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ABSTRACT

Motivation: Expression quantitative trait loci (eQTL) studies have
discovered thousands of genetic variants that regulate gene
expression and have enabled a better understanding of the functional
role of non-coding sequences. However, eQTL studies are generally
quite expensive, requiring large sample sizes and genome-wide
genotyping of each sample. On the other hand, allele specific
expression (ASE) is becoming a very popular approach to detect the
effect of genetic variation on gene expression, even within a single
individual. This is typically achieved by counting the number of RNA-
seq reads matching each allele at heterozygous sites and rejecting
the null hypothesis of 1:1 allelic ratio. In principle, when genotype
information is not readily available it could be inferred from the RNA-
seq reads directly. However, there are currently no methods that
jointly infer genotype and test for ASE or that include the uncertainty
in the genotype calls within the ASE inference step.

Results: Here, we present QUASAR, Quantitative Allele Specific
Analysis of Reads, a novel statistical learning method for jointly
detecting heterozygous genotypes and inferring ASE. The proposed
ASE inference step takes into consideration the uncertainty in the
genotype calls while including parameters that model base-call errors
in sequencing and allelic over-dispersion. We validated our method
with experimental data for which high quality genotypes are available.
Results for an additional dataset with multiple replicates at different
sequencing depths demonstrate that QUASAR is a powerful tool for
ASE analysis when genotypes are not available.

Availability: http://github.com/piquelab/QuASAR

Contact: fluca@wayne.edu; rpique@wayne.edu

1 INTRODUCTION

Quantitative trait loci (QTLs) for molecular cellular phenotypes
(as defined by Dermitzakis, 2012), such as gene expression
(eQTL) (e.g. Stranger et al., 2007), transcription factor (TF)
binding (Kasowski ef al., 2010), and DNase I sensitivity (Degner
et al., 2012) have begun to provide a better understanding of how
genetic variants in regulatory sequences can affect gene expression
levels (see also Stranger et al., 2007; Gibbs et al., 2010; Melzer
et al., 2008; Gieger et al., 2008). eQTL studies in particular have
been successful in identifying genomic regions associated with gene
expression in various tissues and conditions (e.g., Maranville et al.,
2011; Barreiro et al., 2012; Nica et al., 2011; Smirnov et al., 2009;

*to whom correspondence should be addressed

Dimas et al., 2009; Ding et al., 2010; Grundberg et al., 2011; Lee
et al., 2014; Fairfax et al., 2014). While previous studies have
shown an enrichment for GWAS hits among regulatory variants
in lymphoblastoid cell lines (LCLs) (Nica et al., 2010; Nicolae
et al., 2010), a full understanding of the molecular mechanisms
underlying GWAS hits requires a functional characterization of
each variant in the tissue and environmental conditions relevant for
the trait under study (e.g. estrogen level for genetic risk to breast
cancer Cowper-Sal-lari et al., 2012).

The ongoing GTEX project will significantly increase the number
of surveyed tissues for which eQTL data are available and will
represent a useful resource to functionally annotate genetic variants.
However, the number of cell-types and environments explored will
still be a very small fraction compared to a presumably large number
of regulatory variants that mediate specific GXE interactions. eQTL
studies are generally quite expensive, requiring large sample sizes
(n > 70) which may be difficult to achieve for tissues that are
obtained by surgical procedures or are difficult to culture in vitro.
Even if biospecimens are readily available at no cost, eQTL studies
require large amounts of experimental work to obtain genotypes
and gene expression levels. As the measurement of gene expression
using high-throughput sequencing (RNA-seq) is becoming more
popular than microarrays, RNA-seq library preparation is also
becoming less expensive ($46 per sample) while costs of sequencing
are also very rapidly decreasing (for example, 16M reads per sample
would cost $49 using a multiplexing strategy). Additionally, the
sequence information provided by RNA-seq can be used to call
genotypes (Shah et al., 2009; Duitama et al., 2012; Piskol et al.,
2013), detect and quantify isoforms (Trapnell er al., 2010; Katz
et al., 2010) and to measure allele specific expression (ASE), if
enough sequencing depth is available (Degner ef al., 2009; Pastinen,
2010).

ASE approaches currently represent the most effective way to
assay the effect of a cis-regulatory variant within a defined cellular
environment, while controlling for any trans-acting modifiers of
gene expression, such as the genotype at other loci (Pastinen, 2010;
Kasowski er al., 2010; McDaniell et al., 2010; Cowper-Sal-lari
et al., 2012; Reddy et al., 2012; Hasin-Brumshtein et al., 2014;
McVicker et al., 2013). As such, ASE studies have greater statistical
power to detect genetic effects in cis and can be performed using a
smaller sample size than a traditional eQTL mapping approach.

In the absence of ASE, the two alleles for a heterozygous
genotype at a single nucleotide polymorphism (SNP) in a gene
transcript are represented in a 1:1 ratio in RNA-seq reads. To
reject the null hypothesis and infer ASE it is necessary to identify

© Wayne State University 2014.
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Fig. 1. Reference allele frequency from reads overlapping SNPs. (Left) Each dot represents a SNP covered by at least 15 RNA-seq reads. The y-axis
represents the fraction of RNA-seq reads that match the reference allele (observed p;). The x-axis represents the order of the SNP position in a chromosome.
(Right) Histogram showing the distribution of p; values across the genome. The three modes (p € {1,0.5,0}) correspond respectively to the three possible
genotypes: homozygous reference (RR), heterozygous under no ASE (RA), and homozygous alternate (AA).

heterozygous SNPs with high confidence and a significant departure
of the 50% allelic ratio. While genotyping and ASE are usually
considered two separate problems, miscalling an homozygous SNP
as heterozygous will also likely induce an error in rejecting the ASE
null hypothesis; thus, we argue that the two problems should be
solved together.

While it is possible to obtain genotype information from RNA-
seq (Shah et al., 2009; Duitama et al., 2012; Piskol et al., 2013),
to the best of our knowledge, all existing methods for detecting
ASE consider that the genotypes are known and usually the error
probabilities associated with genotyping are not taken into account
for the ASE step. While overall genotyping quality can also be
modeled within the ASE model (McVicker et al., 2013), there is
currently no method that for each SNP can jointly genotype and
analyze ASE. Here, we propose a novel framework for quantitative
allele specific analysis of reads (QuASAR) that starts from a single
or multiple RNA-seq experiments from the same individual and can
directly identify heterozygous SNPs and assess ASE accurately by
taking into account base-calling errors and overdispersion in the
ASE ratio. QuUASAR is then evaluated in two different datasets that
demonstrate the accuracy and the importance of incorporating the
genotype uncertainty in determining ASE.

2 APPROACH

QuASAR starts with experimental high-throughput sequencing
data. Here we focus on RNA-seq, but the same or similar pipeline
can be applied to DNase-seq, ChIP-seq, ATAC-seq or other types
of functional genomics library preparation. Figure 1 illustrates
the underlying problem: detecting SNPs covered by reads with

high allelic imbalance for which homozygosity (in the presence of
base-calling errors) can also be rejected.

We focus our attention on sites that are known to be variable in
human populations, specifically we consider all SNPs from the 1000
Genomes project (1KG) with a minor allele frequency MAF > 0.02.
We index each SNP with [ € {1,...,L}, and each sample by
s € {1,...,S5}. Samples are all from the same individual and
may represent different experimental conditions or replicates. We
only consider SNPs represented in at least 15 reads across all the
samples. At each site [, three alternative genotypes are possible
g1 € {0,1,2} being homozygous reference (RR), heterozygous
(RA), or homozygous alternate (AA) respectively. For each sample
s and site [, N, ; represents the total number of reads and ry =
{rar}ne} take the value 1 if read k matches the reference allele,
and 0 if it matches the alternate allele. We can then model the data
D = {{r.}5_,}E as a mixture model

Pr(D):HH Z Pr (rqlgt) Pr(g1) (D

s=11=1g,€{0,1,2}

where Pr (g;) represents the prior probability associated with each
genotype. Pr (r4|g;) depends on the genotype, for G; = 0:

Nsi

Pr(rolg = 05es) = [J(1 - o) tkes "otk @

k=1

where we will only observe reads matching the alternate allele if
those are base-calling errors, here modeled by the parameter es.
Conversely, for G; = 2 we have the following:

N

Pr(rsilgi = 2;€5) = H(l —€g) eIk Elslk 3)
k=1
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If the genotype is heterozygous G; = 1, we may preferentially
observe the reference allele with probability p; (or the alternate
allele with probability 1 — p;). This results in the following model:

Ngi
Pr(rogr=Lie) =[] (1 =p)(1 =€)+ pres) e
k=1

s

(1 =€) + (1= pr)es) ™!
@

These expressions can be simplified by considering that Rs; =
ZkNL 1 Tsik and Ay = Ny — Ry are respectively the number of
reads from sample s observed at site [ matching the reference allele
and the alternate allele:

Pr(ralgr = 0;€s) =t (1,e5) ™! [1— ¢ (1,€,)] ! 5)
Pr(ralg = 2i.) =0 (0,e)™ [1- 4 (0,e))* (6
Pr (rSl|gl = 1jes, psl) :w (psl, Gs)RSl [1 — 1/) (psl’ ES)}ASZ )

where ¥ (p,e) = [p(1 —¢€) + (1 — p)e] and makes explicit that
g1 = 2 (or g; = 0) is indistinguishable from p;s = 0 (or p;s = 1)
when g; = 1. In QuUASAR we resolve this identifiably problem by
assuming that those cases with extreme ASE imbalance across all
replicates are more likely to be homozygous genotypes.

To fit the mixture model we use an EM algorithm (see Methods
for more details) in which we estimate sample specific base-calling
error rates € (p is fixed to 0.5) and we are also able to provide a
posterior probability for the genotype. For the ASE inference step,
we wish to reject the null hypothesis ps; = 0.5. We additionally
consider that ¢ in (5-7) is a random variable ¥; sampled from a
~Beta(asi, Bs1) distribution with:

Qg = wslMs /le = (1 - wsl) Ms 'l/]sl = 1/’ (pSh 6ls) (8)

where M, hyper parameter controls for over-dispersion and results
in a better calibrated test as shown in the Results section. The
resulting distribution on the number of reads after combining (7)
and (8) is known as Beta-binomial distribution (13). Finally, the
inference step takes into account the over-dispersion and genotype
uncertainty, and can be formalized as a likelihood ratio test (LRT):

SUP,_,€{0,0.5,1} {Pr (Tsl|Psla €s, MS) }

sup,,, {Pr (rsz\psz, €s, Ms)}

Aa = ©)

where the set of parameters {és, Ms}le are maximum likelihood
estimates (MLE) under the null hypothesis p;s = 0.5 (see
Methods section). To calculate a p-value we use the property that
—21og(As;) is asymptotically distributed as x3.

3 METHODS

3.1 Experimental data

Lymphoblastoid cell lines (LCLs: GM 18507 and GM 18508) were purchased
from Coriell Cell Repository and human umbilical vein endothelial cells
(HUVECs) from Lonza. LCLs were cultured and starved according to
(Maranville et al., 2011). Cryopreserved HUVECs were thawed and cultured
according to the manufacturer protocol (Lonza), with the exception that

48 hour prior to collection the medium was changed to a starvation
medium, composed of phenol-red free EGM-2, without Hydrocortisone and
supplemented with 2% charcoal stripped-FBS. Cells were washed 2X using
ice cold PBS, lysed on the plate, using Lysis/Binding Buffer (Ambion), and
frozen at -80C. mRNA was isolated using the Ambion Dynabeads mRNA
Direct kit (Life Technologies). We then prepared libraries for Illumina
sequencing using a modified version of the NEBNext Ultra Directional
RNA-seq Library preparation kit (New England Biolabs). Briefly, each
mRNA sample was fragmented (300 nt) and converted to double-stranded
cDNA, onto which we ligated barcoded DNA adapters (NEXTflex-96
RNA-seq Barcodes, BIOO Scientific). Double-sided SPRI size selection
(SPRISelect Beads, Beckman Coulter) was then performed to select 350-500
bp fragments. The libraries were then amplified by PCR and pooled together
for sequencing on the Illumina HiSeq 2500 at the University of Chicago
Genomics Core.

For each LCL sample, libraries from 9 replicates were pooled for a total
of 42.3M and 34.9M 50bp PE reads, respectively. A total of 18 replicates
across 6 time points were performed for the HUVEC samples (267M reads
total), to capture a wide range of basal physiologic conditions.

3.2 Pre-processing

To create a core set of SNPs for ASE analysis, we first removed rare (MAF
< 2%) variants from all 1IKG SNPs. We also removed SNPs within 25
bases up- or downstream of another SNP or short InDels as well as those
SNPs in regions of annotated copy numbers or other blacklisted regions
(Degner et al., 2012). Sequencing reads were aligned to the reference
human genome hgl9 using bwa mem (Li and Durbin, 2009 http://
bio-bwa.sourceforge.net). Reads with quality <10 and duplicate
reads were removed using samtools rmdup (http://github.com/
samtools/). Using a mappability filter (Degner et al., 2012), we removed
reads that do not map uniquely to the reference genome and to alternate
genome sequences built considering all 1KG variants. Aligned reads were
then piled up on these SNPs using samtools mpileup command. Reads
with a SNP at the beginning or at the end of the read were also removed to
avoid any potential experimental bias. Finally, the pileups were re-formatted
so that each SNP has a count for reads containing the reference allele, and a
count for those containing the alternate allele.

3.3 Model fitting and parameter estimation

In order to use the expectation maximization (EM) technique (McLachlan
and Krishnan, 2007), we first convert (1) to a “complete” likelihood, as if we
knew the underlying genotypes G = {Gl}ll‘:lz

L(®) =Pr(D,G|®) = Pr(D|G;©) Pr(G|©) = (10)
L 2 s Gy
=1I1I {PT(GL =g [[Pr(rala =g €s,/)sz)}
1=1g=0 s=1

where Gf = 1(G; = g) are binary indicator variables and © represents the
set of all parameters of the model. In log-likelihood form we have:

L 2 S L
(©)=log L(®) =D > G{m(Pr(Gi=9)+> > { (D

=1 g=0 s=11=1
GY [RyInp(1,€s) 4+ AgpIn(1 — (1, €5))]
+G} [Ra In(psr, €5) + Agt In(1 — P (psr, €5))]
+G? [Ry In (0, €5) + Ag In(1 — 9(0, )]}

During the genotyping step, in order to maintain identifiability of the
model, we fix pg; = 0.5 for all loci. Although M could also be estimated
within the EM procedure, we only consider overdispersion on the ASE step.
These two choices lead to a much simpler EM procedure and a slightly
conservative estimate of €5.

E-Step: From the complete likelihood function (11) we derive
the expected values for the unknown genotype indicator variables
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E(GY|D,0) = (GY) given the observed data and the current estimates
for the model parameters. We are also interested in (GY) = Pr(G] =
gD, @), because they are the posterior probability of each genotype given
the data:

C =) +(G)+(GIN)~ (12)

S
(GYY = CPr(Gy = 0) exp (Z[Rls In(1 — &) + Ay ln(és)]>

s=1

s=1

S
(G{) = C'Pr(G, = 1) exp <1n(o.5) Z[st + Als]>

S
(G}) = CPr(Gy = 2) exp (Z[st In(és) + Ags In(1 — és>1)
s=1

The prior genotype probabilities Pr(G; = g) are obtained from the 1KG
allele frequencies assuming Hardy-Weinberg equilibrium, but the user can
change this.

M-Step: Using the expected values from the E-step, the complete
likelihood is now a function of €5 that is easily maximized

L
S ((69) Au +(GR) Ra)
L
ity ((GF) Ra +(GF) Aat)
After we run QUASAR to infer genotypes across samples from the same
individual, for each site we have a posterior probability for each genotype
<Gf >, and a base-calling error €5 estimated for each sample. From these
posteriors, discrete genotypes are called by using the genotype with the
highest posterior probability; the maximum a posteriori (MAP) estimate.
ASE-Inference: To detect ASE we only consider sites with an
heterozygous MAP higher than a given threshold (e.g., <Gll> > 0.99). We
then test the possibility that pg; is different than 0.5 while also taking into
account overdispersion using a beta-binomial model (by combining (7) and
®):
Pr (Rsl‘Nslv 11151, MS) =

_ (st) I'(Ms)T (Rgy + i Ms) T (Agy + (1 — 1) M)
- \Ry I'(Nsp + M) T (1 Ms) T (1 — 2hsr) Mss)
where M, controls the effective number of samples supporting the prior

belief that p = .5 and is estimated using grid search:

s = logit*1 |:ln

13)

L
(H Pr (Rsl\Nshés,Psl :0~57Ms)> (14)

=1

M, = arg max
M,

Then, we estimate pg; using (13) and M, from (14) using a standard gradient
method (L-BFGS-B) to maximize the following log-likelihood function

l(psli M57€s) =Pr (Rsl|Nslvwsl = w(pslvés): Ms) (15)

Finally, all these parameters are used to calculate the LRT in (9) to get a
p-value.

Additionally, we can provide an estimate of the standard error associated
with the parameter pg; using the second derivative of the log-likelihood
function (15):

: -3
. 0 A
b1 = ’apgll(psﬁ M, és) (16)

Ps1=Psl

alternatively we can also recover a standard error from (9) (as is
asymptotically distributed as Xile), allowing the p-value to be used to
back solve for the standard error:

ﬁls

Q (")
where () is the quantile function for a standard normal distribution and p; s
is the p-value from (9). We use the first form (16) when p ~ 0.5 and (17)

Opat =

a7

otherwise as they give a better approximation at those ranges, respectively.
Alternatively, if we do not need 65, we can use (15) to obtain a profile
likelihood confidence interval for pg;.

4 RESULTS

We implemented the QuASAR approach as detailed in the Methods
section in an R package available at http://github.com/
piquelab/QuASAR. We first sought to evaluate QuASAR
genotyping accuracy using RNA-seq reads obtained from two
lymphoblastoid cell-lines (LCLs) that already have very high quality
genotypes calls from the 1KG project (GM 18507 and GM18508).
As illustrated in Table 1, we are able to accurately genotype
thousands of loci, and genotyping error rates decrease with an
increase of the MAP threshold. The method by construction is
more conservative in making heterozygous calls. In case of doubt,
between a heterozygous genotype with extreme allelic imbalance, or
homozygous genotype with base call errors, our model would lean
in favor of the homozygote call. This is a crucial feature for accurate
inference of ASE as we will discuss in more detail in this section.

Sample QuASAR MAP (GY)

P Performance >0.5 >0.9 | >0.99

Heterozygotes 1706 | 1704 | 1702
False Discoveries | 1.00% | 1.00% | 0.94%

NA18507 Homozygotes 5510 | 5509 | 5506
False Discoveries | 4.83% | 4.83% | 4.83%

Heterozygotes 1466 | 1466 | 1465
False Discoveries | 0.41% | 0.41% | 0.34%

NA18508 Homozygotes 4641 | 4638 | 4634
False Discoveries | 5.11% | 5.07% | 5.03%

Table 1. QuASAR accuracy in genotyping. Each row reports the number
of heterozygous and homozygous SNPs identified by QuUASAR and the
percentage of false discoveries when compared to 1KG genotypes. Each
column uses a different MAP threshold to define high confidence genotype
calls.

We next sought to characterize QuASAR performance in
genotyping and in calling ASE from RNA-seq experiments
sequenced at different depths. In total we analyzed 18 samples (3
replicates across 6 different time-points) for an individual for which
genotypes were not previously available. We combined the 18 fastq
files in different ways as input for QuUASAR, to obtain an empirical
power curve (see Figure 2). As expected, we observed that our
ability to detect heterozygotes (MAP> 0.99) increases with the
sequencing depth. The number of heterozygous sites detected seems
to start to plateau at 10,000 when the total number of RNAs-seq
reads exceeds 150 million. At a more modest sequencing depth of
16 million, we can still detect more than 1,000 heterozygous sites.

After obtaining the genotypes, we then assessed whether there is
evidence of ASE on any of the SNPs determined to be heterozygous.
Using the LRT (9) we determined ASE and obtained p-values. We
controlled the FDR using the g-value procedure (Storey, 2002). As
shown in Figure 3, our ability to detect ASE greatly increases with
the number of SNPs we are able to genotype, which in turn is a
function of coverage (Figure 2). Using 100 million reads we achieve
detecting about 50 SNPs with ASE at 10%FDR.

In order to determine if the ASE inference in QuASAR is
well calibrated and to compare QuUASAR to other ASE tests we
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Fig. 2. Empirical power in detecting heterozygous SNPs as a function of
sequencing depth. Each point represents a single input dataset to QuASAR:
either as a single experiment replicate and time point (red dot), combining
multiple time points (2 = green, 3 =blue, 6 = purple), or combining replicates
(1 = dot, 2 = triangle). The x-axis represents the log of the total number
of RNA-seq reads in the fastq input files. The y-axis represents the log;q of
the total number of SNPs that are determined to be heterozygous.

used QQ-plots, see Figure 4. A QQ-plot compares the quantiles
observed from a test statistic to those that are expected under a
null distribution (e.g., p-values are uniformly distributed between
0 and 1). The shape of the QQ-plot curve is useful to judge how
well the p-values are calibrated when we expect that a large number
of the tests conducted are sampled from the null distribution. In this
latter scenario, we expect that the QQ-plot curve would follow the
y = z line for the bulk of the higher range of p-values. For small
p-values, we expect that the curve starts to depart from the 1:1 line
representing the small proportion of tests that are not sampled from
the null distribution. Figure 4 clearly shows that the Binomial test
is too optimistic, and will likely lead to many false discoveries. The
Beta-binomial model is well calibrated, but if we are not certain
about the genotype being a true heterozygote it can lead to very
small p-values that are false positives. In QuASAR, we use a Beta-
binomial model and we also consider uncertainty on the genotype,
which results in the most conservative of the three different tests,
while likely avoiding the most common causes of false positives in
ASE analysis.

5 DISCUSSION

QuASAR is the first approach that detects genotypes and infers
ASE from the same sequencing data. In this work, we focused
on RNA-seq, but QUASAR can be applied to other data types
(ChIP-seq, DNase-seq, ATAC-seq, and others). Indeed, the more
experimental data we have from the same underlying individual

T T T T T
1000 3000 6000 9000 12000
# Heterozygous loci

Fig. 3. Empirical power in detecting ASE as a function of the number of
heterozygous SNPs detected. Each point represents a single input dataset to
QuASAR as in Figure 2. The x-axis represents the log o of the total number
of SNPs that are determined to be heterozygous. The y-axis represents the
log of the number of SNPs that have a significant p-value for ASE at 10%
FDR.

across many experimental samples (data-types, conditions, cell-
types or technical replicates), the more certainty we can gather about
the genotype for any given site. The algorithm is computationally
very fast, each EM iteration is O(LS) linear with the number of
SNPs and samples and convergence is achieved in about 10 or less
iterations.

A key aspect of QUASAR ASE inference step is that it takes into
account over-dispersion and genotype uncertainty resulting in a test
that we have shown here to be well-calibrated. In many cases, the p-
values obtained from biased statistics can be recalibrated to the true
null distribution using a permutation procedure. Unfortunately, this
is not possible for ASE inference, as randomly permuting the reads
assigned to each allele would inadvertently assume that the reads are
distributed according to a Binomial distribution. More complicated
and computationally costly resampling procedures can be proposed,
but it is not clear which additional assumptions may introduce and
if they can correctly take into account genotyping uncertainty.

If prior genotype information is available, it can also be provided
as input to the algorithm. The prior uncertainty of the genotypes
should be reflected in the form of prior probabilities for each
genotype. In this paper, we have shown that we can obtain reliable
genotype information from RNA-seq reads, thus making additional
genotyping unnecessary if the endpoint is to detect ASE. Instead,
sequencing the RNA-seq libraries at a higher depth is probably
a better strategy as it greatly improves the power to detect ASE
signals.

Furthermore, as sequencing costs are decreasing very rapidly,
ASE methods are becoming very attractive in applications where
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Fig. 4. QQplot comparing the p-value distribution of 3 alternative
methods for determining ASE. The x-axis shows the log;, quantiles of
the p-values expected from the null distribution. The y-axis shows the log
quantiles of the p-values computed from the real data using 3 different
methods: i) Binomial (black) assumes M = oo no overdispersion; ii) Beta-
binomial (blue) considers overdispersion but does not consider uncertainty
in the genotype; iii) QUASAR uses the Beta-binomial distribution and
uncertainty in the genotype calls. In all three cases the same set of SNPs
are considered

eQTL studies have been previously used. This is even more
important in scenarios where collecting large number of samples
is expensive or infeasible. Large scale eQTL studies are still
very much necessary for fine-mapping, but allele specific analysis
methods can provide unique insights into mechanisms that are
uncovered only under specific experimental conditions, for example
as a result of gene x environment interactions.
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