal multiplication and subtraction steps. Each detector was assembled from two
subunits separated by an elevation of 2°. The output of the two subunits, maximally sensitive to
downward and upward motion, respectively, were fed separately to model VS cells. (C) Horizontal
cross sections of the dendritic receptive fields for the VS neurons. The frontmost curve is for the
left-side VS10 neuron. Proceeding towards the back, blue-green curves correspond first to the left-
side VS neurons (decreasing index), then the red-orange curves to the right side (increasing index;
see also panel E, upper inset). (D) The model is an assembly of a number of components: The
optic flow stimulus is generated by rotations of spherical images, and is filtered by the local motion
detectors (LMDs). The LMD output is separated into upward and downward components which
are mapped to inhibitory (—), and excitatory (+) conductances, respectively, onto the dendrites of
the VS neurons. Conductances are weighted by the position of the LMD with respect to the VS
cell receptive fields (see C). Resistor symbols indicate electrical coupling of compartments, and £,
resp. &pe, are independent, intrinsic noise sources to the axons, respectively dendrites, of VS cells.
(E) Steady-state membrane potential of the twenty coupled VS neurons (ggep = 1 15) in response
to stimulation by a narrow, 10° wide horizontal grating with constant downward velocity, centered
at angle . The responses were obtained by sweeping the strip 360° around the visual field. Upper
inset details color scheme and cell ordering for panels C and E.

then subtracted (Figure 2B). A negative (resp. positive) detector response reflected upward (resp.
downward) motion. The downward and upward components were separately weighted according to
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the dendritic receptive field (RF) of each cell, and activated the dendritic compartment of the VS
model neurons as excitatory and inhibitory conductances, respectively. Dendritic receptive fields
were vertically-centered Gaussians, with horizontal width 15°, and vertical width 60° (Figure 2C).
Hence each cell effectively sampled the entire vertical surround above and below its receptive field
center, given in Figure 1A. Maximal vertical velocity within a cell’s receptive field was generated
by azimuthal rotation angles approximately orthogonal to the centers of the receptive field. Such
rotations therefore resulted in maximal excitation or inhibition.

The axonal compartments of adjacent, ipsilateral VS neurons are electrically coupled to each
other. Figure 2D shows a schematic of the model processing stages. Figure 2E shows the response
of each VS neuron to downward stimulation in a narrow (10° wide) vertical strip which was swept
across the visual field. The vertical strip contained a square-wave horizontal grating with a spa-
tial frequency of 22.5° drifting downwards at a constant velocity of 125°/ms, corresponding to a
temporal frequency of 5.5 Hz.

The axonal and dendritic membrane potentials for the VS neurons in each hemisphere evolve
according to:

dV ax
th - _GAXVAX(t) + gAX—DenVDe(t) + O—iXTAngx(t);

& (1)
7’3 = _GDe(t)VDe(t) + gAx—DenVAX(t) + I(t) + U%GTDegDe(t).

Cm
Cm

Here Vs and Vp, are vectors whose entries correspond to the 10 axonal and dendritic voltages,
respectively. The full VS model consists of two copies of this system, representing the activity of
the system in the left and right hemispheres. The two differ only in their receptive field centers
(see Figure 1A and Figure 2C). The parameter gax pen sets the conductance for the coupling of
the axonal and dendritic compartments of each neuron, while C, is the membrane capacitance
and g1, Ax, 91, pe are the leak conductances of each compartment. The membrane time constant of
each compartment is 7x = Cy /g1, x, X = Ax, De. The resting potential of each compartment is
zero. Following a perturbation from rest, the membrane potential decays exponentially back to the
resting potential with a characteristic timescale 7x. Intrinsic variability is modeled by standard
white noise processes €5, (), €pe(t), and oax, ope set the noise intensities.

The input currents to the dendrite of cell ¢ result in the term I;(t) = Ergg,i(t)+ Ergr(t), where
gE,i(t) is the excitatory conductance to cell ¢ induced by the optic flow stimulus, Ef, is the associated
reversal potential, and likewise for the inhibitory quantities gi;(¢) and Ey. The matrix Gpe(t) is
diagonal with entries describing the leak conductance, axonal coupling, and input currents,

GDe,ii (t) = gL.De T gAx-Den + JEi () + g1 (t), i=1,...10.

The matrix Gax has entries given by

9L,Ax T GAx-Den + Jgap T Ginh 1 =7=1or 10,

Gaxii = 9LAx + gAx-Den + 2ggap 2<i=j<9, (2)
oY —Ygap t=j+1lori=75—1,
—0inh i=1,j=100r ¢ =10, j = 1.

Here, ggap sets the strength of the axo-axonal gap junction coupling between adjacent, ipsilateral
VS neurons. One difference between our simulation protocol and that of Borst and Weber (2011)
is that we generated visual inputs at time steps of 1 ms, but integrated Eq. (1) at a smaller time
step of 0.01 ms to guarantee numerical accuracy. We first calculated the conductances elicited by
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Figure 3: A typical response of the VS network (A) Plot of the temporal response of the
left-side VS1, VS5 and VS10 neurons in the uncoupled system (ggap = 0 pS5) to the rotation of
a natural scene stimulus (see Figure 1C). Shaded boxes labeled T and SS indicate time intervals
10 ms in duration over which we average the VS axonal responses to obtain the transient average,
VKX(T ), and the steady-state average V x, (T), respectively. (B) Same as panel A, but for the
coupled system (ggap = 1 p5).

the optic flow stimulus at the coarser time step, then linearly interpolated to obtain a realization of
the conductance at the finer timescale. Typical responses of the uncoupled and coupled systems to
rotation of a random bar image at Ogi, = 90° are shown in Figure 3A and Figure 3B, respectively.
Central to the ability of the VS population to encode the axis of rotation is the strong, non-linear
dependence of a VS neuron’s response on the rotational velocity of the visual stimulus within its
receptive field.

When we consider the encoding of the rotation axis in the VS axonal responses, we take the
output of the system to be temporal averages of the axonal membrane potential. For transient
responses, the VS output is

X7

1 [T
V. (T) = T/o Vax(t)dt, where Vay(0)=Vpe(0) =0, and T = 10 or 20 ms. (3)

In particular, when considering transient responses, we assume the system starts from rest (0 mV)
at the beginning of the period over which we average. Similarly, steady-state responses were
computed as

Tes+1
Vi (T) = ;/ Vax(t)dt, where 74 = 30 ms. (4)
T
In contrast to the transient response defined above, the steady-state response is defined so that, at
the beginning of the integration period (7ys), the entire VS system is (approximately) in steady-
state. Despite the fast time constants of VS model neurons, they do not immediately reach steady-
state, as it takes some time for the motion detector-filtered stimulus received by the VS dendrites
to equilibrate. In Figure 3, the shaded boxes indicate the periods over which we calculated the
transient and steady-state responses.

ss

It has been observed that there is a mutually inhibitory interaction between the end cells (VS1
and VS10) in each hemisphere. This may be implemented by electrical coupling of VS7-10 to
an inhibitory cell Vi which forms a chemical synapse onto the ipsilateral VS1 cell, and electrical
coupling of VS1 to an inhibitory cell Vi2 which forms a chemical synapse onto the ipsilateral VS10
cell (Haag and Borst, 2007; Borst and Weber, 2011). Following Weber et al. (2008), we implemented
this “repulsive” coupling using a negative-conductance gap-junction between VS1 and VS10 (ginn


https://doi.org/10.1101/007450

bioRxiv preprint doi: https://doi.org/10.1101/007450; this version posted July 25, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

in Eq. (2)). This repulsive coupling was scaled when we changed the strength of axo-axonal gap
junction coupling between VS neurons. Unless otherwise specified, we set ginn = —0.06ggap. Our
findings do not depend qualitatively on the presence of this connection (results not shown).

For simplicity, we did not model several known functional and anatomical properties of VS
cells, such as the rotational structure of their receptive fields (Krapp and Hengstenberg, 1996;
Krapp et al., 1998) or dendro-dendritic connections with the dCH neuron (Haag and Borst, 2007).
These properties of the VS network are the subject of current experimental investigations (Hopp
et al., 2014). Although we do not expect them to significantly affect our conclusions, investigating
the impact of such VS cell features is an important avenue for future investigation. Previous
computational studies of the VS network have made similar simplifying assumptions (Karmeier
et al., 2005; Cuntz et al., 2007; Weber et al., 2008; Elyada et al., 2009, 2013).

2.2 Generation of images and optic flow patterns

Optic flow patterns were generated by first projecting various types of random images onto the
surface of the unit sphere. We considered three classes of random images: random bars, random
checkerboards, and natural scenes (see Figure 1C for examples of each type of image). In the first
two cases, images were binary — pixel intensities were either 0 or 1 — and for natural scenes, pixel
intensities varied continuously between 0 and 1. All images were discretized at 1° increments in
spherical coordinates. Throughout, images were generated independently across trials.

Random bar images were parameterized by the number of bars, as well as bar width and length.
Each bar was generated by first randomly placing an initial line segment of the specified bar width
on the surface of the unit sphere. We then expanded this segment along the direction of the length
of the bar by rotation about the appropriate axis, turning “on” all pixels along the path touched
by the rotating segment. Bar images used in the Results (i.e., Figures 5-6, 7) contained 25 bars of
length 40° and width 5°. Choosing bars with different dimensions or changing the number of bars
did not affect the results qualitatively (not shown).

For checkerboard images, we defined a coarse discretization of the image consisting of 4° x 4°
squares, and randomly set all pixels within a square to be zero or one, independently across squares.
Lastly, for natural images, we first took a subcollection of one hundred natural scenes from the
van Hateren dataset (van Hateren and Schilstra, 1999). These images were selected to exclude
man-made objects, sharp edges and gratings. We then randomly selected six (with replacement) of
these one hundred images, projected them onto the sides of a cube, which was itself then projected
onto a sphere, mimicking the approach of Borst and Weber (2011). For natural scene compositions,
we also included an initial rotation of random magnitude about a randomly chosen (not generally
horizontal) axis in order to control for the effects of edges between different natural scenes. We
also confirmed our results with images chosen randomly from the van Hateren dataset without
restrictions. Results were nearly identical (not shown).

The sequences of images comprising optic flow patterns were generated by rotation of the sphere
about an axis in the horizontal plane (we did not consider translatory motion). At a given positive
time, the value of a pixel was set equal to the value of the pixel obtained by a reversal of the
rotation applied to the original image. The rotational velocity was constant across simulations and
set to 500°/s, falling well within the parameters of typical motion of the fly during flight (Egelhaaf
et al., 2012). This value is also consistent with values considered in previous computational studies
of the VS network (Karmeier et al., 2005; Cuntz et al., 2007; Weber et al., 2008; Elyada et al.,
2009). Increasing or decreasing the rotational velocity to 250°/s or 750° /s did not affect the results
quantitatively, nor change our general conclusions (not shown).
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2.3 The optimal linear and zero-crossing estimators

To assess the ability of the VS cell network to encode the direction of rotation, we considered several
estimators based on the axonal membrane potential of VS cells. In the following three sections, the
reader should keep in mind that the random vector V is a surrogate for the time-averaged axonal
response of VS cells. We will define the optimal linear estimator of the rotation axis based on the
steady-state averaged axonal response of VS cells, VSASX, defined in Eq. (4). In subsequent sections,
we will also define the minimum mean-square estimator (MMSE) using the transient averaged
X7t .
axonal response, V 5., defined in Eq. (3).

For our analysis of the steady-state encoding of the axis of rotation, we applied an optimal
linear estimator (OLE), the linear estimator which minimizes the expected value of the squared
error over all stimuli and responses (Salinas and Abbott, 1994). We considered a linear, rather than
an affine estimator because of the (near) rotational symmetry of the system. The OLE is simple
and intuitive, and we used it to demonstrate the impact of gap junction coupling between VS cells.
For a more detailed analysis we used the minimum mean-square estimate (MMSE) defined below.

We are interested in estimating the axis of rotation which is characterized by the unit vector,
s, pointing along its direction. This vector is in the horizontal plane of the fly, with azimuthal
angle Ogim. The optimal linear estimator (OLE) is a linear combination of the responses of the N
neurons, V = (V1,..., V)T (where T denotes transposition). To obtain the OLE, we denote the
joint probability density of stimuli and responses by P(V,s) = P(V|s)P(s). We assume throughout
the following that the prior distribution over the stimuli, P(s), is flat. The tuning curve for the i*?
neuron is then

wi(s) = E[V,ls] = / V,P(Vs) dV.

We also set L; = E[sp;(s)] = [su;(s)P(s)ds, and let L = [Ly|...|Ly] be the matrix with columns
Li,...,Ly. We denote the second moment of the responses of the i and j** neurons (averaged
across stimulus values) by ¥;; = [ V;V;P(V|s)P(s)dsdV. Given an observed response, Vps, the
OLE then has the form

S = inlvobsy

where ¥ is the matrix of second moments, 3J;;. Note that the OLE requires measurement of only
first and second moments of the response. It is thus considerably simpler to obtain than the
true minimum mean-square estimate (MMSE) defined below which requires knowledge of the full
distribution, P(V]s). The optimal linear estimator and the MMSE coincide only when the joint
distribution P(V,s) is Gaussian, which is not generally true for the system we consider.

The stimulus s estimated by the vector § was a unit vector pointing along the axis of rotation in
the horizontal plane. However, the azimuthal angle, 6, of s is the behaviorally relevant variable
for optomotor control by the fly. We therefore report the angle 0 that the vector § makes with
the direction that the fly is facing, i.e., the azimuthal angle of §, as in earlier analyses of similar
directional stimuli (Lewis and Kristan, 1998; Salinas and Abbott, 1994; Georgeopoulos et al., 1988).

We also implemented an estimator proposed by Cuntz et al. (2007) and Elyada et al. (2009) who
suggested that the axis of rotation can be defined as a “zero crossing” of the population response.
To obtain this estimator we defined for each cell a zero angle. Intuitively, this is the azimuthal
rotation angle that is most likely to elicit no response for a given cell. Since rotation about the
azimuthal angle coinciding with the center of a VS cell receptive field will elicit little downward
and upward motion within the receptive field, the zero angles coincide precisely with the centers of
the receptive fields shown in Figure 1A. Then, to estimate the “zero crossing” rotation angle given
the response to a rotation about the stimulus angle i, we search for consecutive pairs of VS
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neurons which exhibit a sign change in their responses (i.e., their membrane potential responses lie
below and above their resting values, respectively). These neurons have the smallest responses to
the stimulus, and hence the rotation angle is likely to lie between their respective “zero angles”.
The axis of rotation is then estimated by linearly interpolating between the two zero angles based
on the responses of these two VS neurons.

More precisely, we define the zero angle of the i** cell on each side, 69, as the angle that
maximizes the likelihood of giving a zero axonal response:

0? = argmax P(Ostim|VAX7i =0), where 1<1i<10.

The posterior distribution of the azimuthal angle of the stimulus conditioned on the zero response
of a VS cell will generally have two relative maxima, about 180° apart. To resolve this ambiguity
we choose the angle at which voltage is increasing with increasing 6.

To implement the zero-crossing estimator, we first search for a pair of consecutive VS neurons
which exhibit responses Vi < 0,V5 > 0, having zero angles 9?, 98, where we assume the two cells
are labeled so that 63 — 69 mod 360° € [0°,180°). A sufficient condition for such a pair to exist is
existence of at least one pair of VS neurons exhibiting positive and negative responses, respectively.
Once such a pair is located, the zero-crossing estimate 6%¢ is the angle associated with the zero
potential level for the line connecting (69,V) and (69, V32),

0_ po
O = 67 + 12?/11(0 - V).

2.4 Modeling the joint distribution of VS axonal responses using copulas

For our analysis of the encoding of the axis of rotation in the transient state, we applied the true
minimum mean-square estimator (MMSE). Obtaining this estimator of the rotation axis requires
estimating the joint probability distribution of axonal membrane potential of VS cells given the
stimulus. However, even with the benefit of modern computational power, it is not feasible to
directly estimate probability distributions for continuous variates in more than a few dimensions.
For this reason, we must first formulate an approximation of the joint probability distribution of
VS axonal responses in order to implement the MMSE.

Two approaches to this problem are to fit a maximum entropy distribution that matches a set
of empirical statistics of the data (Jaynes, 1957; Roudi et al., 2009; Shlens et al., 2009; Ohiorhenuan
et al., 2010; Fairhall et al., 2012), or to apply copulas (Nelsen, 2006). We chose the latter approach,
common in the valuation of financial derivatives, but not widely applied in neuroscience (see,
however, Berkes et al., 2009; Onken et al., 2009a,b). One advantage of the copula approach is that
it allows us to use the empirical marginal probability distributions in the fit.

To fix ideas, we remind the reader that we will fit a copula to the probability distribution of
the time-averaged transient VS axonal response, defined in Eq. (3). Thus, we consider a random

vector V = (V1,..., V)T with cumulative distribution function F(vy,...,7y). A copula for the
distribution function F is a function C : RY — R such that
F(v1,...,on) = C(F1(V1), ..., Fn(UN)). (5)

Here Fj(-) is the marginal cumulative probability distribution function for the variable V;,i =
1,...N. The copula C exists for any distribution F' with marginals {F;}Y, (cf. Nelsen (2006),
Theorem 2.10.9). From Eq. (5), it is clear that C' determines completely the inter-variable depen-
dence structure contained in the distribution F' in terms of the marginal distributions, Fj.
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An N-dimensional copula is equivalent to a distribution function on the N-dimensional unit
hypercube [0,1]¥ with uniform marginals: Define the random vector U = (Uy,...,Uy) where
U; = F;(V;). The probability integral transform implies that each U; is a marginally uniformly
distributed random variable (e.g., Gabbiani and Cox (2010), Sect. 11.8). The copula C(u1,...,un)

for V has an equivalent definition as the distribution function of U.

The ‘curse of dimensionality’ prevents us from directly approximating the corresponding copula
C. A common approach is to select a parametrized copula family which can then be fit via the
maximum likelihood principle (Yan, 2007). We applied the Gaussian copula (Xue-Kun Song, 2000),
which takes the form

C«geaLUSS(u17 o ’UN) = &by, (q)_l(ul)7 e (I)_I(UN)) . (6)

Here @y is the joint Gaussian distribution function with correlation matrix ¥ (i.e., ¥; = 1 for each
i) and @ is the standard univariate Gaussian distribution function. Given independent identically
distributed samples of a random vector V = (V1,...,V )T with marginals {F;}, the correlation
¥i; equals (Bouyé et al., 2000)

5ij = corr[®@7H(F(V2), 87 (F(V))l, 1<ij<N. (7)
Here corr(x,y) denotes the correlation coefficient of x and y (Xue-Kun Song, 2000).

Given a general copula distribution function C' as defined in Eq. (5), the copula density is

defined by
0 0

T Ou Ouy

The joint density f corresponding to the distribution F' may be written as

c(ui,...,un) C(u1,...un).

N

f@r,. .. on) = e(Fi(2r), ..., Fn(an)) [ filz), (8)

i=1

where each f; is the marginal density corresponding to the distribution F;. The density of the
Gaussian copula may be expressed in closed form as

_ 1
~ det(%)

C%auss exp [WT(E_I . I)W] . W= [@_1(u1)7 ce @_I(UN)} (9)

(ug,...,un)

We fit a Gaussian copula to the transient response of the system, VtArX(T). In order to test the
goodness of the fit distribution, we selected twenty random subsets of three left-side VS neurons,
and associated with each subset a random stimulus rotation angle. We then sampled the marginal
copula for each subset (i.e., C(u;,uj, ug) with u; = F;(V;) in Eq. (5)), comparing it with the fit
copula utilized in the MMSE calculations using Egs. (6, 7). We compared the empirically observed
and fit copula distribution values at 1,000 equally spaced points in the unit cube of the form
(0.13,0.15,0.1k),1 < 4,5,k < 10. In Figure 4A, we present a probability-probability (P-P) plot
of the true (empirical) copula values against the fit values. In other words, letting C*"® and Ci*
indicate the true and fit copula distribution functions, Figure 4 presents a scatter plot of the 1,000
points

{<Cﬁt(0.lz’,0.lj,0.1k),Ctrue(o.li,o.lj,o.lk)) 1<i k< 10}.
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Figure 4: Assessing the copula fit for the transient response distribution (A) Blue points
give a P-P plot of the fit copula (Py;, horizontal axis) against the true, empirical copula (Pyye) for
a randomly-selected subset of three left-side VS neurons, at a random stimulus angle. We computed
the copula probabilities at 1,000 points which divided the unit cube into 1,000 equal sized sub-cubes
as described in the text. The black dashed line indicates the diagonal, with agreement between
the true and fit models being indicated by the points lying on or near the diagonal. Optic flow
presented to the system was generated by the rotation of random bar images, and the copula
was fit to the transient response distribution. (B) Histogram of relative errors (¢") for copula
probabilities. Vertical axis represents fractions of points which lie in the corresponding error range
on the horizontal axis. We repeated the simulation of panel A, for a total of twenty random
pairings of three left-side VS neurons and stimulus angles. We then computed the relative error
(see Eq. (10)) between the true and fit copula probabilities at the 1,000 equally spaced points within
the unit cube for all twenty copula fits, and plotted the errors as a histogram.

We also computed for each of the twenty subsets and for all 1,000 sample points the relative
error between the probabilities from the true and fit copula distributions. In particular, we defined
for each point

L 1C(0.17,0.15,0.1k) — C7(0.14,0.1,0.11)
ik Ctrue(0.14,0.15,0.1k) + C54(0.14,0.15,0.1k) ’

1<4,j,k < 10. (10)

Since the probabilities lie within [0, 1] by definition, the relative errors also lie within [0, 1], with
the value 0 indicating a perfect match. In Figure 4B, we plot a histogram of the relative errors
for all twenty random subsets (thus comprising a total of 20,000 data points). We found the true
and fit copula distributions generally agreed quite well. The average relative error across all 20,000
points was =~ 0.0438, and 90.3% of relative errors were below 0.1.

2.5 Computation of the MMSE

To obtain the MMSE (Kay, 1993), we first simulated the response of the VS network in order to
determine an empirical estimate of the marginal distribution functions F;. We did not assume a
parametric form for the marginal distributions, but obtained a discrete estimate by binning values
of the membrane potential integral at a sufficiently fine resolution. We then fit the Gaussian copula
to the joint responses. Additional details are given at the end of the Methods.

Both the marginal distributions and the copula were determined as a function of the stimulus
rotation angle 6y, at a resolution of 1°. Marginal distribution histograms were approximated
from ten thousand samples at each rotation angle, and the copula from one thousand samples. The
MMSE was then computed based on 1,600 samples taken at 5° increments.
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The MMSE of the axis of rotation is calculated as the mean of the posterior distribution of the
rotation vector given the axonal membrane potentials. To be precise, given an observed response
VKX(T ), we associated each stimulus angle value Oy, with a corresponding two-dimensional unit
rotation vector s(fstim) = [c0S(fstim ), Sin(fstim)]T. The estimate, éé\dﬁ%SE) was obtained by first
computing an estimate of s by averaging over the posterior distribution, i.e.,

~ X7 x50
SIME _ Bs |V (1) | = / (0utin) P (B [V (7)) dBsi, (11)
and then reporting the azimuthal angle of this estimate, QAS%%SE = arg §MMSE_ a5 done above for

the OLE and zero-crossing estimators. Values of the posterior density P (05t-1m )VKX(TU were

determined using the fit copula and the measured marginal distributions, along with Egs. (8, 9).
The integral over the posterior density was calculated via simple Riemann integration at a 1°
discretization.

In much of the Results we obtain the MMSE from a partial readout of the VtS response. The
estimation procedure is the same regardless of the size of the response vector V. (T). However,
we will sometimes use the notation Vi;lmb pOp’tr(T) to emphasize that an estimate is based on the

response of a subpopulation.

2.6 An approximating Ornstein-Uhlenbeck model

Assessing the generality of our results required determining whether our observations depended
on the details of the model. In addition, we wished to isolate the essential features governing the
modeling results. To do so, we derived a simplified model which shares the essential characteristics
of the full model defined in Eq. (1). The first change was to replace the time-dependent parameter
Gpe(t) by a constant, so that the simplified model became an Ornstein-Uhlenbeck (OU) process.
Furthermore, we replaced the optic flow generated input by spatially correlated noise. However,
cells retained the sinusoidal tuning curves of the full model. Finally, the correlations between the
inputs to different cells decayed with the distance between them to capture the effect of overlap-
ping receptive fields. In this simplified model, described by Eq. 12 below, we again changed the
magnitude of the diffusive coupling between the cells to examine its impact on encoding.

In form, the corresponding Langevin equations for the evolution of the coupled OU processes
X Ax; Xpe are similar to those of the full model (Eq. (1)):

dX ax

7'Ax,OUT = _AAXXAX(t) + an-DenXDe(t) + UiX,OUTAX,OUgAX(t)v

dX
7—De,OUTDe = _(1 + an-Den)XDe(t) + an-DenXAx(t) + M(G) + \/ U]Qj)e’OUTDe,OUBDegDe(t)‘

The matrix Aay has entries given by

(12)

1 + A Ax-Den + agap Z :J = 1 or 107
AAXvij =9 1+ aaxDen + 2agap 2<1=75<9,
—Qgap i=j+1lori=j—1.
Thus, X ax, Xpe are ten-dimensional processes, with a copy of the system for each hemisphere. The

two copies are uncoupled, and differ parametrically only in their receptive field centers, as in the full
model. We labeled the parameters so as to facilitate comparisons with their counterparts in the full
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model. For example, the parameter ag,, captures the coupling between neighboring compartments
in the OU model, and corresponds to the parameter ggap in the full model.

The tuning curves, p(6) in Eq. 12, describe the steady-state response in the absence of fluctu-
ations. To approximate the steady-state responses of the full system, we defined individual tuning
curves as sinusoids, p1;(6) = sin(f — ¢;), where ; indicates the receptive field center of the it cell.
Therefore, a cell will respond most strongly to stimulation angles orthogonal to the cell’s receptive
field center, as in the detailed VS model — see Figure 2E. We again obtained estimators from the
time integrals of the cell’s responses. In Eq. (12), the last term in the equation for Xp, modeled the
correlated input to the dendrites. The matrix Bp, was chosen so that correlations to neighboring
dendritic compartments decayed exponentially with a space constant of 10°: If A¢ was the shorter
angular distance between the receptive fields of two neurons, the correlations between the inputs
to the two was exp(—A¢p/10°).

In Figure 12 we used the following parameters: 7ax ou = 0.2, Tpe,ou = 40, @Ax-Den = 1, 0Ax,0U =
ope,0u = 0.2. Receptive field centers, ¢;, agreed with the full model. The window of integration for
responses was 1" = 10 units of dimensionless time. The coupling strength ag,, varied, and values
used are indicated in the legend of Figure 12.

2.7 Generation of figures

In all figures, to generate a single sample from the true distribution of the VS model axonal response
we first used Eq. (1) to model the response of the VS model to random optic flow stimuli. We then
computed for each individual simulation the corresponding temporal average (see Egs. (3) and (4)),
to obtain a single sample from the response distribution.

In order to compute the approximate minimum mean-square estimate used to generate Figure 10
and similar figures, we first had to approximate the joint distribution of VKX, the transient averaged
VS axonal responses. We did so in two steps: We first estimated the marginal distribution for each
VXX,Z. by generating samples as described above and binning at a sufficiently fine resolution. For
checkerboard and bar images, we generally binned over the interval [-8 mV,8 mV] at a resolution
of 0.038 mV (420 bins). For natural scenes, where responses were weaker, we generally binned over
the interval [-1 mV,1 mV] at a resolution of 0.0048 mV (420 bins). We verified that bin sizes
were small enough so that the results did not change with a further decrease in bin size (results
not shown). We determined the marginal histograms at a 1° resolution, for each different time
window considered. The histograms were approximated using 10,000 data points at each rotation
angle. Given this large sample of realizations of the random vector V;, the values F;(V;) were
approximated by applying a rank transformation (Berg, 2009).

In the second step, we fit the Gaussian copula, also by generating samples directly from the
model. The correlation matrix which parameterizes the Gaussian copula was determined using
Eq. (7). As with the histograms, we fit the copula at each angle at a 1° resolution and for each
different time window considered. We fit the copula to 1,000 samples generated independently from
those used to fit the histograms.

With these approximations of the true histograms and maximum likelihood estimates of the
parameters for the fit of the Gaussian copula, we drew 1,600 new samples from the true model,
at a spatial resolution of 5° for fgip. For each sample, we computed the approximate MMSE. By
averaging across these samples at each value of Oy, we obtained estimates of the relation between
Ostim and the mean-square error of the MMSE, as plotted on the left of each panel in Figure 10 and
similar figures. The averaged mean-square error shown in the bar plots on the right of each panel
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in Figure 10 was obtained by averaging this data over all values of Ogtin,. The averaged mean-square
error calculated for each subset in Figure 9 was determined likewise.

Given the intensive nature of the simulations involved in obtaining even a single data point
in these figures, all computations had to be performed on supercomputer clusters. For instance,
the sum of all computations performed to generate a single curve in the left panel of Figure 10A
amounted to over 2,000 CPU hours on 2.2 GHz AMD Barcelona processors. The computer code
necessary to implement the VS cell system is deposited in the ModelDB repository accessible at
http://senselab.med.yale.edu/modeldb.

3 Results

Neurons of the vertical system (VS) in the fly respond to visual input, and encode information
about the horizontal axis of ego-rotation (Figure 1). This information is used by cells downstream
from the VS system to control flight. We studied how the azimuth of the angle of body rotation
is encoded in the response of the VS neuronal network using the model schematically depicted in
Figure 2.

Presently, it is not known how downstream neurons read out information from the VS response.
However, physiological evidence suggests that only a few VS cells form connections with specific
downstream premotor neurons (Haag et al., 2007; Wertz et al., 2008, 2009a,b). We therefore ex-
plored the encoding of the axis of ego-rotation in the response of a subset of VS cells, by asking
what is the best possible estimate of the rotation angle that can be obtained from a partial readout
of the VS response. To answer this question, we computed the best estimate (the minimum mean-
square estimate or ideal estimate from here on) that can be obtained from partial, subpopulation
readouts. We found that electrical coupling substantially decreases the error of this estimate. We
explain this observation by examining the coupling—induced changes in tuning curves, variability,
and correlations of the VS cell population. Surprisingly, we found that coupling has no effect on
estimates obtained from a full VS population readout, an observation we go on to explain math-
ematically. Finally, we validate the generality of these findings using a simplified and abstracted
model of the VS network.

3.1 Encoding of the azimuthal rotation angle in the VS response

We examined the response of the VS system to a variety of visual stimuli. To simulate the en-
vironment surrounding a fly, we first projected images onto the surface of a sphere centered at
the fly. The sphere was rotated clockwise about a horizontal axis with azimuthal angle 6gtin,, thus
generating a pattern of optic flow (Figure 2A). In each trial, we recorded the response of the model
VS network to the optic flow generated from a single, random image. Across trials, we used differ-
ent, randomly generated images: random bars, random checkerboards, and various compositions of
natural scenes (see Methods). We show below that, while there were quantitive differences in the
V'S responses, our results and conclusions hold for all image classes.

Based on our current knowledge of the fly visual system, the optic flow stimulus was filtered by
an array of local motion (Reichardt) detectors (Reichardt, 1987; Borst et al., 2003) (Figure 2B).
These detectors functionally separated the stimulus into upward and downward motion components
which were summed according to the retinotopic receptive field of each neuron (Figure 2C). These
signals formed the input to the dendrites of the VS neurons and downward (resp. upward) motion
elicited a transient increase in the excitatory (resp. inhibitory) conductance. The magnitude of
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this conductance change depended non-linearly on the local rotational velocity. Figure 2D provides
a schematic of the model.

In the fly, the VS neurons are arranged in a one dimensional array with adjacent, ipsilateral
cells coupled via axo-axonal gap junctions (see far right of Figure 2D). The steady-state response
of the model network to downward motion in a narrow vertical strip is shown in Figure 2E. Input
to one VS cell can impact the axonal response of other cells in the network because of coupling.
Thus the ‘effective’ axonal receptive fields of VS cells are much wider than the dendritic receptive
fields displayed in Figure 2C. Hence, coupling allows the VS neurons to pool the responses of their
neighbors (Cuntz et al., 2007; Elyada et al., 2009). Our goal was to understand the effect of such
coupling on the encoding of the azimuth of the axis of ego-rotation in the VS population response.

Transient encoding of the axis of rotation in a VS subpopulation During cruising flight
in a stationary environment, flies often move along straight-line segments separated by saccadic
periods of rapid rotation. These straight-flight segments occur at rates of up to ten per second
and may be as short as 30 ms in duration (Schilstra and van Hateren, 1999; van Hateren and
Schilstra, 1999; Boeddeker and Egelhaaf, 2005). Since motor projections of the VS network must
pass through intermediate descending neurons (Strausfeld and Bassemir, 1985; Haag et al., 2007;
Wertz et al., 2009b, 2008, 2009a), the representation of ego-rotations for compensatory optomotor
responses must take place at an even shorter timescale. Similarly, short timescales are likely critical
during other natural flying behaviors, such as pursuit and tracking (Land and Collett, 1974; Collett
and Land, 1975).

To understand the role of coupling in the VS network we examine its impact on the information
available to downstream neurons that are involved in flight control. In particular, we focus on a pair
of prominent premotor descending neurons that has been identified within each brain hemisphere.
These descending neurons of the ocellar and vertical system (DNOVS) form gap junctions with
subsets of the VS cells, and directly innervate motor neurons in the thoracic ganglion of the fly
(Haag et al., 2007; Wertz et al., 2008, 2009a,b). DNOVS1 and DNOVS2 couple electrically to ipsi-
lateral VS neurons, with the strongest coupling to the VS6-7 and VS5-6 neurons, respectively. The
response of these downstream neurons is determined by temporal filtering of the graded response
of the VS population rather than instantaneous values of their membrane potentials. We therefore
considered time-averaged integrals of the transient response beginning from rest. We denote the
vector of these averaged axonal responses by V::C(T) (see Eq. (3) and Figure 3), where T denotes
the length of the integration window and the “tr” superscript indicates the transient state of the
system.

The VS response encodes information about the ego-rotation axis parametrized by its azimuthal
angle, Ogim. We asked what is the best possible estimate of the rotation axis obtainable from the
response of neurons that provide input to the DNOVS cells. We therefore computed the estimator
that minimizes mean-square error (the ideal estimate) based on the response of the VS5-7 neurons
from each hemisphere, and report the corresponding azimuthal angle, ésll\é[il\rﬁSE, as described by
Eq. (11) in the Methods. Computation of OMMSE 1elies on an average taken over the posterior

stim
e . . . <7subpop,
distribution of the stimulus, given the subpopulation VS response, P(95t1m|Vf4ux pop tI(T)). The
vector Vil; pOp’tr(T ) has 6 components corresponding to three cells, VS5-7, in two hemispheres.

Later we consider readouts from larger subpopulations, and hence response vectors with more
components.
Our model VS network is complex, and it is not obvious how to parametrize the likelihood

P(estiij}f pOp’tr(T)). As a result, Eq. (11) cannot be evaluated via Markov Chain Monte Carlo
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(MCMC) methods, or other techniques designed for efficient sampling from probability distri-
butions (Robert and Casella, 2004). We therefore simulated the model directly to estimate the
likelihood, and then computed the integral in Eq. (11) after using copulas to approximate the mul-
tivariate distribution of the responses (See Methods for details; Figure 4 illustrates the quality of
the copula approximation).

The ideal estimate gives the best possible estimate of the axis of rotation from the responses
of a VS subpopulation, ﬂf 1DOP’“(T). Therefore the mean squared error of any other estimate
computed by a downstream population with access to the same VS subpopulation must equal or
exceed that of the ideal estimate. While we do not know how the output of the VS system is

decoded, our results provide limits on the performance of any postsynaptic decoder.

Dynamical effects of coupling on VS network responses Even in the absence of internal
variability, the axis of rotation cannot be decoded perfectly from the VS response. Each visual scene
consists of a different arrangement of edges and other features. Thus different scenes rotating about
the same axis, result in different VS responses. If the parameter of interest, Ogtim, is fixed across
a set of trials, we refer to the differences in the VS responses as overall trial-to-trial fluctuations.
Such fluctuations can be due to variability in visual scenes (external variability), or noise generated
internally, but the origin of overall trial-to-trial fluctuations is irrelevant when estimating the axis
of rotation from a VS readout.

We illustrate this point in Figure 5 which shows the responses of the VS system to different
random bar images. Each image contained the same number of bars of equal shape. However,
their arrangement differed from image to image. Even in the absence of intrinsic fluctuations (i.e.,
oAx = 0pe = 0), this resulted in different VS responses when the images were rotated about the
same axis (Fig. 5A).

Electrical coupling between VS cells can significantly reduce such overall trial-to-trial fluctua-
tions. Figure 5A shows the effect of coupling using five typical responses of the left-side VS10 neuron
to rotations of random bar images about Ogim = 90° with (left) and without (right) axo-axonal
gap junction coupling.

We define the overall trial-to-trial covariability in the VS cell responses as the correlation co-
efficient computed over trials with different visual scenes, but fixed Ogi,. Figure 5B shows the
sample (Pearson) correlation coefficient between pairs of VS membrane potentials averaged over
the window labeled SS in panel A. As expected, correlations increase with coupling. However, even
in the absence of coupling, the overlap in the receptive fields of the different VS cells results in
strong correlations between neighboring cells.

Figures 5C and D show how steady-state tuning curves (mean responses as a function of Oy, )
and response variability are affected by coupling. In addition to reducing variability, coupling allows
the VS neurons to interpolate their responses (Cuntz et al., 2007; Elyada et al., 2009), and increase
their orientation coverage (Graf et al., 2011): When coupled to its neighbors, each cell exhibits
a graded response to an increased range of stimulus angles. This effect can also be observed by
comparing the dendritic receptive fields in Figure 2C with the much broader axonal responses in
Figure 2E. Notably, such smoothing takes place without a significant decrease in tuning curve
amplitude.
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Figure 5: The effect of coupling on VS neuronal dynamics. (A) (Left) Typical axonal
response of the left-side VS10 cell in the uncoupled network (geap = 0 wS) to rotations of bar
images about Oy, = 90°. Different line types indicate different, randomly generated images.
(Right) Same as the left panel, but for the coupled system (ggap = 1 ©S). Images rotated to
generate optic flow stimuli were the same ones used in the uncoupled system, with matching line
types indicating matching image presentations. (B) Correlations for the integrated membrane
potential in steady-state for the left-side VS neurons. Values above (resp. below) the diagonal are
for the uncoupled (resp. coupled) system. Nearby cells were correlated at levels of approximately
0.7 and 0.97 for the uncoupled and coupled systems, respectively. (C) Steady-state tuning curve
(mean response) and variability as a function of rotation angle for (i) VS1 and (ii) VS10 in the
uncoupled system. Shaded areas indicate +/ — 1 s.d. of the response distribution. (D) Same as C,
but for the coupled system. All responses and statistics in this figure were generated in the absence

of intrinsic fluctuations (oax,ope = 0). Stimuli were created by rotations of random bar images
(see the Methods).

3.2 Effect of coupling on VS5-7 subpopulation encoding

What is the impact of coupling on the quality with which the VS5-7 neurons encodes the axis of
rotation? The effects described in the previous section point to a potential trade-off: coupling could
improve encoding by extending the range of tuning curves, and reducing response variability. On
the other hand, increased correlations can decrease the fidelity of a parameter estimate. Whether
and to what extent this is the case depends on the specifics of the system (Barlow, 1961; Panzeri
et al., 1999; Averbeck et al., 2006b; Shamir and Sompolinsky, 2006; Ecker et al., 2011; Latham and
Roudi, 2011).

We examined the impact of coupling on estimating the rotation axis by computing its ideal
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Figure 6: Mean-square error of the MMSE for a partial readout of transient responses
(A) (Left) Lines indicate the square root of the mean-square error (MSE) of the MMSE for transient
responses to filtered optic flow stimuli generated by the rotation of random bar images with a 7' = 10
ms window of integration. Line colors correspond to different coupling strengths as indicated by
the legend. Partial readout refers to the responses of the VS5-7 cells on each side. (Right) Bars
represent the square root of the stimulus averaged mean-square error (MSE) from the data plotted
to the left, with bar colors corresponding to line colors. (B) Same as A, but for a window of
integration of 7' = 20 ms. (C) Same as A, but for random checkerboard images. Note the different
scaling of the vertical axis. (D) Same as A, but for natural scenes.

estimate from a partial readout of the transient VS response to different images and a variable
integration time. As shown in Figure 6, coupling greatly increases the accuracy of the estimate
obtained from the responses of VS neurons 5-7. Even moderate levels of coupling resulted in a
strongly reduced mean squared error of the estimate éév[tl%SE regardless of integration window and
type of image presented (bar charts in Figure 6). We will show below that the situation is very
different for a full population readout where the mean-square error of the ideal estimate is largely

independent of coupling.

3.3 Factors determining partial decoding improvement

How does coupling improve decoding? To address this question, we next investigated whether
improved estimation of the axis of rotation from the VS5-7 subpopulation is due to changes in in-
dividual cell responses. For instance, can changes to tuning curves and the reduction in variability
observed in Figure 5C and D explain the improvements in encoding accuracy in Figure 67 Alter-
natively, can the improvements be explained by changes in the joint response of the VS neurons,
such as increases in correlated variability (Figure 5B)7

To obtain a full picture of the factors governing decoding performance, we also investigated how
population-level encoding of the axis of rotation depends on the dimensionality of the response:
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How does a readout from multiple cells receiving distinct dendritic input compare to a readout from
a single cell linearly integrating the same dendritic responses? Finally, we asked how the readout
from different subpopulations is impacted by coupling.

Overall trial-to-trial covariability vs. tuning curve smoothing To examine the impact
of overall trial-to-trial covariability on the error of the optimal subpopulation decoder, we shuffled
the responses of each VS neuron across trials, separately for the uncoupled and coupled systems.
Specifically, the de-correlated (shuffled) responses were obtained by drawing independently, for
each fixed 6, from the set of responses used in Figure 6. This allowed us to maintain the
features of the single neuron response to the stimulus (the tuning curve shape), while removing
overall trial-to-trial covariability. In the coupled case overall trial-to-trial covariability includes
both stimulus-induced and coupling-induced correlations (see above), while in the uncoupled case
it consists only in stimulus-induced correlations.

Removing overall trial-to-trial covariability produced a surrogate VS response distribution that
differed from the true one. Using this ‘incorrect’ distribution therefore also resulted in a different
posterior distribution over the angle Og;m, resulting in increased ideal estimate error. The mag-
nitude of this increase tells us how important overall trial-to-trial correlations are for the ideal
estimate.

As noted above, coupling also smooths the tuning curves and increases coverage. We can
compare the ideal estimate obtained in the absence of coupling without shuffling to the ideal
estimate obtained with coupling and shuffling. Since overall trial-to-trial covariability is ignored in
the second case, any reduction in error is due to changes in the responses of individual cells.

= shuffled| [— 0 uS
MSE = = original | |— 1S MSE

5ol 1

90° 180° 270° Ogm
Trousdale et al., Fig. 7

Figure 7: Correlations encode stimulus information in a partial readout (Left) Solid lines
indicate the square root of the mean-square error of the MMSE for trial-shuffled transient responses
to filtered optic flow stimuli generated by the rotation of random bar images with a 7" = 10 ms
window of integration. Line colors correspond to different coupling strengths indicated (see legend).
Dashed lines indicate the error of the partial readout without shuffling for the same strengths of
coupling (same data as Figure 6A). The partial readout was formed from the responses of the VS5-
7 cells on each side. (Right) Solid border bars represent the square root of the stimulus averaged
mean-square error for the cross-trial shuffled data plotted to the left, with bar colors corresponding
to line colors. Dashed border bars indicate the same, but for the non-shuffled data (as in Figure 6).

We present the mean-square error of the ideal estimate before and after shuffling in Figure 7.
The left plot shows the error as a function of the axis of rotation for two coupling strengths, for
trial-shuffled and the original data. The bar chart to the right presents the estimation error for the
uncoupled and coupled systems, with and without trial-shuffling.
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The response of the VS system is more strongly correlated in the presence of coupling. Therefore
shuffling has a stronger effect on the response distribution, and performance of the ideal estimate
suffers more when VS cells are coupled. In Figure 7 the difference between the dashed blue bar
and the solid orange bar characterizes the impact of tuning curve smoothing due to coupling.
The difference in performance between the solid and dashed orange bars characterizes the impact
of overall trial-to-trial correlations. Thus, we see that approximately half of the improvement in
mean-square error for the subpopulation readout was accounted for by the changes to tuning and
the other half by correlated variability: Changes in the marginal statistics of the response and
changes in the correlation structure were of nearly equal importance.

Role of axonal filtering The VS response is part of a hierarchy of signal processing steps, as
shown in Figure 2D. In particular, the axonal system receives input from the dendritic system,
which itself has a retinotopic receptive field structure, and also encodes the axis of rotation in its
response. We have shown that coupling allows for a more accurate estimate from a subpopulation
of the VS cells. However, if only a subset of the VS responses is used by an estimator, why are
there ten cells instead of a single cell with a spatially extended dendrite?

To answer this question, we simulated the system with only a single cell (axon) in each hemi-
sphere which received input from all ten dendrites, and left the dendritic structure unchanged.
In this case, the axonal response within each hemisphere is univariate and evolves according to
(compare with Eq. (1))

10

dVax 1
7A = _(gL,AX + 109Ax-Den)VAX(t) + 109AX-Den A Z VDe,i (t)
10 —

Cm dt

+ O'QAXTAfoX(t). (13)

This is equivalent to assuming that a single axonal compartment couples to a single dendritic
compartment evolving as the average of the ten dendritic compartments in the full model.

Figure 8 shows that replacing ten cells by one has a strong negative impact on stimulus encoding.
Here we compare the error of the ideal estimate for the single axon system to that of the full, coupled
system with a partial readout consisting of the VS5-7 cells (as in Figure 6). The average error of
the ideal estimate in the full system is smaller by over a factor of four (compare the solid orange
and the dashed blue bar, Figure 8, right), and the error is reduced by up to a factor of eight at
specific stimulation angles (Figure 8, left).

Thus, multiple cells with differing tuning curves improve the performance of the ideal estimate,
even when coupling increases overall trial-to-trial correlations between cells. The improvement is
partly due to the additional dimensions available when reading out the VS5-7 responses, compared
to a readout from a single compartment. However, this is not all: We compared the performance
of the ideal estimate for the single axon system to that of the full, coupled system, with a readout
from only the VS5 cell. The coupled system is again superior to the single axon system (compare
the dashed orange and the dashed blue line in Figure 8). Hence averaging the responses of all
dendritic inputs notably degrades ideal estimate performance. While electrical coupling introduces
correlations, responses of the individual VS cells are not identical. A balance between a coupling
that allows for the integration of information in a subpopulation, and a distinct response between
different VS cells seems best for stimulus encoding in a subpopulation. These results hold for
passive dendrites — it is an open question whether a single axon system with active dendrites
could perform better.

20


https://doi.org/10.1101/007450

bioRxiv preprint doi: https://doi.org/10.1101/007450; this version posted July 25, 2014. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

— 10 Axons, VS5-7
- - 10 Axons, VS5

004 1

MSE - - 1 Axon MSE
;N AR
;N I\ i
40° ! ray /I"v\\ ¥ °
NN B
90° 180° 270° By, 10101

Trousdale et al., Fig. 8

Figure 8: A single cell with a spatially extended dendrite cannot accurately encode the
axis of rotation (Left) Solid orange line indicates the square root of the mean-square error of the
MMSE for transient responses to filtered optic flow stimuli generated by the rotation of random
bar images with a T" = 10 ms window of integration, for the full system with a partial readout
consisting of the VS5-7 cells in each hemisphere (same data as Figure 6A). The dashed orange line
was obtained with the same system as the solid line, with readout from only cell VS5. The dashed
blue line indicates the mean-square error for a system consisting of a single axonal compartment in
each hemisphere which couples to all ten of the corresponding dendritic compartments, as described
in the text. (Right) Bars represent the square root of the stimulus averaged mean-square error for
the systems and readouts shown on the left.

Partial readout subset size and VS cell identity We asked to what extent our results depend
on the particular subset of the VS population used to compute the ideal estimate. Would it matter
if the DNOVS cells received input from a different subset of VS cells? To answer this question
we randomly selected twenty distinct readouts of sizes up to five (except for readouts of size one,
of which there are only ten possible choices). For readouts from three cells, we ensured that the
set VS5-7 (the readout considered in Figure 6) was included. For each of the chosen readouts, we
computed the mean-square error averaged across all values of Ot .

The results are presented in Figure 9. The mean-square error for the coupled network (panel B)
decreases rapidly with the size of the readout subpopulation. Improvements are marginal beyond
two cells. Strikingly, beyond one cell readouts, there is very little dependence on the particular
subset of VS cells on which the estimate is based. In contrast, the average mean-square error across
readouts does not decrease as rapidly for the uncoupled network. In this case the mean-square error
also depends strongly on the identity of cells in the particular subset. Although the average mean-
square error for the uncoupled and coupled network are close for readouts from three or more cells,
the error for the “worst” readout is far larger in the uncoupled case.

Despite similarities in membrane and receptive field properties across the VS cells, we observed
a large variance in the error depending on cell identity when reading out only a single neuron
VS response, for both the uncoupled and coupled network. This variability can be attributed to
the unequal coverage of stimulus space by the VS receptive fields, combined with the particular
structure of interneuronal coupling. The large variability in the error for readouts from multiple
uncoupled cells is due partly to the narrow tuning curves. Uncoupled neurons that are physically
close do not communicated with other VS cells. Therefore, the collective ‘orientation coverage’ of
uncoupled neighboring cells is lower than for non-adjacent neurons. For such groups of neurons, a
larger range of rotation axes will be poorly encoded. In the coupled system, the story is different
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Figure 9: Encoding accuracy depends on cell identities for a partial readout (A) The
solid line shows the square root of the average mean-square error of the MMSE calculated from
transient responses in the uncoupled system. Input to the system consisted of filtered optic flow
stimuli generated by the rotation of random bar images with a 7" = 10 ms window of integration.
The mean-square error was averaged across 20 randomly chosen subsets for each readout subset
size. For readouts from a single cell, we could only consider ten readouts, corresponding to the ten
VS cells. Dashed lines indicate the maximum and minimum values of the MSE observed across the
randomly chosen subsets. For size three readouts, we ensured that we included the subset consisting
of VS5-7 (the same subset used in Figures 6), and the filled circle indicates the mean-square error
for this subset. Note the logarithmic scale of the vertical axis. (B) Same as panel A, but for the
coupled system.

— when considering a readout from at least two VS neurons from each hemisphere, the identity
of the cells is not important. Coupling amongst VS neurons brings about a degree of ‘information
democracy’ in which any pair of neurons carries roughly equal information about the axis of rotation.

Overall, coupling was uniformly beneficial to the fidelity of encoding of the axis of rotation
in the axonal response. Strikingly, however, the error for the readout of the VS5-7 cells was
highest amongst all tested readouts for both the coupled and uncoupled system. Two key factors
contributed to this result: first, single cell readouts of each of these neurons yielded a larger error
than single cell readouts from other VS neurons (results not shown). In addition, these three cells
are physically close, and thus lead to larger estimation errors, as noted above. This phenomenon
is closely linked to observations of changes in orientation coverage with population size recently
reported in pools of orientation selective cortical neurons used to discriminate sinusoidal gratings
drifting in different directions (Graf et al., 2011). Thus, if biological constraints dictate that the
rotation angle be estimated primarily from the response of the VS5-7 neurons, coupling of the VS
axonal responses becomes of great importance (Figure 6).

Comparing the trends of the mean-square error in Figure 9 in the absence (A) and presence
(B) of coupling suggests that coupling has a diminishing effect as subpopulation size increases. We
next examine this observation further.

3.4 Estimation of the axis of rotation from the full population response

We have shown that coupling significantly improves estimates from a partial readout of the VS
response. How does coupling affect a readout from the entire VS population?

The performance of the ideal estimate for the angle of rotation estimated from the integrated
axonal potentials of the full VS population is shown in Figure 10. The error of the ideal esti-
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Figure 10: Mean-square error of the MMSE for transient responses (A) (Left) Lines
indicate the square root of the mean-square error of the MMSE for transient responses to filtered
optic flow stimuli generated by the rotation of random bar images with a 7" = 10 ms window
of integration. Line colors correspond to different coupling strengths as indicated by the legend.
(Right) Bars represent the square root of the stimulus averaged mean-square error from the data
plotted to the left, with bar colors corresponding to line colors. (B) Same as A, but for a window of
integration of T' = 20 ms. (C) Same as A, but for random checkerboard images. Note the different
scaling of the vertical axis. (D) Same as A, but for natural scenes.

mate depended on image statistics, but surprisingly, it was approximately independent of coupling
strength.

As shown in Figure 5, coupling has a strong effect on correlations and tuning curves, and
decreases the error of the ideal estimate obtained from a partial readout. It is therefore surprising
that the same changes in tuning curves and correlations have no effect on the error of the ideal
estimate obtained from the full population response. To understand this difference, we first apply
the optimal linear estimator to steady-state VS responses (OLE; see Methods). While less general
than the ideal estimate, the OLE is easier to analyze. We show that the insights obtained from the
OLE in steady-state carry over to the ideal estimate both in steady-state and transient states.

The mean-square error of the OLE is independent of coupling in steady-state We
defined the steady-state response of the system of VS cells using averages of the graded responses
of the VS population, V4. (T) (See Eq. (4)). Here T indicates the time window of integration
and the superscript “ss” indicates that the system is in steady-state. We then computed the OLE
based on Vi (T).

The mean-square error of the OLE as a function of gy, is shown in Figure 11, for three types of
images and two integration time windows: Across image types and integration time windows, the
mean-square error of the OLE in steady-state was also independent of the strength of axo-axonal
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Figure 11: Mean-square error of the OLE for steady-state responses (A) (Left) Lines
indicate the square root of the mean-square error of the OLE for steady-state responses to filtered
optic flow stimuli generated by the rotation of random bar images with a 7" = 10 ms window
of integration. Line colors correspond to different coupling strengths as indicated by the legend.
(Right) Bars represent the square root of the stimulus averaged mean-square error for the data
plotted to the left, with bar colors corresponding to line colors. (B) Same as A, but for a window
of integration of T = 20 ms. (C) Same as A, but for random checkerboard images. Note the
different scaling of the vertical axis. (D) Same as A, but for natural scenes. Details regarding
image generation and the technique for generating the optic flow presented to the model may be
found in the Methods.

coupling. The statistics of the optic flow generated by images from a given class set the baseline
level for the mean-square error. However, the error was independent of coupling strength for all
classes of images tested. We also verified this for different parameters of the random bar images
(results not shown — see the Methods for details of image generation).

Explanation of coupling-independence We first note that since the axonal and dendritic
compartments were coupled electrically, the dendritic response was affected by the strength of the
axo-axonal coupling. However, the impact of coupling on the vector Vpe(t) of dendritic responses
was limited to a multiplication of the response by a diagonal matrix (result not shown). Except
for this scaling, the time course of the dendritic response is dominated by the synaptic input
arriving through the visual pathway which reflects the response to the filtered optic flow stimulus.
Therefore, to a good approximation, the system may be viewed as hierarchical (Elyada et al., 2009):
The motion detector-filtered optic flow stimulus drives the dendrites, and the dendrites drive the
axonal compartments, with the activity at each step determined completely by the response at the
preceding stage (along with any intrinsic noise sources).

As we show next, a consequence of this observation is that the vector of average axonal responses
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Vs, (T), is linearly related to the vector of average dendritic responses Vp, (T'). The specific relation
between the two vectors changes with coupling. However, because the relation is linear, the axonal
and the dendritic response will give the same estimate of the axis of rotation, regardless of coupling.
We next make these intuitive observations more precise.

Disregarding intrinsic noise in the system, we have
oS 17T
VE(T) = = / ds Vax(s)

T Jo
1 T o0

= / ds/ du H(u)Vpe(s — u)
T Jo 0

=p [/OOO ds H(s)} B /OTds VDe(S):|

= HVp(T), where ’H:/ ds H(s).
0

Here, =p indicates equality in distribution, and H(s) = Ci,'gax-Den €xp [—Cp'Gaxs] O(s) is the
exponential filter the axonal system applies to the dendritic response. We note that at positive
times, when the Heaviside function O(s) = 1, H(s) is a matrix exponential. That the axonal
response can be represented by a convolution of a matrix exponential with the dendritic response
(second equality) is a general mathematical property of linear systems of differential equations such
as those which describe the evolution of Vay (see Eq. (1)).

The equality in distribution in Eq. (14) arises from switching the order of integration and using
the time-shift invariance of the dendritic membrane potential distribution under the steady-state
assumption. In this case the distributions of Vpe(s — u) and Vpe(s) agree for all finite u, and the
two quantities can be exchanged under an equality in distribution. The dendritic average Vi, (T
is defined analogously to the axonal quantity in Eq. (4).

Eq. (14) shows that, under the hierarchical assumption, the axonal activity is conditionally
independent of the input given the dendritic activity: If the linear relation between axonal and
dendritic responses is invertible, the posterior distribution of the stimulus given the axonal response
agrees exactly with the distribution conditioned on the dendritic response. In other words, since
V. (T) =p HV 5 (T) for some invertible matrix 7, it follows that

P(Ostima| Vaaz (1)) = P(stim| Ve (T)).- (15)

In this situation, there is no change in information about the rotation angle due to coupling. This
equality holds as long as H is invertible. Realistic gap junction coupling strengths change the
entries in the matrix H, but do not impact its invertibility.

We found that the dendritic responses were independent of coupling up to an invertible linear
scaling factor, implying that the posterior distribution P(fsim|V . (T)) is likewise independent
of coupling. Thus, not only will the performance of the OLE be unaffected by coupling in this
case, but the same conclusion holds for more general probabilistic estimators (including the ideal
estimate considered below, all Bayesian estimators and the maximum likelihood estimator).

Independence of the ideal estimate on coupling in the transient state The explanation
of why the ideal estimate error is independent of coupling in the transient state is largely identical
to that provided in the steady-state case (see Eq. (14)), with one crucial difference: The equality in
distribution on the third line of Eq. (14) does not hold exactly for transient responses. A priori it
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is not obvious that the equality should hold even approximately. However, if the axonal responses
are fast then the equality will hold to a good approximation: Intuitively, a fast response means that
the axonal filter, H(u) is not negligible only for u close to 0. Since the dendritic voltage changes
are relatively slow, Vpe(s — u) &= Vpe(s) is nearly independent of w.

More precisely, the characteristic response timescales of the VS axonal compartments (and of
the system filter H) are given as the product of the membrane capacitances with the inverses of
the eigenvalues of Gax. If these eigenvalues are large enough, the equality in distribution in Eq. 14
does hold nearly exactly owing to a separation of the timescale of the axonal response from that
of the output integration window. In this case, there again exists an invertible linear relationship
between the transient axonal average VXX(T ) and the corresponding dendritic average VtDre (7).

The VS axonal compartments have baseline time constants on the order of a millisecond (Borst
and Weber, 2011). The effective time constants will thus be even smaller, owing to the axo-dendritic
and axo-axonal gap junction synapses (Rudolph and Destexhe, 2003). These short integration time
constants allow the system to reliably implement a linear transfer from the dendritic to the axonal
averages for transient responses, as in Eq. (14). To verify this, we carried out linear regression
analysis of the dependence between the axonal and dendritic responses. We found R? values for
individual coordinates were above 0.999 for all coupling values (ggap = 0,0.5,1 ©S) and integration
time windows tested (7" = 10,20 ms) when the intensity of intrinsic noise was set to zero (results
not shown). This indicates that transfer is nearly linear in each axonal dimension. The linear
regression was performed for random values of g, indicating the independence of this transfer
matrix from the stimulus value.

In short, the axonal network uses a very fast system filter to institute a highly reliable linear
transfer of the averaged transient dendritic response to the average transient axonal response. As
in the steady-state case, the entries of the transfer matrix depend on coupling, but its existence and
invertibility do not. Hence, the posterior distribution of the stimulus conditioned on the axonal
response is nearly identical to that conditioned on the dendritic response (see Eq. (15)), and the
latter is approximately independent of coupling (Elyada et al., 2009). As a result, the estimates
(and error) of any probabilistic estimators will not depend significantly on the strength of the
axo-axonal gap junction coupling within the VS system.

Coupling improves partial decoding in a simplified model We next asked whether our
conclusions depended on the details of the model fly visual system we used in our simulations,
the statistics of the images presented, or other choices we made in our analysis. For this purpose,
we examined whether similar conclusions can be obtained in a simplified, analytically tractable
approximation of the full VS model (see the Methods). In this simple Ornstein-Uhlenbeck (OU)
system we discarded the Reichardt detectors, and the complex visual input used in the full model.
Instead, the input to the system was white noise which was correlated in space to model VS cell’s
receptive field overlap.

The ten dendritic and ten axonal compartments were modeled by linear differential equations
which shared two essential characteristics with the full model described above. First, we assigned
the dendritic compartments tuning curves (i.e., mean responses in the absence of fluctuations)
which were sinusoidal functions of the stimulus angle in order to emulate the retinotopic response
properties of the VS neurons. Second, the axonal compartments were diffusively coupled.

In this model, we emulated the relatively slow timescale of the dendritic input arriving to the
axon terminals, by assigning the dendritic compartments a time constant which was an order of
magnitude larger than that of the axonal compartments. Details of the model are given in the
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Figure 12: Mean-square error of the MMSE for full and partial readout from an ap-
proximating Ornstein-Uhlenbeck system (A) (Left) Lines indicate the square root of the
mean-square error of the OLE for transient responses to filtered optic flow stimuli generated by
the rotation of random bar images. Line colors correspond to different coupling strengths between
“axon” compartments, as indicated by the legend. (Right) Bars represent the square root of the
stimulus averaged mean-square error from the data plotted to the left, with bar colors correspond-
ing to line colors. (B) Same as A, but for a partial readout formed from the responses of the
cells index 5, 6 and 7 on each side, imitating the partial readout considered in the full system (see
Figure 6).

In this setting, we qualitatively replicated our earlier findings: The performance of the ideal
estimate obtained from a partial readout of the axonal responses increased with coupling. With a
readout from the entire population, performance was independent of coupling (Figure 12). We did
not tune the model, and the result held over a wide range for all parameters (results not shown).

4 Discussion

Organisms need to rapidly extract information about ego-motion from complex patterns of optic
flow (Figure 1C). We used a simplified, but biophysically realistic model of the fly vertical system
(VS) to examine the role of electrical coupling in encoding the azimuthal axis of ego-rotation. We
have shown that this parameter can be quickly and accurately extracted from the transient response
of a VS subnetwork.

The impact of coupling and correlations on encoding in neuronal populations has been studied
extensively (for a review, see Averbeck et al., 2006a). Interestingly, we found that coupling did not
affect the error of optimal estimates from complete population responses. The posterior distribution
over the azimuthal angle of rotation was unaffected by coupling. Hence, Bayesian or maximum-
likelihood estimators were similarly unaffected.

Physiological evidence suggests that part of the VS network drives the response of two of its
postsynaptic neurons. The DNOVS 1 and 2 are efferent targets of VS cells projecting to thoracic
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ganglia where they contact neck motor neurons involved in head stabilization during flight (Haag
et al., 2007; Wertz et al., 2008, 2009a). Each DNOVS neuron is most strongly coupled to two
VS cells, and the DNOVS pair is coupled predominantly to a subset of three VS neurons in each
hemisphere.

Coupling between VS cells significantly improved encoding accuracy of the rotation angle in
the response of this VS subpopulation. For this partial readout, the transfer from dendritic to
axonal membrane potential is approximately linear, but not invertible. Hence, the performance
of the estimator depends on coupling. The dynamical changes induced by coupling resulted in a
sub-population readout that could be as accurate as a full population readout. Coupling had the
greatest impact on the readout from VS5-7 and post-dendritic processing enabled by the coupling
of distinct axonal compartments was crucial to encoding accuracy. These results are robust and
general: Model details such as image features and integration timescales had only a quantitative
impact.

Based on these results, we can make concrete predictions that can be tested experimentally.
These predictions rely on the ability to ablate a single VS cell that does not provide direct input to
DNOVS neurons, or block its gap junctions. Under such conditions, the decoding of rotation axes
from postsynaptic DNOVS neurons should be differentially affected, depending on which VS cells
the rotations preferentially stimulate. If such specific silencing of a VS neuron were possible in the
intact animal, we predict a similar differential effect on behaviors controlled by DNOVS neurons.

The fly visual system is an established model for the study of optimal motion encoding and
decoding (Laughlin, 1981; Bialek et al., 1991; van Hateren, 1992; Gabbiani and Koch, 1996;
Van Steveninck and Laughlin, 1996; Fairhall et al., 2001). To the best of our knowledge, our
work is the first to examine the impact of electrical coupling on optimal population coding by
using a mathematical and computational analysis of the response of a detailed model of the VS
network (Borst and Weber, 2011). Previous arguments about the benefit of coupling were primar-
ily heuristic (Elyada et al., 2009), and generally concerned steady-state responses (Cuntz et al.,
2007; Weber et al., 2008). By considering dominant eigenmodes, Weber et al. (2008) showed that
coupling leads to a reliable, lower dimensional representation of VS activity. Rotation about a
given azimuthal axis results in depolarization of the VS cells located to one side of the axis, and
hyperpolarization in the cells located on the opposite side. This prompted Cuntz et al. (2007)
and Elyada et al. (2009) to propose estimating the axis of rotation by interpolating the responses
of the VS cells, and finding a zero-crossing in the mapping between these responses and the VS
cells’ preferred axes of rotation. Coupling reduces response variability, and hence the error of this
estimate.

When we implemented such a zero-crossing estimator (see Methods) and compared it to the
ideal estimate, we found it to be suboptimal. The estimator usually struggled to achieve reasonable
encoding accuracy when presented with natural scenes. Responses to natural scenes were weaker
than those induced by the other image types we considered, and the zero-crossing estimator is very
susceptible to noise. Furthermore, coupling could either improve or degrade the estimates, depend-
ing on image statistics. The zero crossing estimator from a subpopulation response performed even
worse, producing errors several times that of the ideal estimate.

Furthermore, it is unclear how the zero-crossing and other proposed suboptimal estimators
could be implemented downstream from the VS cells. In contrast, the ideal estimate establishes
a baseline for the performance of any estimator. While suboptimal estimators may be affected
by coupling in different ways, we found consistent results for the ideal estimate across stimulus
conditions. Although neuronal networks may not process information optimally (Loeb, 2012),
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evidence for approximate optimality exists both at the behavioral and neural level (e.g., Ernst
and Banks, 2002; Fetsch et al., 2012). We used optimal estimators as an operational benchmark,
revealing the potential capabilities of the system under realistic assumptions.

Two studies are conceptually close to our work: Karmeier et al. (2005) took a Bayesian approach
to quantify the encoding efficiency of the axis of rotation in the VS population response. They
also proposed time integrals of the VS membrane potentials as readout variables, and examined the
impact of population size on encoding in the VS population. We note several important differences:
Karmeier et al. (2005) did not investigate the effect of VS coupling, instead focusing on the effects
of integration time and input correlations. Furthermore, they used a phenomenological model, in
contrast to our biophysically plausible model. More recently, Weber et al. (2012) applied generalized
linear models to assess the benefits of coupling between two optic flow-processing, spiking neurons
of the lobula plate (H1 and Vi) for conveying information about optic flow parameters.

We found that changes in correlation structure were important in improving encoding accuracy
in the case of a subpopulation readout (Figure 7). These findings contrast with typical arguments
about the benefit and harm of trial-to-trial correlations (Tkacik et al., 2010). Correlations between
VS neurons carry information about the responses of unobserved neurons. Electrical synapses are
both strong and fast in their effect on subthreshold dynamics relative to their chemical counter-
parts (Xiao et al., 2013). They are therefore well-suited for increasing the coverage of a parameter,
reducing variability and introducing correlations.

Many previous theoretical studies examined how changes in neuronal response statistics, such as
correlations or tuning curves, impact coding (Barlow, 1961; Sompolinsky et al., 2001; Series et al.,
2004; Averbeck et al., 2006b; Josi¢ et al., 2009; Ecker et al., 2011; Latham and Roudi, 2011). This
can give valuable insights into how coding is affected by aspects of the neural population response.
However, correlations and tuning curves are not intrinsic properties of a population response that
can be changed arbitrarily (Shea-Brown et al., 2008; Beck et al., 2012). To examine how the
statistics of neuronal activity affect coding, it is therefore important to consider realistic networks
with realistic inputs.

A key advantage of our approach is that we made no a priori assumptions about the VS
population response. In particular, we made no assumptions about how the joint activity of VS
neurons encodes the axis of rotation. Rather, we considered the responses of a biophysically realistic
model to various stimuli. The spatiotemporal structure of the input, and the properties of the VS
network fully determined its responses, allowing us to characterize the best estimate of the stimulus
available to the animal (Graf et al., 2011).

Our results open a number of avenues for future research: We used temporal averages as a
readout of the VS population responses. However, downstream DNOVS neurons are not perfect
integrators. DNOVS 2 is a spiking neuron, introducing a strong nonlinearity into the process-
ing pathway. Further, the effect of interactions with other neurons of the lobula plate should be
investigated (Borst and Weber, 2011). We also did not attempt to examine the impact of correla-
tions beyond second order. Application of maximum-entropy approaches could help address this
topic (Jaynes, 1957).

The aerial performance of flies is unmatched in nature and technology (Frye and Dickinson,
2001). Understanding how a small set of neurons in the fly removes irrelevant variability to extract
behaviorally relevant information can provide insight into the implementations in more complex
organisms.

Our results in the fly VS network are suggestive of a general principle: Coupling between
neurons allows for near optimal readouts from a subpopulation. Correlations between the responses
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introduced by coupling can lead to ‘information democracy’ where even small subpopulations carry
nearly as much information about the stimulus as the entire population. In a neuronal network
which encodes a behaviorally relevant parameter, coupling can thus allow each neuron to represent
a greater extent of the parameter space. When downstream targets extract information about this
parameter from relatively few neuronal projections, correlations between responses can be highly
beneficial (Stevenson et al., 2012). While details of our study are particular to the fly visual system,
the main ideas are likely to apply across organisms and modalities.
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