Long-read, whole-genome shotgun sequence data for five model organisms Kristi E. Kim¹, Paul Peluso¹, Primo Babayan¹, P. Jane Yeadon², Charles Yu³, William W. Fisher³, Chen-Shan Chin¹, Nicole Rapicavoli¹, David R. Rank¹, Joachim Li⁴, David E. A.Catcheside², Susan E. Celniker³, Adam M. Phillippy⁵, Casey M. Bergman⁶, Jane M. Landolin¹ #### **Correspondence to:** Jane M. Landolin, Ph.D. Pacific Biosciences 1380 Willow Road Menlo Park, CA 94025 E-mail: jlandolin@pacificbiosciences.com Keywords: genome sequence, open data, model organism, PacBio, single-molecule real-time sequencing, E. coli, S. cerevisiae, Neurospora, Arabidopsis, Drosophila ¹ Pacific Biosciences of California Inc., 1380 Willow Road, Menlo Park, CA ² Flinders University, School of Biological Sciences, PO Box 2100, Adelaide, SA 5001, Australia ³ Berkeley Drosophila Genome Center, Lawrence Berkeley National Laboratory, Berkeley, CA ⁴ Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA ⁵ National Biodefense Analysis and Countermeasures Center, 110 Thomas Johnson Drive, Frederick, MD 21702, USA ⁶ Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK M13 9PT #### Abstract Single molecule, real-time (SMRT) sequencing from Pacific Biosciences is increasingly used in many areas of biological research including *de novo* genome assembly, structural-variant identification, haplotype phasing, mRNA isoform discovery, and base-modification analyses. High-quality, public datasets of SMRT sequences can spur development of analytic tools that can accommodate unique characterisitcs of SMRT data (long read lengths, lack of GC or amplification bias, and a random error profile leading to high consensus accuracy). In this paper, we describe eight high-coverage SMRT sequence datasets from five organisms (*Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa, Arabidopsis thaliana*, and *Drosophila melanogaster*) that have been publicly released to the general scientific community (NCBI Sequence Read Archive ID SRP040522). Data were generated using two sequencing chemistries (P4-C2 and P5-C3) on the PacBio RS II instrument. The datasets reported here can be used without restriction by the research community to generate whole-genome assemblies, test new algorithms, investigate genome structure and evolution, and identify base modifications in some of the most widely-studied model systems in biological research. ## **Background and Summary** Single-molecule, real-time (SMRT®) DNA sequencing occurs by optically detecting a fluorescent signal when a nucleotide is being incorporated by a DNA polymerase [1-4]. This relatively new technology enables detection of DNA sequences that have unique characteristics, such as long read lengths, lack of CG bias, and random error profiles, and can yield highly accurate consensus sequences [5]. Kinetic information such as pulse width and interpulse duration are also recorded and can be used to detect base modifications [6-8]. Since its introduction, investigators have published on a range of applications using SMRT sequencing. For example, the developers of GATK (Genome Analysis Toolkit) demonstrated that single nucleotide polymorphisms (SNPs) could be detected using SMRT sequences [9, 10] due to their lack of context-specific bias and systematic error [5, 10]. Likewise, the developers of PBcR (PacBio error correction) [11, 12] showed that complete bacterial genome assemblies using SMRT sequence data had greater than Q60 base quality [12]. PBcR was later incorporated as the "pre-assembly" step in the HGAP (hierarchical genome assembly process) system [13], followed by consensus polishing using the Quiver algorithm [13] to produce a complete assembly pipeline for SMRT sequence data. In addition, other third-party tools now support long reads for various applications such as mapping [14, 15], scaffolding [16], structural-variation discovery [17], and genome assembly [11, 18]. Other applications such as 16S rRNA sequencing [19], characterization of entire transcriptomes [20, 21], genome-editing studies [22], base-modification studies [7, 8, 23-25], and validation of CRISPR targets [26] have also been published. To encourage interest in further applications and tool development for SMRT sequence data, we report here the release of whole-genome shotgun-sequence datasets from five model organisms (*E. coli*, *S. cerevisiae*, *N. crassa*, *A. thaliana*, and *D. melanogaster*). These organisms have among the most complete and well-annotated reference genome sequences, due to continual refinement by dedicated teams of scientists. Despite continued improvement of these genome sequences with new technologies, few are completely finished with fully contiguous assemblies of all chromosomes. The gaps remaining arise from complex structures such as transposable elements, repeats, segmental duplications, or other dynamic regions of the genome that cannot be easily assembled. Structural differences in these regions can account for variability in millions of nucleotides within every genome, and mounting evidence suggest that such mutations are important for human diversity and disease susceptibility in many complex traits including autism and schizophrenia [27-29]. SMRT sequencing data can therefore play an important role in the completion of these and other reference genomes, providing a platform for new insights into genome biology. #### Methods We generated eight whole-genome shotgun-sequence datasets from five model organisms using the P4C2 or P5C3 polymerase and chemistry combinations, totaling nearly 1000 gigabytes (GB) of raw data (See Data Records section). Genomic DNA was either purchased from commercial sources or generously provided by collaborators. DNA from the reference K12 strain of *E. coli* was purchased from Lofstrand Labs Limited (K12 MG1655 *E. coli*, cat# L3-4001SP2). DNA from the reference OR74A strain of *N. crassa* was purchased from the Fungal Genetics Stock Center (FGSC). A standard Ler-0 strain of *A. thaliana* plants was grown from seeds purchased from Lehle seeds (WT-04-19-02) and DNA was extracted at Pacific Biosciences. The-protocol is available on Sample Net [30] and summarized in the organism-specific methods section of this paper. DNA from the 9464 strain of *S. cerevisiae* was provided by J. Li at University of California San Francisco. The 9464 strain is a daughter of the reference WG303 strain. DNA from the T1 strain of *N. crassa* was obtained from D. Catcheside at Flinders University who has an interest in polymorphic genes regulating recombination. The T1 strain is an A mating type strain which, like OR74A, was derived from a cross between the Em a 5297 and Em A 5256 strains . DNA from the ISO1 strain [31] of *D. melanogaster* was obtained from S. Celniker at Lawrence Berkeley National Laboratory. This is the reference strain of *D. melanogaster* that was originally chosen to be the first large genome to be sequenced and assembled using a whole-genome shotgun approach [32]. It continues to serve as the reference strain in subsequent releases and numerous annotations of the *D. melanogaster* genome. DNA extraction methods were species-specific and optimized for each organism (See organism-specific methods below). In general, the steps are: (1) remove debris and particulate material, (2) lyse cells, (3) remove membrane lipids, proteins and RNA, (4) DNA purification. SMRTbell™ libraries for sequencing [9] were prepared using either 10 kb [33, 34] or 20 kb [35] preparation protocols to optimize for the most high-quality and longest reads. The main steps for library preparation are: (1) Shearing (2) DNA damage repair, (3) blunt end-ligation with hairpin adapters supplied in the DNA Template Prep Kit 2.0 (Pacific Biosciences), (4) size selection, and (5) binding to polymerase using the DNA Sequencing Kit 3.0 (Pacific Biosciences). **Table 1: Summary of DNA Samples.** The NCBI sample ID associated with each dataset is provided. DNA was extracted in a species-specific manner, yielding genomic DNA of various sizes. All DNA was size selected using the Blue Pippin system (Sage Sciences), and select samples were sheared with g-TUBEs (Covaris). | Dataset Name | Sample ID | DNA extraction | gDNA size
(kb) | Shearing | Size
selection | |--------------------------------|--------------|---|-------------------|----------|-----------------------| | E. coli MG1655 P4C2 | SAMN02951645 | ammonium acetate or SDS,
proteinase K, phenol-chloroform | 10 | none | Blue Pippin
(7kb) | | E. coli MG1655 P5C3 | SAMN02743420 | ammonium acetate or SDS, proteinase K, phenol-chloroform | 10 | none | Blue Pippin
(7kb) | | S. cerevisiae 9464
P4C2 | SAMN02731377 | contact J. Li at UCSF | >40 | g-TUBE | Blue Pippin
(17kb) | | <i>N. crassa</i> OR74A
P4C2 | SAMN02724975 | BashingBeads, Zymo Research kit | 6 | none | Blue Pippin
(4kb) | | N. crassa T1 P4C2 | SAMN02724976 | SDS, proteinase K, phenol-
chloroform, RNAase, isopropanol | 15 | none | Blue Pippin
(7kb) | | A. thaliana Ler-0
P5C3 | SAMN02724977 | CTAB, chloroform:isoamyl, isopropanol precip. | >40 | g-TUBE | Blue Pippin
(15kb) | | A. thaliana Ler-0
P4C2 | SAMN02731378 | CTAB, chloroform:isoamyl, isopropanol precip. | >40 | g-TUBE | Blue Pippin
(7kb) | | D. melanogaster ISO1
P5C3 | SAMN02614627 | SDS, phenol-chloroform, CsCl banding, ethanol precip. | >40 | g-TUBE | Blue Pippin
(17kb) | ### E. coli collection, DNA Extraction, and SMRTbell Library Preparation Both P4C2 and P5C3 samples were prepared in the same way. *E. coli* K12 genomic DNA was ordered and purified by Lofstrand Labs Limited (K12MG1655 *E. coli*, cat# L3-4001SP2). Field Inversion Gel Electrophoresis (FIGE) was run to ensure presence of high-molecular-weight gDNA. Ten micrograms of gDNA was sheared using g-TUBE devices (Covaris, Inc) spun at 5500 rpm for 1 minute. Three microliters of elution buffer (EB) was added to rinse the upper chamber, spun at 6000 rpm, and spun again at 5500 rpm after inverting the g-TUBE device. SMRTbell libraries were created using the Procedure & Checklist − 20 kb Template Preparation using BluePippin™ Size Selection protocol[35]. Briefly, the library was run on a BluePippin system (Sage Science, Inc., Beverly, MA, USA) to select for SMRTbell templates greater than 10 kb. The resulting average insert size was 17 kb based on 2100 Bioanalyzer instrument (Agilent Technologies Genomics, Santa Clara, CA., USA). Sequencing primers were annealed to the hairpins of the SMRTbell templates followed by binding with the P5 sequencing polymerase and MagBeads (Pacific Biosciences, Menlo Park, CA, USA). One SMRT Cell was run on the PacBio® RS II system with an on-plate concentration of 150 pM using P5-C3 chemistry and a 180-minute data-collection mode. ## S. cerevisiae collection, DNA Extraction, and SMRTbell Library Preparation Please contact J. Li at University of California, San Francisco to obtain the protocol. ## A. thaliana collection, DNA Extraction, and SMRTbell Library Preparation Plants were grown from seeds provided by Lehle seeds (WT-04-19-02). Shoots and leaves were harvested at three weeks and ground in liquid nitrogen using a mortar and pestle. The complete protocol is described in the document "Preparing *Arabidopsis* Genomic DNA for Size-Selected ~20 kb SMRTbell™ Libraries" [36]. This protocol can be used to prepare purified *Arabidopsis* genomic DNA for size-selected SMRTbell templates with average insert sizes of 10 to 20 kb. We recommend starting with 20-40 grams of three-week-old *Arabidopsis* whole plants, which can generate >100 µg of purified genomic DNA. SMRTbell libraries were created using the document "Procedure & Checklist − 20 kb Template Preparation using BluePippin™ Size Selection protocol" [35]. Eighty-five SMRT Cells were run on the PacBio RS II system using P4-C2 chemistry and a 180-minute data-collection mode. Forty-six SMRT Cells were run on the PacBio RS II system using P5-C3 chemistry and a 180-minute data-collection mode. #### N. crassa OR74A, collection, DNA Extraction, and SMRTbell Library Preparation The T1 strain of N. crassa, is an A mating type strain derived by DG Catcheside from a cross between the Em a 5297 and Em A 5256 strains he obtained from Stirling Emerson in 1955. The fungus was grown in shake culture for 72 hr at 25°C in 500 ml Vogel's [37] minimal medium containing 2% sucrose. Mycelium was harvested by filtration, ground in liquid nitrogen, resuspended in 10 ml of a buffer containing 0.15 M NaCl, 0.1 M EDTA, 2% SDS at pH 9.5, and incubated overnight at 37°C with 1 mg protease K. Debris was precipitated by centrifugation and 10 ml distilled water was added to the supernatant, which was extracted once with an equal volume of water saturated phenol and once with chloroform. Nucleic acids were precipitated from the aqueous phase with 0.6 volumes of isopropanol. Following centrifugation, the pellet was dried and dissolved in 1 ml TE buffer (TRIS 10 mM, 1 mM EDTA pH 8.0). RNA and protein were digested by overnight incubation at 37°C with RNAase (50 µg) followed by addition of protease K (50 µg) and further incubation for 2 hr. The digest was extracted once with water-saturated phenol and once with chloroform. DNA was collected by precipitation with 0.6 volumes of isopropanol and, following centrifugation, the pellet was dried, dissolved in 500 µl TE buffer and stored at 4°C. Field Inversion Gel Electrophoresis (FIGE) was run to ensure presence of high-molecular-weight gDNA. The genomic DNA was approximately 25 kb and was not sheared. SMRTbell libraries were created using the document "Procedure and Checklist – 10 kb Template Preparation and Sequencing (with Low-Input DNA)"[33]. Two SMRT Cells were run on the PacBio RS II system using P4C2 chemistry and a 180-minute data collection mode. #### N. crassa T1 collection, DNA Extraction, and SMRTbell Library Preparation The T1 strain of *N. crassa*, is an A mating type strain derived by DG Catcheside from a cross between the Em a 5297 and Em A 5256 strains he obtained from Stirling Emerson in 1955. The fungus was grown in shake culture for 72 hr at 25°C in 500 ml Vogel's N [37] minimal medium containing 2% sucrose. Mycelium was harvested by filtration, ground in liquid nitrogen, resuspended in 10 ml of a buffer containing 0.15 M NaCl, 0.1 M EDTA, 2% SDS at pH 9.5, and incubated overnight at 37°C with 1 mg protease K. Debris was precipitated by centrifugation and 10 ml distilled water was added to the supernatant, which was extracted once with an equal volume of water-saturated phenol and once with chloroform. Nucleic acids were precipitated from the aqueous phase with 0.6 volumes of isopropanol. Following centrifugation, the pellet was dried and dissolved in 1 ml TE buffer (TRIS 10 mM, 1 mM EDTA pH 8.0). RNA and protein were digested by overnight incubation at 37°C with RNAase (50 µg) followed by addition of protease K (50 µg) and further incubation for 2 hr. The digest was extracted once with water saturated phenol and once with chloroform. DNA was collected by precipitation with 0.6 volumes of isopropanol and, following centrifugation, the pellet was dried, dissolved in 500 µl TE buffer and stored at 4°C. *Field Inversion Gel Electrophoresis (FIGE) was run to ensure presence of high-molecular-weight gDNA. The genomic DNA was approximately 25 kb and was not sheared.* SMRTbell libraries were created using the document "Procedure and Checklist – 10 kb Template Preparation and Sequencing (with Low-Input DNA)" [33]. Eighteen SMRT Cells were run on the PacBio RS II system using P4-C2 chemistry and a 180-minute data-collection mode. ## D. melanogaster collection, DNA Extraction, and SMRTbell Library Preparation A total of 1.2 g of adult male ISO1 flies corresponding to 1950 animals were collected, starved for 90-120 min and frozen. The flies ranged in age from 0-7 days based on four collections (1) 0-2 days old, 500 males, 0.33 g; (2) 0-4 days old, 500 males, 0.29 g; (3) 0-7 days old, 500 males, 0.29 g; (4) 0-2 days old, 450 males, 0.29 g. Flies were ground in liquid nitrogen to a fine powder and genomic DNA was purified by phenol-chloroform extraction and CsCl banding in the ultracentrifuge. Briefly, the pulverized fly extract was gently re-suspended in 5 ml of HB buffer (7 M Urea, 2% SDS, 50 mM Tris pH7.5, 10 mM EDTA and 0.35 M NaCl) and 5 ml of 1:1 phenol/chloroform. The mixture was shaken slowly for 30 minutes and then centrifuged at 18K rpm for 10 min at 20°C. The aqueous phase was re-extracted twice as above and then precipitated by adding two volumes of ethanol and centrifuging at 18K rpm for 10 min at 20°C. The pellet was re-suspended in 3 ml of TE (10 mM Tris 1 mM EDTA pH 8.0) by gentle inversion. To the re-suspended DNA, 3 g CsCl and 0.3 ml of 10 mg/ml ethidium bromide (EtBr) were added and the mixture centrifuged at 45K rpm for 16 hrs at 15°C. The DNA band was collected and the EtBr removed by extraction with CsCl-saturated butanol. The DNA was diluted three-fold with TE, 1/10 vol, 5 M NaCl was added and the DNA precipitated with two volumes of ethanol. After centrifugation, the pellet was washed in 70% ethanol. The DNA was resuspended in 100 μ l TE at a concentration of 1.4 μ g/ μ l and quantified using a Nanodrop instrument. This protocol routinely yields at least 10 ng DNA per mg of flies with an estimated DNA size >100 kb. Genomic DNA was sheared, using a g-TUBE device (Covaris),at 4800 RPM, 150 ng/µl and purified using 0.45x volume ratio of AMPure PB beads. SMRTbell libraries were created using the Procedure & Checklist − 20 kb Template Preparation using BluePippin™ Size Selection [35]. Libraries were ligated with excess adapters and an overnight incubation was performed to increase the yield of ligated fragments larger than 20 kb. Smaller fragments and adapter dimers were then removed by >15 kb size selection using the BluePippin DNA size selection system by Sage Science. Forty-two SMRT Cells were run on the PacBio RS II system. The first run was composed of four SMRT Cells, loaded at 75 pM, 150 pM, 300 pM, and 400 pM in order to determine the optimal loading concentration of the sample. The remaining 38 SMRT Cells were loaded at 400 pM. #### **Data Records** After DNA extraction, libraries were generated and sequenced at Pacific Biosciences of California, uploaded to Amazon Web Services' Simple Storage Service (S3), and then submitted to the Sequence Read Archive at NCBI under Project ID SRP040522. The corresponding accession numbers and file sizes are listed in Table 1. More detailed information including md5 checksums and links to download the original data from AWS S3 are provided in Supplementary Table S1. **Table 2: Summary of Datasets.** Eight datasets from five organisms are described in this paper. Data can be accessed from the Sequence Read Archive (SRA) using the accession numbers provided. | Organism | Strain | Origin | Polymerase
& Chemistry
Library kits | SRA
Accession | Size (GB) | |-----------------|--------|-----------------------|---|------------------|-----------| | E. coli | MG1655 | Lofstrand Labs | P4C2 | SRX669475 | 6.0 | | E. coli | MG1655 | Lofstrand Labs | P5C3 | SRX533603 | 3.8 | | S. cerevisiae | 9464 | J. Li | P4C2 | SRX533604 | 38 | | N. crassa | OR74A | FGSC | P4C2 | SRX533605 | 29 | | N. crassa | T1 | D. Catcheside | P4C2 | SRX533606 | 143 | | A thaliana | Ler-0 | Lehle Seeds | P4C2 | SRX533608 | 263 | | A. thaliana | Ler-0 | Lehle Seeds | P5C3 | SRX533607 | 252 | | D. melanogaster | ISO1 | S. Celniker | P5C3 | SRX499318 | 187 | Raw data was transferred from the instrument to a storage location and organized first by the run name, and then by the SMRT Cell directory. Each run contained one or more SMRT Cells. Each SMRT Cell produced a metadata.xml file that recorded the run conditions and barcodes of sequencing kits, three bax.h5 files that contained base call and quality information of actual sequenced data, and one bas.h5 file that acted as a pointer to consolidate the three bax.h5 files. The "h5" suffix denotes that these are Hierarchical Data format 5 (HDF5) files. The specific contents and structure of a PacBio bax.h5 file is described in more detail in online documentation [38]. Recall the "SMRT bell" structure that underwent sequencing was created by the library preparation process [9]. Sequenced SMRT Bells corresponded to raw reads that may pass around the same base multiple times. A raw read could therefore have a structure that is composed of left adapter \rightarrow DNA insert \rightarrow right adapter \rightarrow reverse complement of DNA insert \rightarrow left adapter \rightarrow DNA insert \rightarrow and so on. This raw read is typically processed downstream to remove adapters and create subreads composed of the DNA sequence of interest to the investigator. Typical filtering conditions for high-quality SMRT sequence data are read score > 0.8, read length > 100, subread length > 500. In addition, the ends of reads are trimmed if they are outside of high-quality (HQ) regions, and adapter sequences between subreads are removed. The post-filter statistics of each dataset are listed in Table 3. While raw read lengths reflect the true sequencing capacity of the instrument; only subreads are summarized in Table 3 because it is used in downstream analysis algorithms such as *de novo* assemblers. Multiple subreads can be contained within one raw read, and subreads exclude adapters and low quality sequence. N50 is a statistic used to describe the length distribution of a collection of reads, contigs, or scaffolds, and is defined as the length where 50% of all bases are contained in sequences longer than that length. The N50 filtered subread lengths ranged from 7.6 kb to 10.5 kb for datasets generated with P4-C2 chemistry and ranged from 12.2 kb to 14.2 kb for datasets generated with P5-C3 chemistry. With the exception of *N. crassa* OR74A, all datasets were sequenced to high-coverage (>68X) and sufficient for *de novo* genome assembly applications. **Table 3: Summary statistics of filtered data.** Results shown for each dataset are based on output of SMRT Portal analysis using the default filtering parameters (see text for details). Fold coverage is calculated relative to the estimated genome size. | Dataset Name | Number of
filtered
subreads | N50 filtered
subread
length (nt) | Maximum
filtered
subread
length (nt) | Total filtered
subread (nt) | Estimated
genome
size (Mb) | Fold
coverage | |--------------------------|-----------------------------------|--|---|--------------------------------|----------------------------------|------------------| | E. coli MG1655 P4C2 | 61,019 | 7,586 | 22,609 | 331,516,965 | 5 | 66X | | E. coli MG1655 P5C3 | 43,063 | 12,041 | 28,647 | 373,874,428 | 5 | 75X | | S. cerevisiae 9464 P4C2 | 269,145 | 8,821 | 30,164 | 1,597,871,118 | 12 | 133X | | N. crassa OR74A P4C2 | 175,926 | 7,617 | 30,845 | 981,884,113 | 40 | 25X | | N. crassa T1 P4C2 | 210,480 | 10,462 | 36,227 | 11,497,185,440 | 40 | 287X | | A. thaliana Ler-0 P4C2 | 1,338,320 | 8,769 | 41,753 | 8,129,670,483 | 120 | 68X | | A. thaliana Ler-0 P5C3 | 2,067,212 | 12,188 | 47,445 | 17,714,447,516 | 120 | 148X | | D. melnogaster ISO1 P5C3 | 1,561,929 | 14,214 | 44,766 | 15,194,174,294 | 160 | 95X | #### **Technical Validation** ## DNA and Sample preparation To assess the quality of genomic DNA received, we used Qbit (Life Technologies) and Nanodrop (Thermo Scientific) to measure the concentration of genomic DNA. Ideal samples had similar concentration estimates on both platforms, with $A_{230/260/230}$ ratios close to 1:1.8:1, corresponding to what is expected of pure DNA. All samples presented here passed this screening criterion. Next we assessed the size of the genomic DNA received. For genomic DNA where the size range was less than 17kb, we used the Bioanalyzer 21000 (Agilent) to determine the actual size distribution. For genomic DNA were the size range was greater than 17kb, we opted for pulse field gel electrophoresis to better estimate the larger size distributions. The sizes of the genomic DNA for each sample are listed in Table 1. To ensure that the library insert sizes were in the optimal size range, we sheared genomic DNA using gTubes if the apparent size was greater than 40 kb. Alternatively, if the size was less than 40kb, then the DNA was not sheared and carried straight through to library preparation. Extremely small fragments (<100bp) and adapter dimers are eliminated by Ampure Beads. Adapter Dimer (0-10bp) and small inserts (11-100bp) represented less than 0.01% of all the reads sequenced in all datasets. We additionally use the Blue Pippin (Sage Science) to select ensure that the libraries had a physical size of 10kb or greater. The size cutoffs used for each sample are listed in Table 1. ## Analysis and Quality Filtering To assess the quality of the libraries sequenced, we examined the percent of bases filtered by a standard QC procedure. Filtering conditions for high-quality SMRT sequence data are read score > 0.8, read length > 100, subread length > 500. In addition, the ends of reads are trimmed if they are outside of high-quality (HQ) regions, and adapter sequences between subreads are removed. All samples retained 71-97% of the bases after filtering. To ensure that the sequences matched the model organism of interest, we examined the percent of post-filter bases that were mapped to the closest reference genome available. All samples had a mapping rate of 81-95%, with the exception of the Neurospora T1 sample that had a mapping rate of 62%. This sample may have some damaged DNA as it had been stored in a freezer for over 20 years. Nonetheless, preliminary unpublished results show that the sequence from the Neurosporta T1 sample can be successfully assembled into a genome that is more contiguous than the existing reference genome for Neurospora [39]. ## **Usage Notes** The datasets described in this paper were first released on DevNet [40], the PacBio Software Developer Community Network website, with brief descriptions on the PacBio blog. DevNet typically hosts open-source software; SampleNet [30], the PacBio Sample Preparation Community Network website, typically hosts protocols for DNA extraction and library preparation. These websites provide valuable data and documentation about the technology, but are not considered a part of the traditional academic record. This paper in Nature Scientific Data provides an opportunity to describe the methodology and characteristics of the eight datasets in more detail, creates a citable entity for the scientific community, and allows the data to be continually hosted and maintained by the Sequence Read Archive. DNA sequencing instruments and chemistries change rapidly, and PacBio SMRT sequencing is no exception. The datasets presented here are from P4-C2 and P5-C3 polymerase-chemistry combinations, spanning release dates from late-2013 to early-2014. These datasets represent some of the longest read lengths to date for these chemistries, and can be used to benchmark and develop new algorithms and the state of the art as the technology evolves. #### Acknowledgements The contributions of AMP were funded under Agreement No. HSHQDC-07-C-00020 awarded by the Department of Homeland Security Science and Technology Directorate (DHS/S&T) for the management and operation of the National Biodefense Analysis and Countermeasures Center (NBACC), a Federally Funded Research and Development Center. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. In no event shall the DHS, NBACC, or Battelle National Biodefense Institute (BNBI) have any responsibility or liability for any use, misuse, inability to use, or reliance upon the information contained herein. The Department of Homeland Security does not endorse any products or commercial services mentioned in this publication. CMB was supported by Human Frontier Science Program Young Investigator grant RGY0093/2012. We thank J. Korlach and E. Hauw for assistance in manuscript preparation, R. Stainer for *Neurospora* T1 sample preparation, and J. Trow for assistance with data submission. #### **Author contributions** KEK prepared libraries, sequenced, and analyzed data for the *N. crassa* OR74A, *N. crassa* T1, and *D. melanogaster* samples. PP and DRR grew plants from seed, prepared libraries, and sequenced the *A. thaliana* P4C2 and P5C3 datasets. PB prepared libraries and sequenced the *E. coli* datasets. PJY and DE provided DNA for *N. crassa* T1. CY and SEC extracted DNA, and WWF collected male flies for the *D. melanogaster* dataset. NAR and JL extracted DNA and prepared libraries for and PP sequenced the *S. cerevisae* 9464 sample. JML deposited data to the SRA. CSC, AP, CMB and JML analyzed the data and prepared the manuscript. CMB and JML coordinated the project. ## **Competing Financial Interests** The authors declare competing financial interests. KEK, PP, PB, CSC, NAR, DRR, and JML are employees of Pacific Biosciences of California, Inc., a company commercializing DNA sequencing technologies. #### References - 1. Eid, J., et al., *Real-time DNA sequencing from single polymerase molecules*. Science, 2009. **323**(5910): p. 133-8. - 2. Korlach, J., et al., *Real-time DNA sequencing from single polymerase molecules.* Methods Enzymol. **472**: p. 431-55. - 3. Levene, M.J., et al., *Zero-mode waveguides for single-molecule analysis at high concentrations.* Science, 2003. **299**(5607): p. 682-6. - 4. Lundquist, P.M., et al., *Parallel confocal detection of single molecules in real time.* Opt Lett, 2008. **33**(9): p. 1026-8. - 5. Roberts, R.J., M.O. Carneiro, and M.C. Schatz, *The advantages of SMRT sequencing.* Genome Biol. **14**(6): p. 405. - 6. Clark, T.A., et al., *Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing.* Nucleic Acids Res. **40**(4): p. e29. - 7. Song, C.X., et al., Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods. **9**(1): p. 75-7. - 8. Fang, G., et al., Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol. **30**(12): p. 1232-9. - 9. Travers, K.J., et al., A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. **38**(15): p. e159. - 10. Carneiro, M.O., et al., *Pacific biosciences sequencing technology for genotyping and variation discovery in human data.* BMC Genomics. **13**: p. 375. - 11. Koren, S., et al., *Hybrid error correction and de novo assembly of single-molecule sequencing reads.* Nat Biotechnol. **30**(7): p. 693-700. - 12. Koren, S., et al., *Reducing assembly complexity of microbial genomes with single-molecule sequencing*. Genome Biol. **14**(9): p. R101. - 13. Chin, C.S., et al., *Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data*. Nat Methods. **10**(6): p. 563-9. - 14. Li, H. and R. Durbin, *Fast and accurate long-read alignment with Burrows-Wheeler transform.* Bioinformatics. **26**(5): p. 589-95. - 15. Chaisson, M.J. and G. Tesler, *Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory.* BMC Bioinformatics. **13**: p. 238. - 16. English, A.C., et al., *Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology.* PLoS One. **7**(11): p. e47768. - 17. English, A.C., W.J.D. Salerno, and J.G.D. Reid, *PBHoney: Identifying Genomic Variants via Long-Read Discordance and Interrupted Mapping.* BMC Bioinformatics. **15**(1): p. 180. - 18. Bankevich, A., et al., *SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.* J Comput Biol. **19**(5): p. 455-77. - 19. Mosher, J.J., et al., *Improved performance of the PacBio SMRT technology for 16S rDNA sequencing*. J Microbiol Methods. **104C**: p. 59-60. - 20. Tilgner, H., et al., *Defining a personal, allele-specific, and single-molecule long-read transcriptome.* Proc Natl Acad Sci U S A. **111**(27): p. 9869-74. - 21. Thomas, S., et al., Long-read sequencing of chicken transcripts and identification of new transcript isoforms. PLoS One. **9**(4): p. e94650. - 22. Voit, R.A., et al., *Nuclease-mediated gene editing by homologous recombination of the human globin locus*. Nucleic Acids Res. **42**(2): p. 1365-78. - 23. Bendall, M.L., et al., *Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1.* J Bacteriol. **195**(21): p. 4966-74. - Flusberg, B.A., et al., *Direct detection of DNA methylation during single-molecule, real-time sequencing.* Nat Methods. **7**(6): p. 461-5. - 25. Kozdon, J.B., et al., *Global methylation state at base-pair resolution of the Caulobacter genome throughout the cell cycle.* Proc Natl Acad Sci U S A. **110**(48): p. E4658-67. - 26. Brown, S.D., et al., Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia. Biotechnol Biofuels. **7**: p. 40. - 27. Itsara, A., et al., *Population analysis of large copy number variants and hotspots of human genetic disease*. Am J Hum Genet, 2009. **84**(2): p. 148-61. - 28. Feuk, L., A.R. Carson, and S.W. Scherer, *Structural variation in the human genome*. Nat Rev Genet, 2006. **7**(2): p. 85-97. - 29. Stankiewicz, P. and J.R. Lupski, *Structural variation in the human genome and its role in disease.* Annu Rev Med. **61**: p. 437-55. - 30. Biosciences, P. *Pacific Biosciences Sample Preparation Community Network*. 2014 [cited; Available from: http://www.smrtcommunity.com/SampleNet. - 31. Brizuela, B.J., et al., *Genetic analysis of the brahma gene of Drosophila melanogaster and polytene chromosome subdivisions 72AB.* Genetics, 1994. **137**(3): p. 803-13. - 32. Celniker, S.E., et al., *Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence.* Genome Biol, 2002. **3**(12): p. RESEARCH0079. - 33. Biosciences, P. *Procedure & Checklist 10 kb Template Preparation and Sequencing (with Low-Input DNA)*. SampleNet 2014 [cited PN 100-152-400-05; Available from: https://na5.salesforce.com/sfc/p/#70000000IVif/a/70000000PVYH/qX1CL1upbnO0rvoeVbk6ZtP PmY4018nY1JzHJKaMYe0=. - 34. Biosciences, P. *Procedure & Checklist Greater Than 10 kb Template Preparation Using AMPure PB Beads*. SampleNet 2014 [cited PN 100-286-100-02; Available from: https://na5.salesforce.com/sfc/p/#70000000IVif/a/70000000PYNC/heYx8OfGiFWX1PwhotTAfUj ROSOwZaRMP4FJUXJD6tc=. - 35. Biosciences, P. *Procedure & Checklist 20 kb Template Preparation Using BluePippinTM Size Selection System*. SampleNet 2014 [cited PN 100-286-000-03; Available from: https://na5.salesforce.com/sfc/p/70000000IVif/a/70000000PYNR/UM0ZNjFScqg8WtjFaR2f4YsQ TbBVyXIRCjCu9kxLpLM=. - 36. Biosciences, P. *Preparing Arabidopsis Genomic DNA for Size-Selected ~20 kb SMRTbell™ Libraries*. 2014 [cited; Available from: http://www.smrtcommunity.com/servlet/servlet.FileDownload?file=00P7000000KMpFEEA1. - 37. Vogel, H., *Distribution of lysine pathways among fungi: Evolutionary implications.* Am Naturalist, 1964. **98**(903): p. 435-446. - 38. Biosciences, P. *Pacific Biosciences .bas.h5 file reference guide*. [cited; Available from: http://files.pacb.com/software/instrument/2.0.0/bas.h5%20Reference%20Guide.pdf. - 39. P.J. Yeadon, K.E.K., Elizabeth Tseng, Susana Wang, Joan Wilson, David Catcheside, Jane Landolin, Integrative Biology of a Fungus: User PacBio SMRT Sequencing to interrogate the genome, epigenome, and transcriptome of Neurospora crassa. http://figshare.com/articles/ENCODE_like_study_using_PacBio_sequencing/928630, FigShare, 2013. - 40. Biosciences, P., Pacific Biosciences Software Developer Community Network. 2014. | — ce | |--| | | | — <u>p</u> <u>p</u> | | — y pe
epr | | int d | | oi: r | | iv preprint doi: https://doi.org/10.1101/008037; this version posted August 15, 2014. The copyright holder for this dby peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. International license. | | the | | i.org
auth | | /10.
hor/fi | | 1101
Unde | | /008
9r, w | | ho h | | ac
aC | | s ve
grant
C-B | | rsior | | 1 po | | sted
xiv a | | Aug
lice
erna | | 1/008037; this version posted August 15, 2014. The copyright, who has granted bioRxiv a license to display the preprina CC-BY-ND 4.0 International license. | | to di 2 | | 2014
spla | | y th | | e co | | pyri;
eprir | | of in | | perp | | ight holder for
int in perpetuity | | r this | | is pre
It is m | | າprin
າade | | reprint (which was not
made available under | | nich
ailab | | was
le ur | | not
ider | | | | Filename | md5sum | File size (bytes) | Size | S3 location | | |------------------------------|----------------------------------|-------------------|------|---|--| | ecoliK12_tar.gz | 07d8f9bcca61876d5d8a5360aa5cd823 | 6354430732 | 6G | http://files.pacb.com/datasets/secondary-analysis/ecoli-k12-P4C2-20KSS/ecoliK12.tar.gz | | | ecoli_P5C3.tgz | e6cd7f18622e4818bbb68f6b8be55a5a | 3827754122 | 3.6G | https://s3.amazonaws.com/datasets.pacb.com/2014/ecoli P5C3/raw/ecoli P5C3.tgz | | | Yeast_9464.tgz | de893b28b3ce0f06a11edfcbe2f61e44 | 37795558610 | 35G | https://s3.amazonaws.com/datasets.pacb.com/2013/Yeast/Yeast_9464.tgz | | | OR74A_rawdata.tgz | d34bb5dd471aa656803567f255be1e8e | 29026750071 | 27G | https://s3.amazonaws.com/datasets.pacb.com/2014/Neurospora/OR74A/raw/OR74A_rawdata.tgz | | | 28SEPT2013_Neuro_371.tgz | 5c957a3e9b3dccf108c1d0e6fbdf6522 | 23366606231 | 22G | https://s3.amazonaws.com/datasets.pacb.com/2014/Neurospora/T1/raw/28SEPT2013_Neuro_371.tgz | | | 29SEPT2013_Neuro_T1_set1.tgz | 8549bc9d314b02b267b26e0375106df1 | 34598987340 | 33G | https://s3.amazonaws.com/datasets.pacb.com/2014/Neurospora/T1/raw/29SEPT2013_Nero_T1_set1.tgz | | | 29SEPT2013_Neuro_T1_set2.tgz | d2230963b066f2279c6069fbe7745012 | 29379712258 | 28G | https://s3.amazonaws.com/datasets.pacb.com/2014/Neurospora/T1/raw/29SEPT2013 Nero T1 set2.tgz | | | 29SEPT2013_Neuro_T1_set3.tgz | 3080dfe26846f6febc89df1a9f15a715 | 24413958417 | 23G | https://s3.amazonaws.com/datasets.pacb.com/2014/Neurospora/T1/raw/29SEPT2013 Nero T1 set3.tgz | | | 29SEPT2013_Neuro_T1_set4.tgz | 6a178ddd45d3cbe4cc37c3dccfaabf79 | 31549546018 | 30G | https://s3.amazonaws.com/datasets.pacb.com/2014/Neurospora/T1/raw/29SEPT2013 Nero T1 set4.tgz | | | Arabidopsis0_P5C3.tgz | 6b867d48b827c684cdab844b64639252 | 56433467879 | 53G | https://s3.amazonaws.com/datasets.pacb.com/2014/Arabidopsis/raw/Arabidopsis0_P5C3.tgz | | | Arabidopsis1_P5C3.tgz | 38c8ad4d89cf9c0f7e47f0851b184021 | 82859079680 | 82G | https://s3.amazonaws.com/datasets.pacb.com/2014/Arabidopsis/raw/Arabidopsis1_P5C3.tgz | | | Arabidopsis2_P5C3.tgz | f129bf9497670da4a552ce44705ef458 | 50116668079 | 47G | https://s3.amazonaws.com/datasets.pacb.com/2014/Arabidopsis/raw/Arabidopsis2 P5C3.tgz | | | Arabidopsis3_P5C3.tgz | 55cdc7011c9d90e7d67cf58d44ee4e1a | 40763469988 | 38G | https://s3.amazonaws.com/datasets.pacb.com/2014/Arabidopsis/raw/Arabidopsis3 P5C3.tgz | | | Arabidopsis4_P5C3.tgz | 0a2764c62f89ad1e67f663bd4e132177 | 21868137300 | 21G | https://s3.amazonaws.com/datasets.pacb.com/2014/Arabidopsis/raw/Arabidopsis4_P5C3.tgz | | | Arabidopsis0_P4C2.tgz | ba0792cd81343e630b3235e00ed92772 | 25768905447 | 24G | https://s3.amazonaws.com/datasets.pacb.com/2013/Arabidopsis-Ler0/raw/Arabidopsis0_P4C2.tgz | | | Arabidopsis1_P4C2.tgz | 814f64f863dbee7d0ab89c229c0197e3 | 27751138029 | 26G | https://s3.amazonaws.com/datasets.pacb.com/2013/Arabidopsis-Ler0/raw/Arabidopsis1_P4C2.tgz | | | Arabidopsis2_P4C2.tgz | 5f7c44faaee8b746a0439edf7f7d35f6 | 35773911210 | 34G | https://s3.amazonaws.com/datasets.pacb.com/2013/Arabidopsis-Ler0/raw/Arabidopsis2_P4C2.tgz | | | Arabidopsis3_P4C2.tgz | 81f7bf760f7a36c81958a3ce67df7ef6 | 28015147756 | 27G | https://s3.amazonaws.com/datasets.pacb.com/2013/Arabidopsis-Ler0/raw/Arabidopsis3_P4C2.tgz | | | Arabidopsis4_P4C2.tgz | c94598000d9467ca7c45835296bfffdd | 27926444439 | 27G | https://s3.amazonaws.com/datasets.pacb.com/2013/Arabidopsis-Ler0/raw/Arabidopsis4_P4C2.tgz | | | Arabidopsis5_P4C2.tgz | 3d86ac3875ae07f19cb862fd959af535 | 32736617220 | 31G | https://s3.amazonaws.com/datasets.pacb.com/2013/Arabidopsis-Ler0/raw/Arabidopsis5_P4C2.tgz | | | Arabidopsis6_P4C2.tgz | fefb945217c6fcd3de62270d8449639a | 35652831091 | 34G | https://s3.amazonaws.com/datasets.pacb.com/2013/Arabidopsis-Ler0/raw/Arabidopsis6_P4C2.tgz | | | Arabidopsis7_P4C2.tgz | e6bb14a9cdff49ab3d6daacbd355fa2d | 29285289766 | 28G | https://s3.amazonaws.com/datasets.pacb.com/2013/Arabidopsis-Ler0/raw/Arabidopsis7_P4C2.tgz | | | Arabidopsis8_P4C2.tgz | ffc0c7ff9e118f270dcc84d109aba46f | 20047936437 | 19G | https://s3.amazonaws.com/datasets.pacb.com/2013/Arabidopsis-Ler0/raw/Arabidopsis8_P4C2.tgz | | | Dro1_24NOV2013_398 | 00a51e3e91a7e1124ed6e159f35183bf | 14456850906 | 14G | https://s3.amazonaws.com/datasets.pacb.com/2014/Drosophila/raw/Dro1_24NOV2013_398.tgz | | | Dro2_25NOV2013_399 | 473ddb95c959da8508382b7684cb743a | 29367287985 | 27G | https://s3.amazonaws.com/datasets.pacb.com/2014/Drosophila/raw/Dro2_25NOV2013_399.tgz | | | Dro3_26NOV2013_400 | fe0f04dba635f32b475f8c9f2eb46ab4 | 47083216413 | 44G | https://s3.amazonaws.com/datasets.pacb.com/2014/Drosophila/raw/Dro3_26NOV2013_400.tgz | | | Dro4_28NOV2013_401 | d9510971c222b70235834aceab5cecfd | 42208205056 | 39G | https://s3.amazonaws.com/datasets.pacb.com/2014/Drosophila/raw/Dro4_28NOV2013_401.tgz | | | Dro5_29NOV2013_402 | 7fe82f4448ef6e05afe946a82938ab5d | 28078874458 | 26G | https://s3.amazonaws.com/datasets.pacb.com/2014/Drosophila/raw/Dro5_29NOV2013_402.tgz | | | Dro6_1DEC2013_403 | b412d5dcc9c66155d0374dbf4806a931 | 26044653729 | 24G | https://s3.amazonaws.com/datasets.pacb.com/2014/Drosophila/raw/Dro6_1DEC2013_403.tgz | |