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Abstract

A tumor is thought to result from successive accumulation of genetic alterations — each result-
ing population manifesting itself with a novel ‘cancer phenotype.’ In each such population, clones
of higher fitness, contributing to the selection of the cancer phenotype, enjoy a Darwinian selective
advantage, thus driving inexorably the tumor progression to metastasis: from abnormal growth,
oncogenesis, primary tumors, to metastasis. Evading glutamine deregulation, anoxia/hypoxia,
senescence, apoptosis and immune-surveillance are strategies employed by the tumor population
along the way to navigate through various Malthusian disruptive pressures resulting from the
interplay among the evolutionary forces. Inferring how these processes develop and how altered
genomes emerge is a key step in understanding the underlying molecular mechanisms in cancer
development, and developing targeted approaches to treat the disease. The problem also poses
many interesting challenges for computer and data scientists, primarily spurred by the availabil-
ity of rapidly growing uninterpreted cancer patient data. We develop an algorithm that seeks to
estimate causation by modifying statistical notion of correlation in terms of probability raising
(PR) with a frequentist notion of temporal priority (TP) — thus developing a sound probabilistic
theory of causation, as originally proposed by Suppes. This reconstruction framework is able
to handle the presence of unavoidable noise in the data, which arise primarily from the intrin-
sic variability of biological processes, but also from experimental or measurement errors. Using
synthetic data, we rigorously compare our approach against the state-of-the-art techniques and,
for some real cancer datasets, we highlight biologically significant conclusions revealed by our
reconstructed progressions.
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In the near future, cancer research is likely to become much more data-centric, primarily because
of the rapid growth and ready availability of vast amount of cancer patient data, as well as because
of advances in single-molecule single-cell technologies. Nonetheless, it remains impossible to track
the tumor progression in any single patient over time, though emerging technology for noninvasive
analysis of circulating tumor cells and cell free DNA (in blood and urine) is beginning to paint
an incomplete, but useful, picture. Motivated by these possibilities, we developed an algorithm
for the purpose of analyzing the currently available aggregated data from multiple patients to infer
an approximate phenomenological “shape” of cancer progression, which ultimately builds on the
similarities among data-points at different scales and analyzes them using tools and algorithms from
probabilistic analysis, statistical inference and modal logic. In particular, our algorithm aims to
infer causal relations among various mutational events occurring in the course of cancer progression,
organizing them as causal networks (Directed Acyclic Graphs, DAGs), and ultimately, linking them
to our understanding of various intra- and inter-cellular pathways (to be described elsewhere).
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The approach described here seeks to understand initiation and progression of cancer in terms of
“chronological” and “causal” relations among somatic alterations as they occur in the genomes and
manifest as point or indel (insertion-deletion) mutations, structural alterations, DNA methylation
and histone modification changes. For example, if through some initial mutations (e.g. in EGFR)
a cell acquires the ability to ignore anti-growth signals, this cell-type may enjoy a clonal expansion
(modeled as a discrete state of the cancers progression and marked by the acquisition of a set of genetic
events). However, such a state of affairs may result in a Malthusian pressure on the population of
all the cell-types in terms of deregulation of glutamine metabolism and thus, set the stage for clonal
expansion of a new cell-type that can disable G1-s checkpoint (e.g., a “caused” mutation in CDK).
Such causal structures is likely to be implicit in the genomic data from multiple patients, some
involving tumor populations with just EGFR-mutant-cell-types and some others with a heterogeneous
population with EGFR+CDK-mutant-cell-types, etc. This evolutionary (thus, Darwinian) notion of
probabilistic causation is similar to that proposed earlier by JBS Haldane (“The Causes of Evolution.”
1932.)*

Resulting structure may be idealized in terms of causal DAG G = (V, E), where the vertices V
encode the mutational events and the directed edges E describe the causal relations among the effected
vertex and its causal set of parent vertices. When a vertex is connected to multiple parents, the cause
may need to be described by a logical relation: e.g., singular (only one parent), conjunctive (all parent
events are necessary), disjunctive (any parent event is sufficient), or even more complex relations (but
limited to propositional or modal logic expressions, e.g., ones described in CNF, Conjunctive Normal
Forms)2. Such a graph, of course, ignores the exact metric properties (geometry) of time and only
expresses the “temporal priorities” in a topological sense. A causal graph, as described here, can
construct a temporal possible-world model, which is amenable to temporal logic analysis (via model
checking), thus allowing the data-scientists to propose more complex hypotheses illuminating various
evolutionary forces in cancer progression.

Nonetheless, rigorous algorithmic tools to infer such causal and temporal relations from the topol-
ogy of the patient data have remained largely elusive in case of cancer, which has complex hetero-
geneity and temporality. The main reason for this state of affairs is that information directly revealed
in the data lacks precise temporal measurements but also contains large amount of irrelevant struc-
tures, complicated by heterogeneity in cell-types and non-causal passenger mutations. We present a
statistical inference algorithm that performs well with a sufficiently large sample of patient (genomic)
data, despite the noisy and uninformative measurements. Supp. mat.(SM) proves various correctness,
convergence and complexity results for the proposed algorithm.

We base our method on a notion of probabilistic causation, more suitable than correlation in order
to infer causal structures. More specifically, we adopt the notion of causation proposed by Suppes [1].
Its basic intuition is simple: event a is a prima facie cause of event b if (i) a occurs before b (temporal
priority, TP), (ii) the occurrence of a raises the probability of observing b (probability raising, PR);
when a set of events {ai, ..., a,,} are causal parents of b, the same notions are generalized in a
natural way, with the introduction of some additional logic operators to combine the causal parents.
Such prima facie causes are then further classified into genuine and spurious causes, using various
auxiliary principles (e.g., common cause principle and controlling for false-discovery rates). However,
as hinted earlier, since TP properties are to be imputed from the topological structure of the data,
the resulting logical assertions must be tested probabilistically and approximately. Furthermore, the
problem is complicated by the presence of noise, such as the one provided by the intrinsic variability of
biological processes (e.g., genetic heterogeneity) and experimental errors. By relying on a formulation
encoded in a probabilistic propositional modal logic, it is possible to devise efficient model checking
algorithms to infer topologically different causal graphs (e.g., trees, forests and conjunctive DAGs).
Algorithms for more complex DAGs are computationally less efficient, but can be tamed by controlling
the expressivity of the underlying logic.

1 Literature Survey

There are several competing approaches to modeling cancer progression, some of which incorporate
such observed effects as cancer hallmarks, heterogeneity in cell-types, drug responses and resistance

1Haldane introduced the ideas of stabilizing and disruptive selection to describe the population dynamics.
2See supplementary materials (SM).
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development, etc. [2, 3, 4, 5]. Nonetheless, there is a need for models that focus on somatic evolu-
tionary nature of cancer with interplay between positive and negative selective pressures to which the
cells in the population respond heterogeneously, stochastically and with cellular machinery that are
intricately interconnected: for instance, earlier models (e.g., Vogelstein’s path-like progression model
for colorectal cancer [6], or oncotree model with singular causes [7] ) appear somewhat simplistic and
point to the need for a language that is more expressive (e.g., the probabilistic propositional branching-
time modal logic PCTL, that can describe time, probability as well as Boolean formulas) and for
statistical-inference algorithms that are more sophisticated. In addition, because the currently avail-
able -omics data lack temporal information, these algorithms must impute the topological structure
of time and separate the dynamics in terms of causal (genuine-prima-facie-causal) and chronological
(spurious-prima-facie-causal) structure (see supp. mat.(SM)). We note that, among several competing
notions of causality, the one that fits naturally into our framework is the one due to Suppes (Prob-
abilistic Causality Framework) [1], and less so to the others: namely, Counter-Factual causality or
Intervention-Based causality (developed extensively by Lewis [8], Pearl and students [9, 10] or Spirtes,
Glymour, and Scheines [11]) or Mechanistic notion of causality (the Canberra Plan [12]). Nonethe-
less, our framework does not exist in isolation, as it should be fairly obvious how our hypothesized
genuine cause may be verified /falsified using either intervention-based reasoning (in vitro intervention
using single-cell xenograft in a mouse-model) or mechanistic analysis using systems biology tools (in
silico analysis with known pathways). For instance, if the patient-data, with the imposed imputed
temporal structure, points to RAS-mutants in the patient tumor genomes raising the probability of
the presence of CDK-mutants in the “subsequent” patient tumor genomes, we may hypothesize and
test whether xenograft of RAS-mutant single cells into a mouse would lead to a heterogenous tumor
with a colony of dominant CDK-mutants.

The picture that emerges and is exploited in this paper builds on many decades of work, which
would be impossible to list exhaustively: in causality: see [1, 10, 11, 13]; in progression models:
see [6, 3]; in model building and model checking: see [7, 14, 5].

2 Methods

As described in more details in the supp. mat.(SM), events a, b, ... denote Bernoulli random variables
modeling the absence or presence (taking binary values € {0, 1}, resp.) of a genomic aberration in a
population of tumor cells: e.g., point/indel mutation or a copy-number variant in a cancer sample.

Assumptions. Our framework can be derived from the following simplifying assumptions (see
supp. mat., SM, for more details): (i) All causes involved in tumor progression are expressible as
monotone Boolean formulas over events, e.g., “a and (b or ¢) cause d;” (ii) All events are persistent,
i.e., acquired mutation do not disappear; (ii7) All causally relevant events in tumor progression are
observable, with the observations being able to significantly describe the progressive phenomenon
(closed world); (iv) All the events have non-degenerate (prob # 0 and # 1) observed probability; and
finally (v) All events are distinguishable, being neither simultaneously observed nor simultaneously
missing.

Only assumption (47) is specific to cancer biology, while others are somewhat technical, but appli-
cable to other domains. Assumption (ii7) imposes an onerous burden on the experimentalists selecting
the events to study, violation of which could increase the number of spuriously inferred causal edges,
and may point to new cancer-specific hypotheses that may need to be validated. Notwithstanding this
obstacle, the phenomenological model of progression is likely to remain valid and usable in therapy
selection. See supp. mat.(SM) for a discussion of the role of each assumption in the derivation of
CAPRI’s framework.

CAPRI algorithm. CAPRI requires as input a set of n events, e.g., mutations, in m cross-sectional
samples, represented as a dataset in an m X n binary matrix in which an entry is: 1, if the mutation
is observed in the sample; and 0, otherwise. With no other input (i.e., ® = (), the algorithm infers at
most conjunctive claims, (e.g., “EGFR and KRAS cause a mutation x,”) and it derives more expressive
power when it is endowed with other domain-specific causal claims (® # (). Thus, when more
complex claims are input as logical formulas, e.g. “MYC zor ERB cause z”, CAPRI can still test them,
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Figure 1: CAPRI algorithm examines cancer patients’ genomic data to determine “causal” relation-
ships among the chromosomal aberrations (mutations, copy number fluctuations, epigenetic modifica-
tions, etc.) that modulate the somatic evolution of a tumor. When CAPRI concludes that aberration
a (say, EGFR) causes aberration b (say, CDK), it implies that the cells with a-mutation initially enjoyed
a selective advantage resulting in a clonal expansion, which in turn created a Malthusian pressure
(e.g., a micro-environment with deregulated glutamine) that allowed for the cells with b-mutations
to emerge with higher fitness (i.e., by disabling G1-S checkpoint). Such causal relations can be
succinctly expressed using Suppes’ probabilistic causation: which postulates that if a causes b, in
the sense described here, then a occurs before b (temporal priority) and occurrences of a raises the
probability of emergence of b (probability raising). These properties are checked by CAPRI combin-
ing ideas from model checking and Bayes network theory, as illustrated in the bottom panel. Since
CAPRI uses model checking it is capable of also testing complex causal claims: e.g., conjunctive
causal claims.

though it may fail to generate such claims on its own. We show in the supp. mat. (SM) that CAPRI’s
execution is polynomial in the number of claims to test, whatever the claim type.

The algorithm derives much of its statistical power via bootstrap with rejection resampling [15],
and the Mann-Whitney U test [16]. CAPRI first builds a prima facie directed acyclic graph (DAG),
G = (V,E), over events V, where each edge i — j € FE (with i,j € V) is present if ¢ occurs
earlier than j, i.e., P(i) > P(j) 3, and the probability of observing i raises the probability of j,
ie., P(j|i) > P(j|i). CAPRI estimates its confidence in these two measures, expressing it as p-
values. These conditions are necessary but not sufficient to identify true causal claims, thus such a
DAG contains all true claims plus spurious false positives [1]. CAPRI relies upon a likelihood-based
approach with the Bayesian Information Criterion(BIC) score to remove spurious claims; BIC scores
acts like an Occam’s razor in reducing the model complexity by combining log-likelihood fit with a
penalty criterion proportional to the log of the DAG size via Schwarz Information Criterion [17].
Supp. mat.(SM) proves that CAPRI converges, asymptotically, to a model with only true positives
and negatives, even in presence of uniform noise in the input data. Although many other approaches
enjoy similar asymptotic properties, it was found that CAPRI, by employing prima facie causation
framework, could compute accurate results with surprisingly small sample sizes.

CAPRI is implemented within TRONCO, an open source R package for translational oncology; more
details of TRONCO appear in the SM.

3 Results

To assess CAPRI’s relative accuracy (true-positives and false-negatives) and performance, we used
a simulation model to create synthetic data (see supp. mat.(SM)), and compared CAPRI against
the state-of-the-art techniques for causal networks inference. Among the potential competitors of

3This is a consequence of assumption (7).
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CAPRI we selected: Incremental Association Markov Blanket (IAMB, [18]), the PC algorithm [11],
Bayesian Information Criterion (BIC, [17]), Bayesian Dirichlet with likelihood equivalence (BDE, [19])
Congunctive Bayesian Networks (CBN, [20]) and Cancer Progression Inference with Single Edges
(CAPRESE, [21]). These algorithms constitute a rich and lush landscape of structural methods
(IAMB and PC), likelihood scores (BIC and BDE) and hybrid approaches (CBN and CAPRESE);
their choice is motivated in the supp. mat. (SM).

Also, we applied CAPRI to NGS datasets of somatic mutations in leukemia and copy-number
variants in lung cancer (shown as Supplementary Material).

3.1 Synthetic data

We performed extensive tests using datasets generated by simulating a synthetic progression model
with () branches (a can independently cause either b or ¢) or (ii) confluences (a and b must co-
occur to cause c¢), with single or multiple independent progressions to model heterogenous cancer
progressions, and presence of false positives and negatives (i.e., noise). These variations confound the
inference problem, since samples generated from such topologies will likely contain sets of mutations
that are correlated but pair-wise causally irrelevant.

CAPRI’s performance was calibrated against the others by Hamming distance (HD), precision
and recall. HD measures the structural similarity among the reconstructed progression and the data
generator (i.e., the smaller a value HD takes, the better); precision and recall measure the rates at
which true positives and negatives causal claims are returned (i.e., the closer to these statistics are
to 1, the better). To have a reliable statistics in all the tests 100 distinct progression models per
topology are generated and, for various sample size and noise rate, 10 datasets from each topology
are sampled; thus, every performance entry is the average of 1000 reconstructions.

Analyses for a variety of settings of input sample size, noise level in the input data, type of
generator models and expressivity of causal claims (e.g., disjunctive or mutually exclusive progressions)
are shown in the supp. mat.(SM). Here, we show in Figure 2 CAPRI’s performance when 15 events are
considered, confluences and a unique progression are present, a few samples are available (m < 250)
and false positives and negatives are present with rate below 20%. Ranking of CAPRI relative to the
state-of-the-art algorithms is shown in the same figure.

3.2 Atypical Chronic Myeloid Leukemia (aCML)

We next evaluated CAPRI’s capabilities with a specific set of genomic data from ACML patients.
For this purpose we relied on the experiments conducted by Piazza et al., who had used high-
throughput exome sequencing technology to identity somatically acquired mutations in 64 ACML
patients, and had discovered a previously unidentified recurring missense point mutation seemingly
targeting SETBP1 [23].

By re-sequencing SETBP1 in samples with ACML and other common human cancers, they con-
cluded that around 25% of the ACML patients tested positive for SETBP1, while most of the other
types of tumors were negative. They questioned whether it would be possible to determine a causal
relationship connecting SETBP1 variants to the mutations in other ACM L-specific driver oncogenes
such as (e.g., ASXL1, TET2, KRAS, etc.). In particular, since SETBP1 and ASXL1 were frequently mu-
tated together, they further asked what causal (or otherwise) relation connected these two events. The
question appears somewhat puzzling, as ASXL1 mutation often presented itself either as a non-sense
point or as an indel mutation.

CAPRI was able to reconstruct an ACML progression model from the datasets provided in [23]
with high confidence, and was able to suggest a potential causal dependency among mutated SETBP1
and ASXL1. The reconstructed model is depicted in Figure 3, where indel, nonsense indel, missense
point and nonsense point mutations have been causally interrelated. In particular, the figure shows
that CAPRI inferred that SETBP1’s missense point mutation can cause a non-sense point mutation
in ASXL1, but not an indel.

A more extensive analysis (prospective study or systems biology explanation) is not yet available,
but yet this example illustrates how the significance of a mutational associations can be tested using
CAPRI. With hypotheses such as these, falsification/validation experiments can shed more light on
somatic evolutionary dynamics in cancer.
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Figure 2: CAPRI’s accuracy and performance was calibrated against various competing algorithms
via extensive computer simulation. Top: Hamming distance (HD), precision and recall of CAPRI were
assessed with synthetic data generated by DAGs (confluences, a unique progression and number of
samples likely to be found in currently available databases such as TCGA [22], i.e. m = 250). Lower
values of HD implies that the algorithm has mislabeled fewer genuine and spurious causes. Noise
accounts for both false positives and negatives. Bottom: Box plot comparison of CAPRI with TAMB,
PC, BIC, BDE, CBN and CAPRESE, is presented sorted according to the median performance.
Extensive tests on other types of topologies are shown in the supp. mat.
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Figure 3: A progression model of atypical Chronic Myeloid Leukemia was inferred with CAPRI,
suggesting the existence of a potential causal relation connecting SETBP1 (missense point) and ASXL1
(nonsense point), thus partially elucidating a conjectured relationship suggested by Piazza et al.

Dataset of somatic mutations is available in [23]. Inference is at high confidece (p-values shown in
the supp. mat.).
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4 Discussions

CAPRI is a general-purpose approach for type-level causal inference from temporal data, collected
over an ensemble. Its analysis is phenomenological, as it is purely data-driven without a mechanistic
model to rely on. It is capable of generating hypotheses about causal relations: vast majority of which
is expected to be genuine (true positive), but some may be spurious (false negatives). Since these
hypotheses are expected to be interpreted and tested by domain experts, their validity (or falsifia-
bility) ultimately depends on further analysis, either experimentally or by means of well-established
mechanistic models.

As demonstrated in this paper, CAPRI is theoretically sound, algorithmically efficient and im-
mensely practical, especially in modeling cancer progression. CAPRI is a novel algorithm in its
structure and foundations, as it deviates crucially from currently popular methods, which are based
on graphical models, building on statistical analysis. In contrast, CAPRI uses a set of rigorously
formulated postulates (originally proposed by Suppes to develop a theory of probabilistic causation)
and places the causal inference as a model checking problem, using both temporal logic and proba-
bilistic analysis. Thus CAPRI can be shown to be not only highly expressive, accurate and powerful,
but also has a sound basis in the philosophical literature tracing its roots to the antiquities, starting
with the work of Avicenna (circa 1000 AD), Al Ghazali and Averroes, and continuing further with
Francis Bacon, John Stuart Mills, David Hume, and more recently with J.L. Mackie, David Lewis,
Hans Reichenbach, Patrick Suppes, Brian Skyrms, John Dupre, Nancy Cartwright, et al.

Note that the theory of causation discussed here focuses primarily on type-level causality: it
only studies what happens statistically to a population of tumors of a specific type as it progresses
in a somatic evolution — however, it is silent as to what takes place in a specific tumor in a specific
patient: a question in the domain of token-level causality. For instance, a rapidly proliferating/growing
tumor (with EGFR and CDK mutations, for instance) will have certain hypoxic inner cells: such a
tumor may effect a VEGF mutation with a high probability (signaling angiogenesis), but also with
some probability (perhaps to a smaller degree), effect anaerobic glycolysis or EMT (epithelial to
mesenchymal transformation). Which particular path a specific tumor takes in a specific patient
cannot be answered by the type-level models constructed by CAPRI, since a particular trajectory
would be governed by the dynamics of token-level causality, depending on environmental variables,
therapeutic history and genetics, which are specific to the patient, but obliterated in the population
level statistics.

Regardless of such concerns, CAPRI’s contributions are timely and critically important. Recent
progress, spurred by large amount of cancer genomic data (e.g., from TCGA) points to the major
roles data science plays in cancer research, albeit further complicated by heterogeneity in cell-types
and temporality in cell-populations and cell-states in the tumor’s somatic evolution. One may thus
conclude that the causations in cancer evolution are unlikely to be cell-autonomous and may not even
be discernible in a model of single tumor cell (or a clonal population of identical tumor cells). Instead,
we may need to seek the answer in a heterogeneous population model, and through an evolutionary
model of causation, in which an event that initially infers a selective advantage to a cell-type with
a particular mutation becomes causal for subsequent mutations resulting in a different cell-type that
thrives under the resulting Malthusian pressure in the micro-environment. Such causal connections,
in our framework, are permitted to be even more complex: the “effect” may need more than a single
causal event; it may need any one of many possible causal events; or it may even need an exclusively
selected causal event out of many possibilities. A particularly interesting example of the last is the
causation induced by “synthetic lethality,” a @ b > ¢ (a and b forming a synthetically-lethal pair).
CAPRI, by virtue of being built upon the foundations of probabilistic modal propositional logic, is
able to handle this situation.

However, CAPRI’s expressivity often exacts a price through computational complexity: namely,
an unbridled CAPRI can be computationally intractable. We have tamed CAPRI’s complexity by
limiting it either to just the conjunctive causal claims, or a lifting step that anticipates complex logical
causal claims to be polynomially constrained (e.g., based on some domain knowledge). Nonetheless,
it is powerful enough to test synthetic lethality, as the results of Figure 4 demonstrate.

Finally, we do not imply that CAPRI, even with unlimited amount of patient genomic data, will
be able to enumerate all possible tumor progressions for all possible cancer types. Of course, CAPRI
ultimately depends upon the experimentalists in selecting the observable events that are likely to
be causal or indicative of cancer progression. We expect the genomic mutations (driver as well as
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Figure 4: CAPRI was finally applied to a causation model that encodes the phenomenon of synthetic
lethality: where a- and b-mutation individually may drive tumor’s somatic evolution forward, but
jointly, they prove to be lethal for tumor. It could be expressed by an ezclusive or Boolean connective,
e.g., a ® b ¢ and evaluated by CAPRI and other competing algorithms. The figure shows the
probability of inferring a claim a®br> ¢ (synthetic lethality), where one progression path is preferential,
and where the structure is a priori known to the algorithm. CAPRI’s performance surface is shown,
as well as its box-plot comparison against BIC, BDE, PC and IAMB. Results suggest that, with
m > 60, CAPRI infers the correct claim almost surely. It is reasonably expected that, for more
complex causal structures, comparable performance would be reached only for bigger values of m.
See the supp. mat. for comparisons and additional discussions.

passenger) to fall into one or the other class. However, there are many other indicators, some of which
we do know (structural, epigenetic, transcriptomic isoforms, microRNA, etc.), but others not yet
known. Faced with this unpredictability, CAPRI has settled on operating at a phenomenological level
trying to stitch together a causal narrative that could include some spuriousness (e.g., an unobserved
common cause of two events, may spuriously lead one to conclude that one of these two causes the
other). However, such hypotheses can be experimentally tested and initiate a quest for the missing
common cause and its underlying mechanisms. We are continuing to develop algorithms to prioritize
such hypotheses and devise experiments to validate them.

Based on such hypotheses-driven analyses, ultimately, CAPRI could lead to creation of very accu-
rate pathway and population based models and an exact mechanical bases of evolutionary causations.
Such a research program would not only deepen our understanding of biology, it is also imperative
for discovery of novel cancer drugs.

Significance Recent innovations in genomics and computational technologies have made it possible
to collect tumor-specific data from vast number of patients, coming from varied genetic backgrounds,
wide-ranging variability in life-style and different stages of the disease. However, analysis of this data
have been unusually challenging, primarily because of heterogeneity in cell-types and temporality in
population structures and cell-states. We propose a rigorous method, firmly built on mathematical
foundation of logic and statistics, to infer causal relations among various mutational events in the
tumor populations. Resulting causal structure, encoded in a directed acyclic graph (DAG), has
obvious applications in understanding therapy design, drug-resitance in cancer, survival prediction
and prognosis, and drug discovery.
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