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Abstract

Biological organisms acclimatize to varying environmental conditions via active self-regulation of internal gene

regulatory networks, metabolic networks, and protein signaling networks. While much work has been done to

elucidate the topologies of individual networks in isolation, understanding of inter-network regulatory mechanisms

remains limited. This shortcoming is of particular relevance to synthetic biology. Synthetic biological circuits

tend to lose their engineered functionality over generational time, primarily due to the deleterious stress that they

exert on their host organisms. To reduce this stress (and thus minimize loss of functionality) synthetic circuits

must be sensitive to the health of the host organism. Development of integrated regulatory systems is therefore

essential to robust synthetic biological systems. The aim of this study was to develop integrated gene-regulatory

and metabolic networks which self-optimize in response to varying environmental conditions. We performed in

silico evolution to develop such networks using a two-step approach: (1) We optimized metabolic networks given

a constrained amount of available enzyme. Here, we found that a proportional relationship between flux control

coefficients and enzyme mass holds in all linear sub-networks of branched networks, except those sub-networks

which contain allosteric regulators. Network optimization was performed by iteratively redistributing enzyme

until flux through the network was maximized. Optimization was performed for a range of boundary metabolite

conditions to develop a profile of optimal enzyme distributions as a function of environmental conditions. (2) We
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generated and evolved randomized gene regulatory networks to modulate the enzymes of a target metabolic

pathway. The objective of the gene regulatory networks was to produce the optimal distribution of metabolic

network enzymes given specific boundary metabolite conditions of the target network. Competitive evolutionary

algorithms were applied to optimize the specific structures and kinetic parameters of the gene regulatory networks.

With this method, we demonstrate the possibility of algorithmic development of integrated adaptive gene and

metabolic regulatory networks which dynamically self-optimize in response to changing environmental conditions.
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Introduction

In synthetic biology living organisms have been engineered to perform novel functions that do not exist in

nature. Some synthetic constructs include tunable oscillators [1], event counters [2], concentration detec-

tors [3], edge detectors [4], linear amplifiers [5], and toggle-switches [6]. Synthetic genetic circuits, however,

tend to lose their engineered functionality over time, due in large part to their deleterious effects on host

fitness [7,8]. Wild-type cells and mutant synthetic cells often out-compete their designed synthetic counter-

parts. One possible method to improve this fitness stability is to optimize the expression of synthetic gene

products to reduce the burden on the host cell. For this, the interaction between the synthetic circuits and

host metabolic networks must be considered.

Most micro-organisms live in continuously changing environments, which makes maintaining fitness even

more difficult. An example of this are the phototrophic micro-organisms cyanobacteria that are subject to

the daily fluctuations in environmental light intensity. Recently, cyanobacteria have been engineered to con-

vert carbon dioxide into biofuels with designed synthetic pathways [9, 10]. For efficient biofuel production,

the synthetic pathways must be adaptive to this varying environmental condition. The adaptive responses,

controlled by gene regulatory networks (GRNs), allow the host to quickly shift from one gene expression

profile to another as needed. For instance, upon a shift from light to dark, the cyanobacterium Synechococcus

sp. PCC 7002 responds by decreasing and increasing the transcription levels of genes essential to photosyn-

thesis and carbohydrate degradation [11]. To understand the response mechanisms of such adaptive systems,

it is important to adopt an integrative perspective. The nature of GRNs, protein signaling networks, and

metabolic networks must be appreciated as an interconnected whole. In this study we adopt this perspective

by considering GRNs within an integrated metabolic context.

The linkage between GRNs and their target metabolic networks are catalytic enzymes. Accurate ex-

pression of these catalytic enzymes for a wide range of environmental conditions gives robustness to the

micro-organism. The concentrations of these enzymes are thought to be optimized for efficient cellular func-

tions [12, 13]. Optimization is required since protein synthesis and degradation are energetically costly and

resource-limited. The availability of amino acids, within the finite volume of a cell constrains the total en-

zyme concentration within the cell [14]. Additionally, the production of certain osmotically-active enzymes

must be constrained to preserve the osmotic balance of the cell [15, 16].

Extensive research has been performed to examine the effect of enzyme mass constraints on metabolic

fluxes. Several different optimization conditions have been considered in those studies: Metabolic fluxes were

maximized for a fixed total enzyme concentration [17,18]; intermediate concentrations and total osmolarity
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were minimized [16]; net enzyme concentrations were minimized [12, 13] or maintained below a certain

level [14]. The studies which sought minimal total enzyme concentration as an optimization condition [12,13]

show clear relationships between enzyme concentrations and flux control coefficients, namely, that flux control

coefficient of any enzyme is proportional to that enzyme’s concentration in the optimized state. It was shown,

however, that this relationship is valid for linear pathways but not for branched pathways. Consequently a

new relationship was derived for general network topologies [13].

We aimed to design GRNs to reduce the burden a synthetic circuit exerts on the host cell, and to make

synthetic systems robust to a wide range of environmental conditions. To achieve this aim, we considered the

interaction between GRNs and metabolic networks, and investigated the structural properties of designed

GRNs. These GRNs were designed to regulate the expression of catalytic enzymes such that metabolic fluxes

remained maximized for various boundary metabolite concentrations. By taking an in silico evolutionary

approach we obtained integrated networks composed of a GRN and a metabolic network which are robust and

self-optimizing (Figure 1). We found that the integrated networks have interesting topological properties:

the GRN typically shows shallow regulation and feed-forward structures, and boundary metabolites alone

can be sufficient for regulation of the GRN.

Moreover, our numerical study discovered a new relationship similar to the one found in the linear

pathway study [12, 13] which holds for general networks that include both linear and branched pathways.

This relationship was found to be valid for each branch of a network which meets two conditions: (1) the

branch itself is linear and (2) the branch does not include a metabolite which that allosterically regulates

another branch. By investigating local linear pathways of a general network, this relationship can be used

to determine whether pathway metabolites regulate other parts of the network.

Results
Model systems

A self-optimizing network that maximizes metabolic fluxes under a constraint in the total enzyme mass

is composed of two reaction systems: a GRN and a metabolic network (Figure 1). The GRN controls

the expression of enzymes that catalyze metabolic reactions and the metabolic network regulates promoter

activities in the GRN via allosteric metabolite interactions. The metabolic and gene regulatory networks were

described in a deterministic framework which does not consider the stochastic details of gene expression [19].

The networks were modeled with a set of ordinary differential equations with non-linear reaction rates (see

Methods for details).
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Flux control coefficients reflect enzyme concentrations.

Previous studies which considered the total enzyme mass constraint revealed a relationship between flux

control coefficients and enzyme concentrations in linear pathways. Brown [12] proposed that flux control

coefficients [20–22] become proportional to enzyme concentrations in the optimized state for an n-step linear

metabolic pathway:

CJ
1

E1
=

CJ
2

E2
= · · · = CJ

n

En
= c

where c is a constant and every enzyme has identical mass. The flux control coefficient CJ
i describes the

sensitivity of the steady-state flux J to a perturbation in the concentration of the i-th enzyme Ei:

CJ
i =

δJ

δEi

Ei

J
(1)

The control coefficient has been used to quantify the degree of control specific reactions exert on fluxes within

a network [23], as well as control of gene expression noise in gene regulatory networks [24, 25].

The above relationship can be extended to consider enzymes of unequal mass as follows:

CJ
i

Mi
=

CJ
2

M2
= · · · = CJ

n

Mn
= c (2)

where Mi = Eimi with mi the molar mass of the i-th enzyme. In the previous study [12], total enzyme mass

was minimized for a given metabolic flux. Equation (S14) can also be derived for the complementary case

where flux is maximized for a given total enzyme mass (SI, Section S1 ). For general metabolic networks,

Klipp and Heinrich [13] found a similar relationship which can also be expressed with unequal enzyme mass

(SI, Section S1 ):

CTM = M (3)

where C represents a matrix of flux control coefficients C
Jj

i and M represents a vector of enzyme masses

Mi.

We investigated the above results numerically and found an interesting fact: Equation (S14) holds for

certain sub-networks of general networks which include linear and branched pathways. This previously-

unobserved result is a hidden property of Equation (S15). First, consider the branched network shown in

Figure 2(e) without allosteric regulation. We minimized the total enzyme concentration while all the fluxes

were fixed (see Methods for details). The optimization procedure yielded Brown’s result for all branches

(Figure 3(a)). This can be partly understood with the following intuitive argument: When the total mass

of enzymes regulating each branch is minimized, the total mass of enzymes for the whole network must also

be minimized. Since each branch flux is fixed, the optimization produces Brown’s result for each branch.
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For the branched network shown in Figure 2(e), we examined various different regulatory configurations

(Figure 3; Figures S3 – S5). Surprisingly, we observed the same result for all branches which are the target

of inter-branch allosteric regulation, but not for those branches which are the source of allosteric regulation.

Brown’s result also holds for all branches if a branch point corresponds to an allosteric metabolite (Figure

S4). Mathematically, CJk
i /Mi were equal for all metabolites within any linear segments of the networks that

do not have any allosteric metabolite regulating other branches. We also numerically solved Equation (S15)

and verified our simulation results (SI ).

These findings suggest that our numerical relationship can be used to determine whether metabolic

networks are in an optimized state by observing the control coefficients of each linear branch, excluding

those with allosterically-active metabolites. In addition, this relationship can be leveraged to discover the

origins of regulation (allosteric metabolites) within a network., under the condition that total enzyme mass

is tightly constrained.

The connectivity theorem [20–22] suggests that reactions with low enzyme levels have correspondingly

high flux control coefficients. But our results and previous studies [12, 13] show that reactions with higher

control coefficients have higher enzyme levels. At first, this seems paradoxical. Consider the two-reaction

linear pathway shown in Figure 2(a). We computed the control coefficients for each reaction over a range

of different enzyme concentrations, where the net enzyme mass was fixed. Figures 4(a – b) illustrate that

higher enzyme levels can lead to lower flux control coefficients.

The flux peaks at an intermediate E1 concentration (Figure 4(a)). The flux control coefficient for E1,

CJ
1 decreases monotonically with the increase in E1 (Figure 4(b)). This illustrates that higher enzyme levels

can lead to lower flux control coefficients of that particular enzyme. However, this relationship between an

enzyme level and its corresponding flux control coefficient can only be observed with changes in the enzyme

concentration, not with a concentration value in isolation. Equation (S14), on the other hand, describes the

latter case. Consequently, the Brown’s result is biologically reasonable.

We have hitherto investigated the properties of flux control coefficients under the total enzyme mass

constraint while optimizing metabolic fluxes. In the following sections, we will investigate how such an

optimized state can be maintained under a wide range of environmental conditions.

In silico evolution of GRNs as a part of integrated self-optimizing networks

We composed gene regulatory networks and metabolic networks to obtain integrated networks which function

robustly under a wide range of environmental conditions. We optimized each metabolic network over a wide
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range of boundary metabolite concentrations to determine corresponding optimal enzyme distributions (see

SI, Section S5 ). These data were used then as inputs and outputs for in silico evolution of GRNs [26, 27].

Here the boundary metabolite concentration and total enzyme mass are considered environmental conditions.

In silico evolution of GRNs was performed by building N random GRNs from a given limited number

of gene network building blocks and parameterizations. The building blocks were (1) genes that express

enzymes, (2) inducible, repressible, and constitutive promoters, and (3) up to three additional regulator

binding sites. An example of such a random GRN is shown in Figure 1.

Given a specific boundary metabolite condition, the constructed GRNs were trained to produce the

corresponding optimal enzyme distribution. The fitness of each GRN was quantified as the relative error

between the desired and trained output values, as expressed by Equation (4). After evaluating network

fitness, some of the networks were selected to breed for a new generation (Figure 8(b)). Fitter networks were

more likely to survive and mutate into even fitter GRN structures. Two selection methods — 1) elitism to

guarantee survival of the fittest structures and 2) tournament selection to allow structures to mutate to fitter

structures — were used to select GRNs for the next generation. The GRNs chosen with tournament selection

were subject to mutations in parameter values and regulation patterns. Activators could be mutated into

repressors (and vice versa), and regulators or genes could be inserted or deleted within predefined bounds.

Typically, the numbers of genes and regulators allowed were two and three times of the number of enzymes

regulating the connected metabolic networks, respectively. The process of fitness-scoring, network selection,

and reproduction was iterated until the fitness score converged. Finally, the gene and metabolic network

were integrated, resulting in a self-optimizing biochemical network. See the Methods for more details on this

evolutionary approach.

For the metabolic networks shown in Figure 2(a – d), a GRN was trained to fit the desired input-output

characteristics. One of the most surprising findings was that no additional proteins were required in the GRN

to satisfy the desired input-output characteristics. For example, to control the input-output characteristics

in the two-enzyme metabolic network shown in Figure 2(a), the gene networks were initially allowed to

contain up to four genes. Two of these genes would express both the enzymes while other genes could

express enzymes that do not interact with the metabolic network. Nonetheless, the evolutionary approach

returned a GRN in which two genes were sufficient to maximize the metabolic flux in the trained regime of

boundary metabolite concentrations. This result shows that the enzymes expressed in the GRNs can play

dual roles of regulation on themselves as well as on the target metabolic networks, which leads to shallow

regulation cascade structures.
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The input-output performance of the evolved GRNs was evaluated by computing the degree of fitness

(performance error; Equation (4)) for a wide range of boundary metabolite concentrations beyond the trained

regime. The performance error is shown in Figure 5, where the dotted white boxes represent the trained

regimes. Within the trained regime performance error could be lowered below 1% for all evolved GRNs,

indicating excellent input-output performance within this regime. The performance errors over the trained

regime were 0.57 % (SD = 0.38), 0.85 % (SD = 0.57), 0.51 % (SD = 0.24), and 0.66 %(SD = 0.25) for the

four integrated GRN-metabolic networks referenced in Figure 5, respectively. Outside the trained regime

(one or two orders of expansion), the error moderately increased up to approximately 20% for most cases.

Emerging regulation patterns in integrated self-optimizing networks

Besides seeking strong agreement between desired and trained gene expression levels, we were interested in

determining general design features of successfully-evolved GRNs. Such design features are listed below.

(1) Regulation by boundary metabolites is sufficient for optimal adaptation.

Because the optimal enzyme distribution changes for different boundary metabolite concentrations,

direct or indirect regulation by boundary metabolites is essential. Based on our analysis of linear

metabolic pathways, GRNs obtained by in silico evolution (e.g. Figures 6 – 7) showed accurate input-

output performance for wide ranges of boundary metabolite concentrations. This implies that direct

regulation by boundary metabolites alone may be sufficient for optimal adaptation to changes in

environmental conditions.

(2) Shallow network topologies allow coordinated expression.

In the five-enzyme system shown in Figure 7(b), enzyme E5 regulates the expression of three other

enzymes, and in the six-enzyme system shown in Figure 7(c), enzyme E6 regulates four other enzymes.

This emerging regulation motif, previously termed a single-input module (SIM) [28], is notable because

it allows for coordinated expression with shallow network topologies. The SIM is also known to lead

to fast responses to external signals [29–31]. Although the response speed was not considered in our

GRN evolution, this result suggests that the frequent occurrence of the SIM in natural systems may

be attributed to their utility for robust self-optimization under various environmental conditions.

(3) Feed-forward loops can be essential to obtain optimal enzyme distributions.

Feed-forward loops (FFLs) were observed in the evolved networks. For example, Figure 7 (c) shows

that boundary metabolite P inhibits the expression of E3, but activates the expression of E6, which
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in turn actives E3, completing a type-3 incoherent FFL. This implies a non-monotonic, bell-shape

response profile between E3 and E6: As P increases, E3 and E6 increase together but after a certain

threshold in P , E3 begins to decrease due to strong inhibition from P , while E6 still increases due

to activation from P . The prevalence of incoherent FFLs suggests that this motif is an important

component for regulation of complex enzyme distributions.

Discussion

This research investigated the design of robust and self-optimizing networks composed of gene regulatory

networks and metabolic pathways under the constraint of limited enzyme resources within a cell. The

obtained integrated networks adapted to maintain maximal network fluxes for a wide range of boundary

metabolite concentrations. Here, boundary metabolite concentrations and the enzyme mass constraint were

considered to be directly affected by environmental variations.

Under the total enzyme mass constraint, we computed the optimal enzyme distributions and discovered

an interesting relationship between flux control coefficients and enzyme levels for linear sub-networks. The

relationship was shown to hold for the sub-networks that (1) are linear and (2) do not allosterically regulate

other branches. This relationship can serve as an indicator for the presence of such allosteric metabolites

and for determining whether cellular conditions whether are tightly constrained by available enzyme mass.

Furthermore, in our study of self-optimizing integrated networks, we found that a minimal number

of metabolites can be used as input signals for self-optimizing GRN controllers of metabolic networks.

The boundary metabolite concentrations and corresponding optimal enzyme distributions were used as

constraints in evolving GRNs based on genetic algorithms [32]. Here, the initial randomly-built GRNs were

evolved in silico from a limited number of genetic building blocks and allowable parameterizations. The

evolved GRNs were shown to successfully modulate expression levels of the enzymes in response to changes

in boundary metabolite concentrations.

One of the important regulation patterns of the evolved GRNs was the SIM, which enabled shallow

network regulation structures. This motif implies fast and coordinated regulation. The degree of fitness

(performance error; Equation (4)) used in our evolutionary algorithm was related to the steady-state expres-

sion levels of the enzymes, and did not include the temporal response to the steady-state. The prevalence

of the SIM in the evolved GRNs implies that accurate performance can be obtained by this motif without

delaying the dynamic response. It would be interesting to include response time in our fitness function in

future research, to investigate emerging GRN motifs related to rapid adaptation of GRNs under volatile
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environment conditions.

The input-output performance of the in silico evolved GRNs was shown to be accurate for wide ranges of

boundary metabolite concentrations. The performance plots (Figure 5) show that our GRNs and metabolic

networks can be optimized for a range of three or four orders of magnitude within ∼20% error. This implies

that flux optimization can be robustly achieved under significant environmental changes via feedback from

GRNs.

In summary, we investigated self-optimizing feedback systems composed of a GRN and a metabolic

network under the constraint of limited total enzyme mass. The self-optimizing systems generated accurately

maintained optimal enzyme distributions to maximize the metabolic fluxes under significantly different

boundary metabolite levels. Our theoretical study showed a possible approach for designing such robust

synthetic systems. This work may eventually help provide rational design principles and computational

methods for constructing synthetic circuits that are robust to a wide range of environmental conditions.

Methods

Our self-optimizing integrated GRNs and metabolic networks were designed by using two major algorithms

for the optimization of metabolic networks and the in silico evolution of GRNs. The first algorithm deter-

mined the input-output characteristics of the GRNs and the second algorithm used them as a training data

set. The pipeline for designing these self-optimizing networks is shown in Figure 8(a).

Optimization of metabolic fluxes under the total enzyme mass constraint

In our model systems, metabolic reactions were based on Michaelis-Menten and Hill kinetics. The enzymes

regulating the metabolic networks were assumed to maintain their total enzyme mass at the level of 10−19

kg per cell, which corresponds to 600 enzymes (under the assumption that the molar mass of all the en-

zymes is 100 kDa). Under this enzyme mass constraint, we obtained enzyme distributions that maximize

metabolic fluxes in linear metabolic networks by using an optimization algorithm based on the Brown’s

result, Equation (S14). This optimization procedure was performed for a range of boundary metabolite

concentrations to obtain the characteristics between these concentrations and optimal enzyme distributions.

For each metabolic network there is only one enzyme distribution where Equation (S14) holds, given a set

of kinetic parameters [12]

In the optimization method, (1) scaled flux control coefficients were computed at the steady-state, divided

by the total enzyme mass, and subsequently ranked. (2) The enzyme concentration with the highest value
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was increased and the enzyme concentration with th lowest value was decreased such that the total enzyme

mass remained constant. The amount of change in the enzyme concentration was kept sufficiently small

(0.1 – 0.5%), since flux control coefficients change with enzyme concentrations. This procedure of steps (1)

and (2) was iterated until the newly ranked values were identical within a given convergence error. See SI

Section S2 for more details of this algorithm.

In silico evolution of GRNs

To obtain GRNs that regulate and maintain the metabolic networks at their optimal flux levels, we used

the concentrations of the boundary metabolites as input signals of the GRNs and the optimized enzyme

distributions as the output signals. These input-output characteristics were applied as a training data set

to evolve and select desired GRNs. First, a population of random biochemical network topologies was built.

Then, selection and mutation were used to evolve the topologies and perturb reaction parameters, to be

trained to follow the input-output characteristics.

Specifically, random GRNs with a population size N was built. These GRNs were modeled based on Hill

kinetics [27, 33, 34]. Up to three regulators were permitted to control gene expression by performing AND

or OR operations [35] with non-competitive (independent) binding. For example, AND operation between

two activators exists if both the activators cannot bind individually, but must be dimerized before they can

bind to the promoter region. By contrast, OR operation exists when one activator is sufficient for activation,

whereas presence of both activators enhances expression.

To evolve GRNs that optimize the distribution of the enzymes regulating the metabolic network, the

degree of fitness was quantified by a performance error F in the input-output characteristics:

F =

�X
j=1

�Y
i=1 |Ei,sim − Ei,training| × E−1

i,training

X × Y
, (4)

where the absolute difference between the desired and trained levels of each (i-th) enzyme is divided by

the desired enzyme level, and then summed over all training input-output pairs (the number of the pairs is

X). Finally, this value is divided by the number of boundary metabolite conditions (X) and the number of

enzymes (Y ) to allow comparing models with a different number of boundary metabolite conditions and/or

number of enzymes. In other words, the algorithm optimized percentage error per boundary metabolite

condition per enzyme.

Our in silico approach for GRN evolution is schematically described in Figure 8(b). After evaluating the

population fitness, a subset of the GRNs was selected to breed for a new generation. Tournament selection
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was used to select S ‘winning’ GRNs, and elitism was used to guarantee survival of the N −S fittest GRNs,

for a new population of N GRNs. Tournament selection was performed by randomly selecting two GRNs and

returning the fittest GRN. After performing tournament selection, the S ‘winners’ were subject to structural

mutations (insertion, deletion, and transmutation of activators and repressors) and parameter mutations

(bounded randomization of kinetic coefficients, as outlined below).

Parameters Vmax, Vdeg, Ka, and h (Hill coefficient) were permitted to be randomized between carefully

determined boundaries. For example, a parameter value (pbefore) can be multiplied by a random value be-

tween zero and two to obtain a new one (pafter). These random values are drawn from a uniform distribution.

As a result, the mean values of the parameter before and after the perturbation are identical and the stan-

dard deviation of the perturbed parameter value (pafter) is equal to Max(pafter)/
√
12. To prevent upwards

drift over time a new random value between the minimum and maximum parameter value was assigned if a

parameter value mutated to out of boundary values.

Optimization of fluxes for general metabolic networks

For more general metabolic pathways, a different optimization algorithm was used. In contrast to the

previous optimization algorithm in which metabolic flux was optimized under the constraint of fixed total

enzyme mass, this optimization algorithm was performed to minimize the total enzyme mass given the

constraint of fixed metabolic fluxes. Because these fluxes are fixed in this algorithm, the change in the flux

due to parameter perturbations must be zero:

δJk
Jk

=

R�

i=1

CJk
i

δEi

Ei
= 0, (5)

where k describes the independent flux and i the reaction number. This represents an under-determined

system of linear equations, which means that this system cannot be solved for each δE. Thus, we semi-

randomly selected V −W enzymes to perturb their concentrations, where V andW are the number of enzymes

in the system and fixed fluxes, respectively. Then, the remaining enzyme concentrations were computed

by using Equation (5). If the total enzyme quantity decreased, we accepted the proposed perturbations.

Otherwise, the enzyme concentrations were reset to the previous values. As a consequence, the enzyme

concentrations can be updated such that total enzyme mass decreases under the constraint of fixed fluxes.
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Algorithm implementation

The software for performing the optimization algorithms for metabolic networks was developed in Python [36]

by using the Python libraries NumPy [37], SymPy [38], and PySCeS [39]. All metabolic and gene regulatory

networks were written in the PySCeS Modeling Description Language (MDL). The software for the in silico

evolution of GRNs was developed in a combination of C++ and Python. This implementation makes use of

the Mersenne-Twister pseudo-random number generator [40].
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Gene Regulatory Network

Metabolic Network

S PX
V1 V2

G1

E1

--+ G2
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Figure 1: Self-optimizing integrated GRN-metabolic networks: The GRN regulates the expression
levels of both enzymes (E1 and E2) such that the enzyme distribution maximizes the metabolic flux for
a given total enzyme mass. This regulation is performed by monitoring the metabolic network. In this
study, we consider the boundary metabolites as input signals for the GRN. Floating and fixed metabolites
are indicated in blue and red squares, respectively. Rate equations v1 and v2 are described by reversible
Michaelis-Menten kinetics, where E1 and E2 catalyze reactions v1 and v2, respectively.
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Figure 2: Input metabolic networks. (a) A two-reaction metabolic pathway regulated by two enzymes (E1

and E2). S and P are fixed metabolites (red-boxed), and X is a floating metabolite (blue box). (b-d) A
three-reaction metabolic pathway with negative feed-back, a five-reaction metabolic pathway, and a six-
reaction metabolic pathway with negative feed-back were considered. (e) A branched network was explored
for three different cases: (Case 1) Without feed-back, (Case 2) with negative feed-back from X2 on V1, and
(Case 3) with negative feed-back from X4 on V1
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Figure 3: Proportionality between flux control coefficients and enzyme concentrations in the
branched network shown in Figure 2(e). (a) Without allosteric regulation (Case 1 in Figure 2(e)):
Brown’s result holds for all linear sub-networks. (b) With allosteric regulation (Case 3): Brown’s result does
not hold from the branch were the regulation originates. See Figures S3 and S5 for details of all flux control
coefficients.
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Figure 4: Control coefficients at the flux maximum: (a) In a two-reaction metabolic pathway shown
in Figure 2(a), the flux became maximized under the total enzyme mass constraint. Here E1 and E2 were
assumed to have identical mass. (b) As enzyme concentration increases, its corresponding flux control
coefficient decreases for each E1 and E2. (c) At the maximum flux level, CJ

1 /E1 matched CJ
2 /E2.
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Figure 5: Performance of trained GRNs from the in silico GRN optimization approach: Per-
centage deviation of simulated (trained) enzyme concentrations from their desired (training) values. The
boundaries of the trained regime are indicated with dotted white boxes. (a) Two-enzyme GRN shown in
Figure 6 (a) was integrated with the metabolic network shown in Figure 2 (a). (b-d) The GRNs described in
Figure 7 (a-c) were integrated with metabolic networks with three, five, and six enzymes shown in Figure 2
(b-d), respectively.
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A

B

C

Figure 6: Optimized GRNs capable of maximizing the flux in the two-enzyme metabolic pathway
shown in Figure 2(a). Mathematical models are available in the SI, Section S6.
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Figure 7: Evolved GRNs for metabolic networks with three or more enzymes.(a) GRN for the three-
enzyme metabolic network with negative feed-back (Figure 2(b)); (b) GRN for the five-enzyme metabolic
network (Figure 2(c)); (c) GRN for the six-enzyme metabolic network with negative feed-back (Figure 2(d)).
Mathematical models are available in the SI, Section S6.
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Figure 8: Pipeline of designing self-optimizing integrated GRN-metabolic networks. (a) The two
boxes represent the major algorithms used to (1) optimize metabolic fluxes (blue box) and to (2) train GRNs
for desired input-output characteristics (red box). (b) Pipeline of in silico evolution of the GRNs.
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