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Abstract

Population structure inference with genetic data has been motivated by a variety of applications

in population genetics and genetic association studies. Several approaches have been proposed for

the identification of genetic ancestry differences in samples where study participants are assumed

to be unrelated, including principal components analysis (PCA), multi-dimensional scaling (MDS),

and model-based methods for proportional ancestry estimation. Many genetic studies, however,

include individuals with some degree of relatedness, and existing methods for inferring genetic

ancestry fail in related samples. We present a method, PC-AiR, for robust population structure

inference in the presence of known or cryptic relatedness. PC-AiR utilizes genome-screen data and

an efficient algorithm to identify a diverse subset of unrelated individuals that is representative of

all ancestries in the sample. The PC-AiR method directly performs PCA on the identified ancestry

representative subset and then predicts components of variation for all remaining individuals based

on genetic similarities. In simulation studies and in applications to real data from Phase III

of the HapMap Project, we demonstrate that PC-AiR provides a substantial improvement over

existing approaches for population structure inference in related samples. We also demonstrate

significant efficiency gains, where a single axis of variation from PC-AiR provides better prediction

of ancestry in a variety of structure settings than using ten (or more) components of variation

from widely used PCA and MDS approaches. Finally, we illustrate that PC-AiR can provide

improved population stratification correction over existing methods in genetic association studies

with population structure and relatedness.
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Introduction

Ancestry inference with genetic data is an essential component for a variety of applications in

genetic association studies, population genetics, and both personalized and medical genomics. Ad-

vances in high-throughput genotyping technology have allowed for an improved understanding of

continental-level and fine-scale genetic structure of human populations, as well as other organ-

isms. Principal components analysis (PCA) (Price et al., 2006; Patterson et al., 2006) has been

the prevailing approach in recent years for both population structure inference and correction

of population stratification in genome-wide association studies (GWAS) with high-density single

nucleotide polymorphism (SNP) genotyping data. Other widely used methods for inference on

genetic ancestry include multi-dimensional scaling (MDS) (Purcell et al., 2007), a dimension reduc-

tion method similar to PCA, and model-based methods, such as STRUCTURE (Pritchard et al.,

2000), FRAPPE (Tang et al., 2005), and ADMIXTURE (Alexander et al., 2009), for proportional

ancestry estimation in samples from admixed populations.

Genetic studies often include related individuals; however, most existing population structure

inference methods fail in the presence of relatedness. For example, the top principal components

from PCA, as well as the top dimensions from MDS, can reflect family relatedness rather than

population structure when applied to samples that include relatives (Price et al., 2010). Model-

based ancestry estimation methods similarly fail in the presence of relatedness as they are not

able to distinguish between ancestral groups and clusters of relatives (Thornton and Bermejo,

2014). For certain family-based study designs with known pedigrees, the population structure

inference method proposed by Zhu et al. (2008), where SNP loadings calculated from a PCA on

pedigree founders are used to obtain principal components values for genotyped offspring, can be

used. However, this approach, which we refer to as “FamPCA,” fails in the presence of cryptic

or misspecified relatedness and is not applicable to most GWAS where genealogical information

on sample individuals is often incomplete or unavailable. The FamPCA method requires genotype

data to be available for pedigree founders, which can be prohibitive for many genetic studies. In

addition, inference on population structure is limited to the ancestries in the subset of genotyped

founders, which may lack sufficient diversity to be representative of the ancestries in the entire

sample (Chen et al., 2013).
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We address the problem of population structure inference and correction in samples with related

individuals. We do not put constraints on how the individuals might be related, and we allow for

the possibility that genealogical information on sample individuals could be partially or completely

missing. We propose a method, which we call PC-AiR (principal components analysis in related

samples), for inference on population structure from SNP genotype data in general samples with

related individuals. The PC-AiR method implements a fast and efficient algorithm for the identifi-

cation of a diverse subset of mutually unrelated individuals who are representative of the ancestries

in the entire sample. Axes of variation are inferred using this ancestry representative subset, and

coordinates along the axes are predicted for all remaining sample individuals based on genetic sim-

ilarities with individuals in the ancestry representative subset. The top axes of variation (principal

components) from PC-AiR are constructed to be both representative of ancestry and robust to

both known or cryptic relatedness in the sample. A remarkable feature of PC-AiR is the method’s

ability to identify a diverse and representative subset of individuals for ancestry inference using only

genome-screen data from the sample, without requiring additional samples from external reference

population panels or genealogical information on the study individuals.

We assess the robustness and accuracy of PC-AiR for inference on genetic ancestry in simulation

studies with both related and unrelated individuals under various types of population structure

settings, including admixture. We also directly compare PC-AiR to existing population structure

inference methods using both simulated data and real genotype data collected from the Mexican

Americans in Los Angeles, California (MXL) and African American individuals in the southwestern

USA (ASW) population samples of release 3 of phase III of the International Haplotype Map

Project (HapMap) (International HapMap 3 Consortium, 2010). The population structure inference

methods to which we compare PC-AiR are: (1) PCA with the EIGENSOFT (Price et al., 2006)

software, (2) MDS with the PLINK (Purcell et al., 2007) software, (3) the model-based ancestry

estimation methods FRAPPE (Tang et al., 2005) and ADMIXTURE (Alexander et al., 2009), and

(4) FamPCA (Zhu et al., 2008) as implemented in the KING (Manichaikul et al., 2010) software.

We also perform simulation studies to assess population structure correction with PC-AiR in GWAS

with relatedness and ancestry admixture. We evaluate the type-I error when using PC-AiR principal

components as well as widely used population stratification correction methods including: (1) the

EIGENSTRAT (Price et al., 2006) method, which uses PCA with EIGENSOFT to correct for
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population structure, and (2) the linear mixed model methods EMMAX (Kang et al., 2010) and

GEMMA (Zhou and Stephens, 2012), which use variance components and an empirical genetic

relatedness matrix to simultaneously account for both population structure and relatedness among

sample individuals.

Materials & Methods

Overview of the PC-AiR Method

Let the set N be a sample of outbred individuals who have been genotyped in a genome-screen.

An essential component of the PC-AiR method for population structure inference in the presence

of relatedness is to use genome-screen data to partition N into two non-overlapping subsets, U and

R, i.e. N “ U YR with U XR “ H, where U is a subset of mutually unrelated individuals who are

representative of the ancestries of all individuals in N , and R is a “related subset” of individuals who

have at least one relative in U . We allow for individuals in R to be related to each other in addition

to having relatives in U . PC-AiR uses measures of pairwise relatedness and ancestry divergence

calculated from autosomal SNP genotype data for the identification of U , without requiring external

reference panels or genealogical information. Population structure inference on the entire set of

sample individuals, N , is then obtained by first directly performing PCA on the selected ancestry

representative subset, U , and then predicting values along the components of variation for all

individuals in the related subset, R, based on genetic similarities with the individuals in U . In the

following subsections, we describe the PC-AiR method in detail.

Population Genetic Modeling Assumptions

The population genetic modeling assumptions we make are weak and are satisfied by commonly used

models of population structure, such as the Balding-Nichols model (Balding and Nichols, 1995).

The individuals in set N are assumed to have been sampled from a population with ancestry derived

from K ancestral subpopulations. Let S be the set of autosomal SNPs in the genome-screen, and for

SNP s P S, denote ps “ pp
1
s, . . . , p

K
s q

T to be the vector of subpopulation-specific allele frequencies,

where pks is the allele frequency at SNP s in subpopulation k P t1, . . . ,Ku. We assume that the pks

are random variables that are independent across s but with possible dependence across the k’s, with
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mean Erpss “ ps1 and covariance Covrpss “ psp1´psqΣK for every s, where 1 is a length K column

vector of 1’s, and ΣK is a K ˆK matrix. In genetic models incorporating population structure,

the allele frequency parameter ps is typically interpreted as an “ancestral” allele frequency, or

some average of allele frequencies across subpopulations. Although we allow ΣK to be completely

general, including allowing for non-zero covariances across subpopulations, a special case is the

Balding-Nichols model, where ΣK is a diagonal matrix with pk, kq-th element equal to Fk ě 0,

and Fk is Wright’s standardized measure of variation (Wright, 1949) for subpopulation k. We

allow for sample individuals to have admixed ancestry from the K subpopulations, and we denote

ai “ pa
1
i , . . . , a

K
i q

T to be the ancestry vector for individual i P N , where aki is the proportion of

ancestry across the autosomal chromosomes from subpopulation k for individual i, with aki ě 0 for

all k, and
řK
k“1 a

k
i “ 1. In most contexts, the parameters K, ΣK , ps and ps for all s P S, and ai

for all i P N will be unknown. The goal of PC-AiR is to obtain inference on ancestry, i.e. the ai’s,

for all sample individuals i P N in the presence of known or cryptic relatedness.

Relatedness Inference in Structured Populations

PC-AiR uses kinship coefficients to measure relatedness between all pairs of individuals in N ,

where the kinship coefficient for individuals i and j, which we denote as φij , is defined to be the

probability that a random allele selected from i and a random allele selected from j at a locus are

identical-by-descent (IBD). When the genealogy of the sample individuals is known, PC-AiR can

use theoretical or pedigree-based kinship coefficients, and a number of software packages (Abney,

2009; Zheng and Bourgain, 2009) are available for calculating these according to a specified ge-

nealogy. However, genealogical information on sample individual is often unknown, incomplete, or

misspecified, and PC-AiR can also use empirical kinship coefficients estimated from genome-screen

data for samples with cryptic relatedness that must be genetically inferred. It is important to note

that relatedness estimators that assume population homogeneity, such as those implemented in the

widely used PLINK software (Purcell et al., 2007) or obtained via a standard genetic relationship

matrix (GRM)(Yang et al., 2010), are biased in samples from structured populations. Therefore,

we do not recommended using these estimators with PC-AiR as it has been demonstrated that

they give inflated kinship estimates in the presence of population structure (Thornton et al., 2012;

Manichaikul et al., 2010), where (1) unrelated pairs of individuals with similar ancestry can have
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kinship-coefficient estimates corresponding to values that are expected for close relatives, and (2)

related individuals can have a systematic inflation in their estimated degree of relatedness.

To use the PC-AiR method when pedigree relationships are unknown or incomplete, we rec-

ommend using empirical kinship coefficient estimates from methods that have been developed for

samples from structured populations. One such estimator is KING (kinship-based inference for

GWASs)-robust (Manichaikul et al., 2010). Rather than using estimated allele frequencies, which

leads to biased relatedness estimates in the presence of population structure, KING-robust relies

on shared genotype counts across the SNPs in the genome-screen to measure the genetic distance

between individuals. KING-robust was developed for relatedness inference in samples from popula-

tions with discrete substructure without admixture, and it is a consistent estimator of the kinship

coefficient for a pair of outbred individuals from the same subpopulation. The estimator, however,

will generally be negatively biased for pairs of individuals that have different ancestries. Despite

this bias, the KING-robust estimator is typically able to separate close relatives with similar an-

cestry from unrelated individuals, which is often sufficient for the PC-AiR method. Additionally,

the PC-AiR method exploits the negative bias of the KING-robust estimator to gain insight on

ancestry differences among individuals, as discussed in more detail in the following subsection.

Estimated kinship coefficients from the recently proposed REAP (Thornton et al., 2012) and

RelateAdmix (Moltke and Albrechtsen, 2014) methods can also be used by PC-AiR. Both of these

methods offer improved relatedness inference over KING-robust in samples with admixed ancestry

by using external reference panels. REAP and RelateAdmix, however, may not be suitable for some

studies as they require (1) some prior knowledge about the ancestries that are likely present in the

sample, and (2) appropriate reference panels with suitable surrogates for the ancestral subpopula-

tions. KING-robust does not require external reference panels and can be used with PC-AiR for

admixed samples with cryptic relatedness when the REAP and RelateAdmix methods may not be

practical.

Measuring Ancestry Divergence with Genome-Screen Data

Pairwise measures of relatedness, such as kinship coefficients, among individuals in a sample can

be used for selecting a subset of mutually unrelated individuals (Staples et al., 2013). In structured

samples, however, identifying a subset of unrelated individuals based solely on relatedness measures
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can result in a subset that lacks sufficient diversity for population structure inference on the entire

sample, as it may not be representative of the ancestries of all individuals. For the identification of

an ancestry representative subset of mutually unrelated individuals, PC-AiR incorporates measures

of ancestry divergence in addition to the kinship coefficients used as measures of relatedness.

Consider a pair of individuals i, j P N who have non-missing genotype data at the set Sij Ă S

of autosomal SNPs in a genome-screen, and let |Sij | denote the total number of SNPs in this set.

Additionally, let the random variables gis and gjs be the number of copies of the reference allele

that individuals i and j each have, respectively, at SNP s P Sij ; thus, gis and gjs take values of 0,

1, or 2. To measure ancestry divergence between a pair of unrelated individuals i and j, we use the

estimator

pκij “
1

2

¨

˝1´

ř

sPSij pgis ´ gjsq
2

ř

sPSij

´

1rgis“1s ` 1rgjs“1s

¯

˛

‚, (1)

where 1rgis“1s is an indicator for individual i being heterozygous at SNP s, i.e. 1rgis“1s is 1 if gis “ 1

and is 0 otherwise, and 1rgjs“1s is similarly defined for individual j. Equation (1) is equivalent to the

KING-robust estimator (Manichaikul et al., 2010) that has been proposed for estimating kinship

coefficients of related individuals in samples from discrete subpopulations. We consider the KING-

robust estimator under the general population genetic modeling assumptions previously discussed

for i and j with admixed ancestry from K ancestral subpopulations. Recall that ai and aj are the

ancestry vectors for i and j, respectively. Under an assumption that genotypes at different SNPs

are independent and with |Sij | Ñ 8, it can be shown (see the Appendix) that

pκij Ñ
´1

2pai ´ ajq
TΣKpai ´ ajq

1´ 1
2

”

aTi ΣKai ` aTj ΣKaj

ı . (2)

For unrelated i and j with the same ancestry, pκij Ñ 0, as can be seen from Equation (2) by setting

ai “ aj . However, when i and j have different ancestral backgrounds, pκij is a negatively biased

estimator of kinship, and this bias provides a useful measure of the ancestry divergence between

the pair of individuals. Consider, for example, the Balding-Nichols model where ΣK is a diagonal
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matrix with pk, kq-th element equal to Fk. Under this model, it can be seen from Equation (2) that

pκij Ñ

´1
2

K
ř

k“1

paki ´ a
k
j q

2Fk

1´ 1
2

K
ř

k“1

”

paki q
2 ` pakj q

2
ı

Fk

. (3)

The value in Equation (3) is negative when i and j have different ancestry proportions, and the

magnitude of this negative value will depend on how divergent the ancestries for the pair are.

The pκij estimator will generally have more extreme negative values when (1) the Fk values are

large, (2) i and j have large ancestry proportion differences, or (3) either i or j has an ancestry

proportion that is close to 1 from one of the K subpopulations. For the special case when i and j

are non-admixed and have ancestry from different subpopulations k and k1, the estimator reaches

an extreme negative value and

pκij Ñ
´1

2pFk ` Fk1q

1´ 1
2pFk ` Fk1q

. (4)

PC-AiR uses the pκij estimator given by Equation (1) for inference on ancestry divergence for all

pairs of individuals i, j P N who are not inferred to be related based on the kinship coefficient

measures discussed in the previous subsection.

Identification of an Ancestry Representative Subset

We now provide details on how PC-AiR uses both the relatedness and ancestry divergence measures

discussed in the previous two subsections for the identification of U , a mutually unrelated subset

of individuals that is representative of the ancestries of all individuals in the sample N . Let pφij

be the kinship coefficient measure that is chosen for relatedness inference on a pair of individuals

i, j P N . When the genealogy of the sample individuals is known, pφij could be a pedigree-based

kinship coefficient, and when the genealogy is partially or completely unknown, pφij would be

an empirical kinship coefficient estimate from a relatedness estimation method that allows for

population structure, e.g., the KING-robust estimator of Equation (1) , REAP, or RelateAdmix.

In order to identify all pairs of relatives in N , a relatedness threshold, τφ, is chosen such that i and

j are designated to be related by the PC-AiR method if pφij ą τφ. When pedigree-based kinship

coefficients are used with PC-AiR, all unrelated pairs will have pφij “ 0, and τφ should be set to 0.
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When empirical kinship coefficient estimates are used, there will be some noise in the estimation,

and τφ can be set to an approximate upper bound that is expected for the chosen kinship coefficient

estimator for an unrelated pair. For example, when using KING-robust for relatedness inference,

i.e. using pφij “ pκij , we have found that 0.025 is an approximate upper bound with dense SNP

genotyping data for unrelated pairs with the same ancestry, and setting τφ “ 0.025 works well in

practice for identifying relatives with similar ancestry up to third-degree (and some fourth-degree)

in a variety of population structure settings with ancestry admixture. For all sample individuals

i P N , we calculate γi “
ř

j‰i
pφij1rpφijąτφs

as a measure of the total kinship individual i has with

its inferred relatives in the sample, where 1
rpφijąτφs

is the indicator that individual j is inferred to

be individual i’s relative.

PC-AiR infers ancestry divergence using pκij for all pairs of individuals i, j P N who are not

inferred to be relatives. We showed that pκij is a consistent estimator of 0 for unrelated pairs

with the same ancestry, while unrelated pairs with different ancestry will have pκij values that are

systematically negative. We define a pair of individuals i and j to be “divergent” if they have

different ancestral backgrounds, i.e. pκij ă ´τκ, where ´τκ is the expected lower bound of pκij for

a pair of unrelated individuals with the same ancestry. Since the distribution of pκij for unrelated

pairs with the same ancestry will be symmetric around 0, we expect that the vast majority of these

pairs will satisfy pκij P r´0.025, 0.025s when |Sij | is large, where 0.025 is the previously mentioned

approximate upper bound for unrelated pairs. We have found that setting ´τκ “ ´0.025 works

well in practice for identifying unrelated pairs of individuals with different admixed ancestries. For

all sample individuals i P N , we calculate δi “
ř

j‰i 1rpφijăτφ, pκijă´τκs
, the number of divergent

ancestry pairs that individual i is a member of. Small δi values generally correspond to individuals

with ancestry that is similar to the ancestries of many other individuals in N , while the highest δi

values generally correspond to individuals with unique ancestry and/or individuals with an ancestry

proportion close to 1 from some subpopulation. Individuals with the highest δi values are given

priority for inclusion in U as they help to ensure that the subset is both diverse and representative

of all ancestries in the sample.

The algorithm used by PC-AiR for partitioning the set N into subsets U and R based on

measures of ancestry divergence and kinship is presented below:
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(1) Compute: γi “
ř

j‰i
jPN

pφij1rpφijąτφs
for all i P N .

(2) Compute: δi “
ř

j‰i
jPN

1
rpφijăτφ, pκijă´τκs

for all i P N .

(3) Initialize the two subsets to be U “ N and R “ H, where H is the empty set.

(4) Compute: ηi “

$

’

’

’

&

’

’

’

%

ř

j‰i
jPU

1
rpφijąτφs

@i P U

0 @i P R

.

If max
i
pηiq ą 0, continue to step (5), otherwise go to step (11).

(5) Identify T1 “ ti|ηi “ max
j
pηjqu, the subset of individuals in U with the most relatives in U .

If |T1| ą 1, where |T1| is the number of elements in T1, go to step (6). Otherwise set T ˚ “ T1

and go to step (9).

(6) Identify T2 “ ti|δi “ min
jPT1

pδjqu, the subset of individuals in T1 that are members of the least

divergent ancestry pairs.

If |T2| ą 1, go to step (7). Otherwise set T ˚ “ T2 and go to step (9).

(7) Identify T3 “ ti|γi “ min
jPT2

pγjqu, the subset of individuals in T2 that have the minimum total

kinship with their inferred relatives.

If |T3| ą 1, go to step (8). Otherwise set T ˚ “ T3 and go to step (9).

(8) Randomly select one element from T3 and define this element to be the set T ˚.

(9) Define the sets: U˚ “ UzT ˚ and R˚ “ RY T ˚.

(10) Update U “ U˚ and R “ R˚ and return to step (4).

(11) The algorithm has completed.

This algorithm is both fast and efficient, and the two subsets returned from the algorithm are the

ancestry representative and mutually unrelated subset, U , and the related subset, R, where each

individual in R has at least one relative in U . The algorithm is constructed in such a way that for

any subset of mutually related individuals in N , one individual in the subset will be chosen to be

included in U , with priority given to the individual who is a member of the most divergent ancestry
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pairs. This helps to ensure that every ancestry in N is represented by some individual(s) in U , while

simultaneously satisfying the requirement that individuals in U are also mutually unrelated. It also

favors selecting individuals with the highest ancestry proportions from each of the K subpopulations

for U , which helps to avoid shrinkage in prediction of principal component values for individuals

in R, as these individuals will be at the extremes of the K ´ 1 dimensional space spanned by the

axes of variation representing the ancestries in N . Secondary priority for inclusion in U is given

to individuals that share the most genetic information with their collection of relatives in N , also

allowing for better prediction of principal component values for relatives in R.

Genetic Similarity Matrix for PC-AiR

The traditional PCA approach for population structure inference with genetic data, e.g., the

EIGENSOFT method, performs PCA on standardized genotypes, where the standardized geno-

type value for individual i at SNP s is given by

zis “
gis ´ 2p̂s

a

2p̂sp1´ p̂sq
, (5)

and p̂s will typically be an allele frequency estimate for SNP s calculated using all sample indi-

viduals. The PC-AiR method also uses standardized genotypes, but the allele frequencies used

for the standardization are calculated using only the unrelated individuals selected for U . The

standardized genotype values for PC-AiR are calculated from Equation (5) by setting p̂s “ p̂us ,

where

p̂us “
1

2|Us|
ÿ

iPUs

gis, (6)

Us is the subset of individuals in U who have non-missing genotype data at SNP s, and |Us| is

the number of individuals in Us. In samples with related individuals and population structure, we

have found that using the estimator p̂us provides better ancestry inference with PC-AiR than using

allele frequency estimates calculated from the entire sample, which can be heavily influenced by

the correlated genotypes among relatives. For any individual i P N with a missing genotype value

at SNP s, zis is set to 0, i.e. gis is set equal to 2p̂us , an estimate of its expected value.

Similar minor allele frequency filtering and LD pruning of SNPs that have been recommended
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for standard PCA (Price et al., 2006; Patterson et al., 2006) should also be used for PC-AiR. Let

|S˚| be the number of SNPs in the pruned and filtered set S˚, and let n, nu, and nr be the number

of individuals in set N and subsets U and R, respectively, with n “ nu ` nr. We construct ZZZ, an

nˆ|S˚| standardized genotype matrix for N , with pi, sq-th entry equal to zis, ordered such that the

first nu rows correspond to individuals in U , and the remaining nr rows correspond to individuals

in R. The standardized genotype matrix for U is the nu ˆ |S˚| submatrix ZZZu corresponding to the

first nu rows of ZZZ. Similarly, the nr ˆ |S˚| submatrix ZZZr is the standardized genotype matrix for R

corresponding to the last nr rows of ZZZ.

Similar to the traditional PCA approach, PC-AiR obtains a genetic similarity matrix (GSM)

for population structure inference from standardized genotypes. It is important to note that PCA

applied to a GSM that includes all individuals in N , as in the traditional PCA approaches, leads

to artifactual principal components for ancestry due to confounding from correlated genotypes

among relatives, i.e. genetic similarities are reflecting alleles shared IBD among relatives. To

protect against confounding caused by sample relatedness, PC-AiR instead calculates a GSM using

only the mutually unrelated sample individuals who were selected to be included in the ancestry

representative subset, U . The empirical nu x nu GSM for U calculated with the standardized

genotype matrix ZZZu is

pΨu “
1

|S˚|
ZZZuZZZ

T
u , (7)

and the pi, jq-th entry of pΨu provides a measure of the average genetic similarity across the auto-

somes for individuals i, j P U .

Population Structure Inference in Related Samples with PC-AiR

To obtain principal components that are ancestry representative on a set N containing related

individuals, the PC-AiR method first performs a PCA using genome-screen data from only those

individuals selected to be in the mutually unrelated ancestry representative subset, U . PCA is

performed by obtaining the eigendecomposition of the GSM pΨu from Equation (7). This procedure

sequentially identifies orthogonal axes of variation, i.e. linear combinations of SNPs, that best

explain the genotypic variability amongst the individuals in U , where each axis of variation reflects

the structure that leads to the greatest variability after accounting for the structure explained by
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all previously defined axes. The eigendecomposition of pΨu results in an nu ˆ nu matrix, VVVu “

rVu
1 ,V

u
2 , . . . ,V

u
nus, with orthogonal, length nu, column vectors, and a corresponding length nu

vector, Λu “ pλ
u
1 , λ

u
2 , . . . , λ

u
nuq, with the property of λu1 ą λu2 ą . . . ą λunu . For d P t1, . . . , nuu, Vu

d

and λud are the corresponding dth principal component (eigenvector) and eigenvalue of pΨu, where

λud is proportional to the percentage of variability in the genome-screen data for U that is explained

by Vu
d . By construction, individuals in U are mutually unrelated and have diverse ancestry, so the

top principal components of pΨu are expected to be representative of ancestry.

Once PCA has been performed on U , principal components values for individuals in the related

subset, R, can be obtained via prediction. Let LLLu be a diagonal matrix created from the vector of

eigenvalues, i.e. LLLu “ diagpΛuq. An |S˚| ˆ nu SNP weight matrix giving the relative influence of

each SNP on each of the nu eigenvectors can be obtained as WWWu “ ZZZTuVVVu, and from the form of the

eigendecomposition of the real symmetric matrix pΨu “ VVVuLLLuVVV
´1
u , it can be shown (Heath et al.,

2008) that the principal components for the ancestry representative subset, U , can alternatively be

written as:

VVVu “ pΨuVVVuLLL
´1
u “

ˆ

1

|S˚|
ZZZuZZZ

T
u

˙

VVVuLLL
´1
u “

1

|S˚|
ZZZuWWWuLLL

´1
u . (8)

For the related subset, R, the PC-AiR method predicts principal components values from Equa-

tion (8) by replacing ZZZu, the standardized genotype matrix for individuals in U , with ZZZr, the

standardized genotype matrix for individuals in R. The nr x nu matrix of predicted eigenvectors

for R, which we denote as QQQr, is thus given by:

QQQr “
1

|S˚|
ZZZrWWWuLLL

´1
u . (9)

The dth column in the matrix QQQr corresponds to PC-AiR’s predicted coordinates along the dth

principal component for the individuals in R. We define Γ to be the nˆnu matrix of the combined

principal components for U and R, where:

Γ “

»

—

–

VVVu

QQQr

fi

ffi

fl

“

»

—

–

Vu
1 Vu

2 . . . Vu
nu

Qr
1 Qr

2 . . . Qr
nu

fi

ffi

fl

. (10)
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The column vectors of Γ are the principal components (axes of variation) of the set N “ U YR

obtained from the PC-AiR method. The genetic structure that is reflected by all of the principal

components for PC-AiR are found using only the ancestry representative subset, U , and thus the

top principal components from Γ are designed to be representative of ancestry in N , even in the

presence of known or cryptic relatedness.

Simulation Studies

We perform simulation studies in which both population and pedigree structure are simultaneously

present in order to (1) assess the accuracy and robustness of the PC-AiR method for population

structure inference in the presence of relatedness, (2) evaluate correction for population stratifi-

cation with PC-AiR in genetic association studies with cryptic structure, and (3) compare the

performance of PC-AiR to existing methods. We simulate a variety of population structure set-

tings, including admixture and ancestry-related assortative mating, with differentiation between

populations ranging from subtle to large. We evaluate population structure inference for four

different relationship configurations, where each configuration corresponds to a specific setting of

genealogical relationships among the sample individuals. In all simulation studies considered, pedi-

gree information on the sample individuals is hidden and genetic relatedness is inferred from the

genotype data with the PC-AiR method using the KING-robust kinship estimator in Equation (1).

Population Structure Settings

The population structure settings we consider are similar to the settings in Price et al. (2006),

where PCA was performed with the EIGENSOFT software in unrelated samples for inference on

and adjustment for population structure in GWAS, except that our simulation studies include

related individuals. We consider population structure settings where individuals have ancestry

derived from two populations, and the allele frequencies at 100,000 SNPs for each of these two

populations are generated using the Balding-Nichols model (Balding and Nichols, 1995). More

precisely, for each SNP s, the allele frequency ps in the ancestral population is drawn from a

uniform distribution on r0.1, 0.9s, and the allele frequency in population k P t1, 2u is drawn from a

beta distribution with parameters psp1 ´ Fkq{Fk and p1 ´ psqp1 ´ Fkq{Fk, where the quantity Fk

is equivalent to Wright’s measure of population differentiation (Wright, 1949) from the ancestral
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population. In all simulations, we set F1 and F2 equal to a common value, FST . To generate allele

frequencies derived from populations ranging from closely related to highly divergent, we consider

FST values from 0.01 to 0.2.

For each FST value considered, we simulate three population structure settings. Population

structures I and II both consist of individuals sampled from an admixed population formed from

populations 1 and 2. For population structure I, all unrelated individuals and pedigree founders

have ancestry proportions a from population 1 and p1´ aq from population 2, with the parameter

a for each individual drawn from a uniform distribution on r0, 1s. Population structure II is similar

to population structure I, but with the ancestry parameter, a, drawn from a beta distribution with

mean 0.4 and standard deviation 0.1 for 50% of the unrelated individuals and pedigree founders,

and with mean 0.6 and standard deviation 0.1 for the other 50%. All founders within the same

pedigree have a drawn from the same beta distribution for population structure II. Population

structure III consists of non-admixed individuals, where 50% of the unrelated individuals and

pedigrees are sampled from population 1, and the other 50% are sampled from population 2. Both

population structure settings II and III have ancestry-related assortative mating, i.e., the mating of

founder individuals in every pedigree occurs with individuals who have either the same (population

structure III) or similar (population structure II) ancestry, while population structure I has random

mating that is independent of ancestry.

Relationship Configurations

Three of the four relationship configurations simulated include both related and unrelated individ-

uals. Relationship configuration I consists of 200 unrelated individuals and 200 individuals from 10

four-generation pedigrees, where each pedigree has a total of 20 individuals (Figure S1). Relation-

ship configuration II is comprised of 280 unrelated individuals with 20 parent-offspring trios, and

relationship configuration III includes 260 unrelated individuals with 20 sibling pairs. To sample

pedigree relationships within a given setting of population structure, we simulate genotypes for

pedigree founders under Hardy-Weinberg equilibrium (HWE) according to the chosen population

structure setting and then drop alleles down the pedigree. Relationship configuration IV consists

of 320 unrelated individuals without any family structure. We include the unrelated sample setting

in our simulation studies in order to evaluate any loss in population structure inference with the
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PC-AiR method compared to standard PCA in a setting where standard PCA is appropriate and

has been previously demonstrated to perform well.

Results

Subtle Population and Pedigree Structure

We first considered samples with subtle population structure, where the ancestry of the sample

individuals was derived from two closely related populations. We set FST to 0.01 (a typical value

for divergent European populations) and generated genotype data under population structure I

for each of the four relationship configurations. Population structure inference with PC-AiR was

compared to that of standard PCA with the EIGENSOFT software. To assess the performance of

the two methods, we included the top principal components (axes of variation) from each method as

predictors for the true simulated ancestry of the sample individuals in a linear regression model, and

the proportion of ancestry explained, as measured by R2, was used to evaluate prediction accuracy.

We also compared the efficiency of PC-AiR to EIGENSOFT by assessing the number of top axes

of variation required to attain an R2 of at least 0.99 for ancestry. It should be noted that since

the data in the simulation studies contained only one added dimension of population structure,

an optimal method would require only a single axis of variation for complete ancestry inference.

Both PC-AiR and EIGENSOFT were provided only genotype data without any additional pedigree

information on the sample individuals.

Figure 1 displays the population structure inference results for relationship configuration I from

both PC-AiR and EIGENSOFT. Figure 1B displays the top two axes of variation obtained by

EIGENSOFT, which almost entirely reflected pedigree structure in the sample. The ten spikes

of points radiating from the center cluster in the figure correspond to the individuals who are

members of the ten pedigrees, and the cluster of points in the center of the plot corresponds to

the 200 individuals who do not have any relatives in the sample. In contrast, the top two axes

of variation from PC-AiR were not confounded by family structure, as illustrated in Figure 1A,

and the top axis explained ancestry in the sample nearly perfectly, with an R2 of 0.993 (Figure

1C). Figure 1D shows that the top axis of variation from EIGENSOFT did not reflect population

structure and did not adequately capture the ancestry of the sample individuals, with an R2 of only
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0.133. The efficiency for population structure inference of both methods is illustrated in Figure

1E, where the proportion of ancestry explained (R2 values) for each of the top axes of variation is

displayed. EIGENSOFT required the top 51 axes to be included as predictors in a linear regression

model to achieve an R2 of at least 0.99 for ancestry. In contrast, a single axis of variation from PC-

AiR had an R2 greater than 0.99, thus demonstrating a substantial improvement in efficiency with

PC-AiR over EIGENSOFT in this setting with both subtle population structure and relatedness.

Population structure inference results with PC-AiR and EIGENSOFT for relationship configu-

rations II and III are presented in Figures S2 and S3. The top axes of variation from EIGENSOFT

were influenced by relatedness, as expected; however, since relationship configurations II and III

have substantially less pedigree structure than relationship configuration I, there was some improve-

ment in ancestry prediction with the top axis in each of these two settings, with R2 values of 0.870

and 0.933, respectively. For both relationship configurations II and III, the top 21 axes of variation

from EIGENSOFT were required to attain an R2 of at least 0.99 for predicting ancestry. In com-

parison, the PC-AiR analysis was robust to the relatedness in the sample, and the single top axis

of variation for both relationship configurations II and III attained an R2 value greater than 0.99

for predicting ancestry. For relationship configuration IV, PC-AiR accurately identified all sample

individuals to be unrelated, i.e. the ancestry informative subset, U , was the entire sample, N , so

the PC-AiR method reduced to standard PCA, and inference with either PC-AiR or EIGENSOFT

was essentially identical. The R2 for ancestry with the top axis of variation from both methods was

greater than 0.99, illustrating that there is no loss in accuracy or efficiency compared to standard

PCA when using PC-AiR for population structure inference in samples where all individuals are

unrelated.

We also evaluated the performance of PC-AiR and EIGENSOFT under population structures

II and III with FST set to 0.01 for each of the relationship configurations. The results are given in

Table 1, and the conclusions drawn from these population structure settings are the same as those

for population structure I. For the three relationship configurations that included related samples,

a single axis of variation from PC-AiR fully explained the ancestry in the sample and provided

better prediction of ancestry than using ten (or more) axes from EIGENSOFT. For relationship

configuration IV, where all sample individuals were unrelated, PC-AiR and EIGENSOFT gave

essentially identical results, with the top axis from both methods fully explaining the true ancestry.
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Relatedness and Admixture from Divergent Populations

We also conducted simulation studies with relatedness and admixture from divergent populations.

We considered relationship configuration I and population structure II, where we set FST to 0.1

(a value representative of continental-level ancestry differences) in the Balding-Nichols model to

simulate allele frequencies at SNPs derived from two divergent populations. We evaluated and

compared the performance of PC-AiR to PCA with the EIGENSOFT software, MDS with the

PLINK software, and the two model-based methods ADMIXTURE and FRAPPE for proportional

ancestry estimation. As in the previous subsection, no genealogical information on the sample

individuals was provided to any of the analysis methods, so the FamPCA method could not be used

as it is restricted to settings with known pedigrees. The ADMIXTURE and FRAPPE software

analyses were conducted with the correct number of populations specified.

The population structure inference results for each method considered are shown in Figure 2,

where each panel is a plot of the simulated population 1 ancestry proportions against the inferred

ancestry from one of the methods. The top axis of variation from PC-AiR had an R2 of 0.998 and

provided nearly perfect inference on ancestry for the sample individuals (Figure 2A). Similar to the

EIGENSOFT results for the simulations with subtle population structure and relatedness, the top

axis of variation did not adequately reflect the ancestry in this related sample with admixture from

divergent populations, attaining an R2 of only 0.741 (Figure 2B). ADMIXTURE and FRAPPE

gave identical ancestry proportion estimates for all individuals in the simulation, and Figure 2D

shows estimated proportional ancestry plotted against the simulated ancestry proportions from

population 1. These model-based ancestry estimation methods were confounded by the pedigree

structure in the sample and performed similarly to PCA, with an R2 of only 0.730. While the top

dimension of MDS achieved an R2 of 0.785 and provided some improvement in predicting ancestry

over both of the model-based methods as well as the top axis of variation from EIGENSOFT, it

was also confounded by sample relatedness, as shown in Figure 2C.

We also evaluated the performance of PC-AiR and EIGENSOFT for all combinations of rela-

tionship configurations and population structure settings with FST set to 0.1 and 0.2 (Table 1).

For all settings considered, the top axis of variation from PC-AiR gave nearly perfect ancestry in-

ference, attaining an R2 ą 0.99. The extent to which EIGENSOFT’s PCA was confounded by the
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relatedness depended on how divergent the populations were, i.e. the FST values, and how complex

the pedigree structure was; however, a single axis of variation from PC-AiR always performed as

well as or better than using ten axes of variation from EIGENSOFT for ancestry prediction.

Ancestry Inference in Related Samples with Reference Panels

Reference population panels are commonly used for improved ancestry inference in unrelated sam-

ples from admixed populations, such as African Americans and Hispanics. We conducted a sim-

ulation study evaluating population structure inference with reference panels in admixed samples

with relatedness. We considered the same simulation study discussed in detail in the previous

subsection, but we now included reference panels consisting of 50 unrelated individuals randomly

sampled from each of the two populations. The same population structure methods from the pre-

vious subsection were used, and the results are displayed in Figure S4. Ancestry inference with

EIGENSOFT, MDS, ADMIXTURE, and FRAPPE was substantially improved by including the

reference panels as compared to the analyses without them, but PC-AiR still outperformed all

methods, with the top axis of variation achieving an R2 of 0.999 with ancestry. The supervised

analyses with ADMIXTURE and FRAPPE including the reference panels gave identical results to

each other, as in the unsupervised analyses without reference panels, and the estimated ancestry

proportions had an R2 of 0.973 with the simulated ancestries. Similarly, the top axis of variation

from each of EIGENSOFT and MDS reached R2 values of 0.970 and 0.979 respectively.

Interestingly, the top axis of variation from PC-AiR without additional reference population

samples had an R2 of 0.998 and provided better ancestry prediction than all of the competing

methods with the reference panels. Even with the inclusion of reference panels, there remains some

bias in ancestry inference for all methods, except for PC-AiR, that is induced by the presence of

related individuals in the sample. This can be seen in Figure S4, where the inferred ancestries

for individuals with relatives in the sample were systematically biased for each of the competing

methods. We have found that using ADMIXTURE (or FRAPPE) to conduct separate individual

ancestry analyses for each of the admixed sample individuals with the reference panels can remove

the bias caused by sample relatedness, known or cryptic, as long as the reference panel samples are

appropriate surrogates for the underlying populations. We performed separate individual ancestry

analyses with ADMIXTURE for each sample individual, where each analysis included genotype
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data from a single admixed sample individual and all individuals in the two reference population

panels, and the estimated ancestries attained an R2 of 0.999, the same as PC-AiR.

Correcting for Structure in Genetic Association Studies

We also performed simulation studies to compare population structure correction in genetic asso-

ciation studies with PC-AiR to existing approaches. Allele frequencies were generated at 100,000

null SNPs for two ancestral populations with FST set to 0.1. We define Ds “ |p
1
s ´ p2s| to be the

absolute difference in the reference allele frequencies between ancestral populations 1 and 2 at SNP

s. We also define three classes of SNPs based on Ds, where SNPs with Ds ă 0.2, 0.2 ď Ds ă .4,

and Ds ě 0.4 were considered to have “low differentiation,” “moderate differentiation,” and “high

differentiation,” respectively. Of these 100,000 SNPs, approximately 70% had low differentiation,

25% were moderate, and 5% were highly differentiated. Genotype data was generated under pop-

ulation structure II for sample individuals related according to relationship configuration I, and

for each individual i in the sample, a quantitative trait value yi was simulated according to the

model yi “ gi ` 2a1i ` εi, where a1i is the genome-wide ancestry proportion from population 1 for

individual i, gi is the number of alleles individual i has at the causal SNP, and εi „ Np0, 1q is a

random environmental effect assumed to be acting independently on individuals. The frequency of

the selected casual variant in populations 1 and 2 was 0.13 and 0.17, respectively.

The following statistical methods were evaluated for genetic association testing: (1) linear

regression without ancestry adjustment, (2) EIGENSTRAT, (3) linear regression with principal

components from PC-AiR included as fixed effects, (4) GEMMA (Zhou and Stephens, 2012) and

EMMAX (Kang et al., 2010), which are “exact” and “approximate” linear mixed effects model

methods, respectively, that use an empirical genetic relatedness matrix to capture both population

and pedigree sample structure, and (5) EMMAX with principal components from EIGENSOFT or

PC-AiR included as fixed effects. For the association analyses, each null SNP was included as a

fixed effect in the statistical models and was tested for association with the simulated quantitative

trait. The genomic control inflation factor (Devlin and Roeder, 1999) λGC was used to evaluate con-

founding due to unaccounted for sample structure, where λGC « 1 indicates appropriate correction

for population and family structure, while λGC ą 1 indicates elevated type-I error.

The results of the simulations are given in Table 2. As expected, all of the association tests using
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linear regression models have inflated type 1 error since these methods either (1) do not account for

any of the sample structure, or (2) account for population structure but not relatedness. Including

a single principal component from PC-AiR in the linear regression model results in a lower λGC

compared to EIGENSTRAT with the top ten principal components for all classes of SNPs. This is

because the top PC from PC-AiR nearly perfectly explains ancestry (R2 = 0.998), while the top 10

PCs from EIGENSOFT have an R2 of only 0.672 for ancestry as a result of the relatedness in the

sample. The mixed model approaches considered, EMMAX and GEMMA, are also not properly

calibrated, with λGC ą 1 for SNPs with moderate to high differentiation, and λGC ă 1 for SNPs

with low differentiation. EMMAX with the top ten PCs from EIGENSOFT included as fixed effects

is still not properly calibrated due to incomplete correction for population stratification. However,

including a single PC from PC-AiR as a fixed effect with EMMAX results in appropriate calibration

of the association test statistics, with λGC “ 1 for all classes of SNPs.

Population Structure Inference in Admixed HapMap Samples

HapMap MXL Data

We analyzed high-density genotype data from the Mexican Americans in Los Angeles, California

(MXL) population sample of HapMap 3 for population structure inference. We applied PC-AiR,

EIGENSOFT, MDS, ADMIXTURE, and FamPCA to the 86 genotyped individuals, and we com-

pared the population structure inference results of these methods to a supervised individual ancestry

estimation analysis with ADMIXTURE that included continental reference population panels. For

the supervised analysis with ADMIXTURE, the number of ancestral populations was set to 3,

for which the HapMap CEU (Utah residents with ancestry from northern and western Europe

from the Centre d’Etude du Polymorphisme Human collection) and YRI (Yoruba in Ibadan, Nige-

ria) samples were included as the reference population panels for European and African ancestry,

respectively, and for which the Human Genome Diversity Project (HGDP) (Li et al., 2008) sam-

ples from the Americas were included for Native American ancestry. The analyses were based

on 150,872 autosomal SNPs that were genotyped in both the HapMap and HGDP datasets. To

protect against potential confounding due to relatedness in the supervised ancestry analysis, a sep-

arate ADMIXTURE analysis was conducted for each of the HapMap MXL individuals, where each
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analysis included a single HapMap MXL individual and the reference population panels. All meth-

ods, except for FamPCA, were only provided the SNP genotype data on the sample individuals for

population structure inference, without any additional information on the pedigree relationships.

The FamPCA method was also provided the documented pedigrees in the HapMap MXL which

includes 24 genotyped trios, 5 families with two genotyped individuals, and 4 families with a single

genotyped individual. The PC-AiR method used the KING-robust kinship coefficient estimator in

Equation (1) and the relatedness threshold τφ “ 0.025 to infer genetic relatedness in the sample,

and a MAF filter of 5% was used on SNPs for population structure inference.

Figure 3F presents a bar plot of the results from the supervised individual ADMIXTURE

ancestry analysis. In the bar plot of ancestry proportion estimates, individuals (vertical bars) are

arranged in increasing order (left to right) of genome-wide European ancestry proportion. Our

proportional ancestry estimates were similar to the results from a previous supervised analysis of

this data (Thornton et al., 2012; Gravel et al., 2013). HapMap MXL individuals have modest

African ancestry with little variation, with a mean of 6% and a standard deviation (SD) of 1.8%.

The sample individuals are largely derived from European and Native American ancestry, with

means of 49.9% (SD=14.8%) and 44.1% (SD=14.8%) respectively. Since the European and Native

American ancestry proportions are predominant, nearly perfectly negatively correlated (with a

correlation of -0.99), and quite variable, ranging from 18.0% to 91.0% and from 4.2% to 80.4%

respectively, we expected that an optimal population structure inference method would require

only a single axis of variation to explain these two ancestries in the HapMap MXL.

The population structure inference results for European and Native American ancestry in the

HapMap MXL are given in Table 3. PC-AiR’s top axis of variation was nearly perfectly correlated

with European (and Native American) ancestry, as estimated from the supervised individual AD-

MIXTURE ancestry analysis, with an R2 of 0.98 (Figure 3A). In contrast, the top axis of variation

from each of EIGENSOFT, FamPCA, and MDS had an R2 for European ancestry of only 0.66,

0.65, and 0.75 respectively. For the unsupervised ADMIXTURE analysis that did not include ref-

erence panels, the highest R2 for either European or Native American ancestry with any estimated

ancestry component was only 0.64. Figures 3B, 3C, 3D, and 3E illustrate that ancestry inference in

the HapMap MXL for each of these competing methods was confounded by relatedness, including

the FamPCA method, which was provided the documented pedigree relationships. Ancestry infer-
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ence with FamPCA was confounded by cryptic relatedness present in the HapMap MXL including

a previously reported (Thornton et al., 2012) extended pedigree consisting of two smaller docu-

mented pedigrees, which we have labeled in Figure 3 as MXL Extended Family 1. Without being

provided any pedigree information, a single axis of variation from PC-AiR gave better prediction

of both European and Native American ancestry than the top ten axes from EIGENSOFT, MDS,

and FamPCA, as shown in Table 3. Remarkably, the top axis of variation from PC-AiR without

using any reference population samples gave comparable ancestry inference on European and Na-

tive American ancestry to a supervised ancestry analysis that included reference panels, similar to

the results from the simulation studies.

Combined HapMap ASW and MXL Data

To evaluate the performance of the population structure inference methods in an admixed popula-

tion structure setting with three predominant continental ancestries and relatedness, we considered

an analysis of the combined HapMap ASW (African American individuals in the southwestern

USA) and MXL samples. Similar to our ancestry estimation analysis of the HapMap MXL, we

also conducted a supervised individual ADMIXTURE analysis for the 87 genotyped individuals

in the HapMap ASW with reference population panels included for European, Native American,

and African ancestries. Figure S5A shows a barplot of the results from the supervised individual

ADMIXTURE ancestry analysis of the HapMap MXL and ASW samples, which illustrates that

these populations have very different ancestral backgrounds. Most of the HapMap ASW ancestry

is African, with a mean of 77.5% (SD=8.4%). There is also a large European ancestry component,

with a mean of 20.5% (SD=7.9%); however, unlike the HapMap MXL, there is very little Native

American ancestry in the HapMap ASW, with a mean of only 1.9% (SD=3.5%). Since there are

three predominant continental ancestries in the combined HapMap ASW and MXL samples, we

expected that an optimal method would require two axes of variation to fully explain continental

population structure.

We applied each of the dimension reduction methods (i.e. PC-AiR, EIGENSOFT, MDS, and

FamPCA) to the combined HapMap ASW and MXL samples and compared the results to the

supervised individual ancestry analysis with ADMIXTURE that included the reference population

panels; results are shown in Table 3. All of the methods were able to fully explain the African
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ancestry with two axes of variation, achieving R2 values greater than 0.99. For European ancestry,

PC-AiR’s top two axes of variation achieved an R2 value of 0.99, while the top two axes from each

of the competing population structure methods had R2 values less than 0.90. With an R2 value

greater than 0.99, PC-AiR’s top two axes of variation also explained Native American ancestry

better than the top two axes from EIGENSOFT, MDS, and FamPCA, with corresponding R2

values of 0.95, 0.96, and 0.95, respectively. These results are illustrated in Figure 4, where we can

see that the top two axes of variation from each of these methods, except PC-AiR, were confounded

by relatedness. In fact, the top ten axes of variation from EIGENSOFT, MDS, and FamPCA were

highly confounded by pedigree structure, whereas axes beyond the top two from PC-AiR did not

represent any identifiable structure and appear to be noise (Figures S6 - S10). As a consequence,

the top ten axes of variation from both EIGENSOFT and MDS were not able to explain European

and Native American ancestry as well as the top two axes from PC-AiR. Intersetingly, FamPCA

required ten axes of variation to match PC-AiR’s top two, despite FamPCA being provided the

documented pedigree information for both the HapMap MXL and ASW samples (Table 3). PC-

AiR appropriately accounted for both the known and cryptic relatedness in the sample for optimal

and efficient inference on ancestry with only two axes of variation.

We also performed an unsupervised ancestry analysis with ADMIXTURE and FRAPPE without

including reference panel samples and we compared the results to the supervised ADMIXTURE

analysis. ADMIXTURE and FRAPPE performed identically to each other, as expected, and a

barplot of the estimated ancestry proportions from the unsupervised ancestry analysis is given in

Figure S5B. Two of the three components of ancestry essentially distinguish the ASW from the

MXL samples, while the third was completely confounded by pedigree structure. This estimated

ancestry components were able to attain an R2 value of 0.99 for African ancestry, but the R2 values

were only 0.87 for Native American ancestry and 0.62 for European ancestry, thus performing the

worst of all the methods for ancestry inference in the combined HapMap MXL and ASW samples.

Assessment of Computation Time

The computation time for PC-AiR depends on both the sample size and the number of markers

being analyzed. To analyze a simulated sample of 800 individuals, where 400 individuals are from

20 pedigrees and the remaining 400 individuals are unrelated, with 100K, 50K, and 20K SNPs
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required 28.5s, 14.8s, and 6.3s, respectively, on a 2.5 GHz laptop with 8 GB memory. The PC-

AiR analysis of the HapMap data with 150,872 SNPs required 1.8s for the MXL sample with 86

individuals and 3.9s for the combined ASW and MXL sample with 173 individuals. All computation

times refer to the time to run the PC-AiR algorithm, and do not include the time to estimate the

measure of relatedness and divergence. The KING software implements a highly efficient algorithm

for obtaining relatedness/divergence estimates, and evaluating millions of pairs of individuals in a

sample can be conducted in a matter of minutes.

Discussion

Genetic ancestry inference has been motivated by a variety of applications in population genet-

ics, genetic association studies, and other genomic research areas. Advancements in array-based

genotyping technologies have largely facilitated the investigation of genetic diversity at remark-

ably high levels of detail, and a variety of methods have been proposed for the identification of

genetic ancestry differences among unrelated sample individuals using high-density genome-screen

data. It is common, however, for genetic studies to have sample structure that is due to both

population stratification and relatedness, and existing population structure inference methods can

fail in related samples. We develop PC-AiR, a method for robust population structure inference

in the presence of known or cryptic relatedness. PC-AiR applies a computationally efficient al-

gorithm that uses pairwise measures of kinship and ancestry divergence from genome-screen data

for the identification of a diverse subset of mutually unrelated individuals that is representative of

the ancestries in the entire sample. Principal components that are representative of ancestry are

obtained by performing PCA directly on genotype data from individuals selected for the ancestry

representative subset, while coordinates along the axes of variation for the remaining individuals in

the sample are predicted based on genetic similarities with the diverse subset. The PC-AiR method

does not require the genealogy of the sampled individuals to be known, and it can be used across a

variety of study designs, ranging from population based studies where individuals are assumed to

be unrelated to family based studies with partially or completely unknown pedigrees.

In simulation studies with a broad range of population structure settings, including ancestry

admixture, and with sample individuals related according to a variety of genealogical configurations,
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we demonstrated that the top axes of variation from PC-AiR were nearly perfectly correlated

with ancestry. In contrast, widely used methods for population structure inference performed

poorly in the presence of relatedness, including the PCA method implemented in the EIGENSOFT

software, MDS as implemented in PLINK software, and model-based ancestry estimation methods

ADMIXTURE and FRAPPE. We also applied PC-AiR and competing methods to the admixed

HapMap MXL and ASW population samples. Without using any reference population panels

or pedigree information on the sample individuals, the top two axes of variation from PC-AiR

nearly perfectly explained proportional European, Native American, and African ancestry in the

HapMap MXL and ASW samples as compared to a supervised individual ancestry analysis with

ADMIXTURE that included reference population panels. In contrast, all other population structure

inference methods were confounded by relatedness, including the FamPCA method which was

provided the documented pedigree relationships.

Performing PCA with genome-wide SNP weights that are calculated from external reference

panels has recently been proposed (Chen et al., 2013) for certain admixed populations. This

approach requires prior knowledge about the ancestries of the individuals in the sample, which

may be partially or completely unknown, as well as having available reference panels that are

adequate surrogates for ancestry. Nevertheless, the PC-AiR method can also easily incorporate

SNP-weights from external reference panels for population structure inference. For example, by

designating population samples from external reference panels to be the ancestry representative

subset in the PC-AiR algorithm, principal components for individuals in the target sample for

population structure inference will be calculated based solely on SNP weights from the reference

panels. A potential limitation of using SNP weights from external reference panels, however, is

that inference on population structure will be limited to the ancestries of individuals selected from

the panels, which may not be representative of the ancestries of all individuals in the sample.

An attractive alternative approach would be to perform a PC-AiR analysis on the study sample

combined with the external reference panels, where genome-screen data would be used by the

algorithm implemented in PC-AiR for the identification of an ancestry representative subset from

the combined set of individuals, and where ancestries from both the reference panels and the sample

will be allowed to contribute to the SNP weights.

Linear mixed models (LMMs) have recently emerged as a powerful and effective approach for
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association mapping in samples with population structure as well as family structure or cryptic

relatedness (Yang et al., 2014). LMMs have previously been evaluated in samples with subtle

population structure (Price et al., 2010; Wu et al., 2011) and have been shown to have appro-

priate control over type-I error. We evaluated the performance of LMMs in simulation studies

where sample individuals have ancestry derived from divergent populations, and our simulation

results showed that widely used LMM approaches for association mapping, such as EMMAX and

GEMMA, can have an increase in type-I error due to under-correction of SNPs with moderate to

high differentiation in allele frequencies between ancestral population, as well as a loss of power due

to overcorrection of SNPs with little to no differentiation. This result illustrates potential problems

with existing LMM approaches for association mapping in recently admixed populations, where a

large proportion of SNPs are expected to have substantial allele frequency differences between the

underlying ancestral populations. For example, African Americans have genetic contributions from

European and African ancestral populations, and in a comparative analysis of allele frequencies at

1.4 million autosomal SNPs for European (CEU) and West African (YRI) samples in HapMap, we

found that approximately 10% of the SNPs were highly differentiated, with allele frequency differ-

ences greater than 0.4, while 26% were moderately differentiated, with allele frequency differences

between 0.2 and 0.4. Our simulation studies also illustrated that including principal components

from PC-AiR as fixed effects in LMMs resulted in appropriate calibration of association test statis-

tics at all SNPs in related admixed samples, protecting against inflated type-I error at highly and

moderately differentiated SNPs.

The challenges of inferring genetic ancestry in related samples have been well documented

(Patterson et al., 2006; Price et al., 2010). To our knowledge, PC-AiR is the first method to

provide robust population structure inference and correction in the presence of known or cryptic

relatedness without requiring reference population panels, external SNP loadings, or genealogical

information on the sample individuals. We have implemented the PC-AiR method in an R package

that is freely downloadable (see Web Resources).
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An implementation of PC-AiR in the R language can be found at:

http://faculty.washington.edu/tathornt/software/index.html

Figure Titles and Legends

Figure 1. Comparison of PC-AiR and EIGENSOFT for Data Simulated under Relationship

Configuration I and Population Structure I with FST “ 0.01.

(A and B) Scatter plots of principal components 1 and 2 from PC-AiR (A) and EIGENSOFT (B),

respectively.

(C and D) Scatter plots of the simulated population 1 ancestry proportions vs. coordinates along

principal component 1 for each individual from PC-AiR (C) and EIGENSOFT (D), respectively.

(A-D) The color of each point represents that individual’s true ancestry; red for population 1, blue

for population 2, and an intermediate color for an admixed individual.

(A and C) A dot represents an individual in the mutually unrelated ancestry representative set,

and a plus represents an individual in the related set.

(B and D) A circle represents an individual not in a pedigree, and a triangle represents an individual

who is a member of a pedigree.

(E) Barplot of the efficiency of PC-AiR and EIGENSOFT. Each bar represents the proportion of

ancestry explained (R2 value) by each principal component from PC-AiR (gold) and EIGENSOFT

(black), until a cumulative R2 of 0.99 is achieved.
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Figure 2. Comparison of Population Structure Inference Results for Data Simulated under Rela-

tionship Configuration I and Population Structure II with FST “ 0.1.

Scatter plots of the simulated population 1 ancestry proportions for each individual are plotted

against: (A) coordinates along principal component 1 from PC-AiR, (B) coordinates along princi-

pal component 1 from EIGENSOFT, (C) coordinates along dimension 1 from MDS, and (D) the

estimated ancestry proportions from ADMIXTURE for the inferred population with the highest

R2. The color of each point represents that individual’s true ancestry; red for population 1, blue

for population 2, and an intermediate color for an admixed individual.

(A) A dot represents an individual in the mutually unrelated ancestry representative set, and a

plus represents an individual in the related set.

(B-D) A circle represents an individual not in a pedigree, and a triangle represents an individual

who is a member of a pedigree.

Figure 3. Comparison of Population Structure Inference for the HapMap MXL Sample.

(F) Individual ancestry estimates for 86 HapMap MXL samples from a supervised individual an-

cestry analysis with ADMIXTURE. Each individual is represented by a vertical bar; estimated

European (HapMap CEU), African (HapMap YRI), and Native American (HGDP samples from

the Americas) ancestry proportions are shown in blue, red, and green, respectively.

Scatter plots of the European ancestry proportions estimated from a supervised individual ancestry

analysis with ADMIXTURE for each individual are plotted against: (A) coordinates along princi-

pal component 1 from PC-AiR, (B) coordinates along principal component 1 from EIGENSOFT,

(C) coordinates along principal component 1 from FamPCA, (D) coordinates along dimension 1

from MDS, and (E) the estimated ancestry proportions from an unsupervised analysis with AD-

MIXTURE for the inferred population with the highest R2. The color of each point represents that

individual’s ancestry as estimated from the supervised individual ancestry analysis with ADMIX-

TURE; blue for European, green for Native American, and an intermediate color for an admixed

individual. Individuals who are members of MXL Extended Family 1 or 2 are plotted as triangles

or squares, respectively, and remaining individuals are plotted as circles.

Figure 4. Comparison of Population Structure Inference for the HapMap MXL and ASW Com-

bined Sample.

Scatter plots of the top two axes of variation from PC-AiR (A), EIGENSOFT (B), FamPCA (C),

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2014. ; https://doi.org/10.1101/008276doi: bioRxiv preprint 

https://doi.org/10.1101/008276
http://creativecommons.org/licenses/by/4.0/


31

and MDS (D). The color of each point represents that individual’s ancestry as estimated from a su-

pervised individual ancestry analysis with ADMIXTURE; blue for European (HapMap CEU), red

for African (HapMap YRI), green for Native American (HGDP samples from the Americas), and

an intermediated color for an admixed individual. Individuals who are members of MXL Extended

Family 1 or ASW Extended Family 1 are plotted as triangles or stars, respectively, and remaining

individuals are plotted as circles.

Figures

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2014. ; https://doi.org/10.1101/008276doi: bioRxiv preprint 

https://doi.org/10.1101/008276
http://creativecommons.org/licenses/by/4.0/


32

Figure 1: Comparison of PC-AiR and EIGENSOFT for Data Simulated under Relationship
Configuration I and Population Structure I with FST “ 0.01
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Figure 2: Comparison of Population Structure Inference Results for Data Simulated under Rela-
tionship Configuration I and Population Structure II with FST “ 0.1
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Figure 3: Comparison of Population Structure Inference for the HapMap MXL Sample
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Figure 4: Comparison of Population Structure Inference for the HapMap MXL and ASW Com-
bined Sample
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Tables

Table 1: Proportion of Ancestry Explained (R2) by PC-AiR and EIGEN-
SOFT in Simulation Studies

Relationship Population
FST

PC-AiR EIGENSOFT
Configuration Structure da“ 1 d “ 1 d “ 4 d “ 10 d˚b

I

I
0.01 0.993 0.133 0.145 0.165 51
0.1 0.999 0.977 0.977 0.993 10
0.2 0.999 0.995 0.995 0.999 1

II
0.01 0.949 0.302 0.360 0.402 51
0.1 0.998 0.741 0.741 0.755 41
0.2 0.999 0.882 0.882 0.914 21

III
0.01 0.999 0.832 0.832 0.832 22
0.1 0.999 0.998 0.998 0.998 1
0.2 0.999 0.999 0.999 0.999 1

II

I
0.01 0.994 0.870 0.871 0.872 21
0.1 0.999 0.999 0.999 0.999 1
0.2 0.999 0.999 0.999 0.999 1

II
0.01 0.942 0.259 0.313 0.320 21
0.1 0.998 0.983 0.983 0.984 21
0.2 0.999 0.996 0.996 0.996 1

III
0.01 0.999 0.990 0.990 0.990 1
0.1 0.999 0.999 0.999 0.999 1
0.2 0.999 0.999 0.999 0.999 1

III

I
0.01 0.990 0.933 0.933 0.936 21
0.1 0.999 0.999 0.999 0.999 1
0.2 0.999 0.999 0.999 0.999 1

II
0.01 0.922 0.220 0.230 0.250 21
0.1 0.997 0.992 0.992 0.993 1
0.2 0.999 0.998 0.998 0.998 1

III
0.01 0.998 0.995 0.995 0.995 1
0.1 0.999 0.999 0.999 0.999 1
0.2 0.999 0.999 0.999 0.999 1

a d denotes the number of axes of variation included as predictors in the linear regression
model to determine the R2 value for either PC-AiR or EIGENSOFT.
b d˚ is the number of axes of variation from EIGENSOFT that are required to either match

the R2 value of the first axis of variation from PC-AiR or achieve an R2 of 0.99, whichever
is smaller.
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Table 2: Genomic Control λGC for Association Testing Simulation Study

Method Highlya Moderatelyb Lowlyc

Differentiated Differentiated Differentiated

Linear Regression 3.16 1.82 1.25
EIGENSTRAT with 10 PCs 1.19 1.12 1.07
Linear Reg. + 1 PC from PC-AiR 1.04 1.05 1.05
GEMMA 1.35 1.10 0.95
EMMAX 1.32 1.08 0.94
EMMAX + 10 PCs from EIGENSOFT 1.07 1.02 0.98
EMMAX + 1 PC from PC-AiR 1.00 1.00 1.00
a Highly differentiated SNPs have allele frequency differences ě 0.4 between the two ancestral populations.
b Moderately differentiated SNPs have allele frequency differences ă 0.4 and ě 0.2 between the two ancestral

populations.
c Lowly differentiated SNPs have allele frequency differences ă 0.2 between the two ancestral populations.

Table 3: Population Structure Inference Results for HapMap MXL and ASW

R2 Values

Ancestry da PC-AiR EIGENSOFTb MDSc FamPCAd ADMIXTUREe

MXL Sample

European
1 0.975 0.664 0.751 0.649 0.640
4 - 0.914 0.935 0.969 -
10 - 0.924 0.943 0.970 -

Native American
1 0.977 0.661 0.748 0.651 0.633
4 - 0.908 0.929 0.968 -
10 - 0.911 0.932 0.969 -

MXL + ASW Sample

European
2 0.988 0.858 0.892 0.862 0.615
4 - 0.868 0.899 0.878 -
10 - 0.963 0.970 0.987 -

Native American
2 0.995 0.953 0.962 0.951 0.866
4 - 0.958 0.967 0.961 -
10 - 0.987 0.989 0.996 -

African
2 0.999 0.996 0.997 0.997 0.990
4 - 0.996 0.997 0.997 -
10 - 0.999 0.999 0.999 -

Population structure inference results from each method were compared to ancestry estimates from a supervised
individual ancestry analysis with ADMIXTURE including reference population panels.
a d denotes the number of axes of variation included as predictors in the linear regression model to determine the
R2 value for each of the methods.
b PCA was performed with the EIGENSOFT software.
c MDS was implemented in the PLINK software.
d FamPCA is the Zhu et al. (2008) method as implemented in the KING (Manichaikul et al., 2010) software.
e An unsupervised ADMIXTURE analysis was conducted without including reference population panels. FRAPPE

results were identical to ADMIXTURE.
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Appendix

Under general population genetic modeling assumptions, we show that for an outbred unrelated

pair of individuals i and j, the pκij estimator in Equation (1) is a consistent estimator for the

quantity

´1
2pai ´ ajq

TΣKpai ´ ajq

1´ 1
2

”

aTi ΣKai ` aTj ΣKaj

ı . (A1)

An equivalent expression of the estimator pκij from Equation (1) is

pκij “
1

2

¨

˝1´

1
|Sij |

ř

sPSij

´

g2is ´ 2gisgjs ` g
2
js

¯

1
|Sij |

ř

sPSij

´

1rgis“1s ` 1rgjs“1s

¯

˛

‚. (A2)

Under our population genetic modeling assumptions, the vector of subpopulation-specific allele

frequencies, ps, has the properties Erpss “ ps1 and Covrpss “ psp1 ´ psqΣK for all s P S. We

assume that the ancestral allele frequencies, ps for s P S, are independent and identically distributed

(i.i.d.) random variables from some unspecified distribution on r0, 1s. Under this assumption, the

unconditional expectation of each of the random variables in Equation (A2) is the same for every

choice of s P S, and if we assume that genotypes at different SNPs are independent, then

pκij Ñ
1

2

˜

1´
Erg2iss ´ 2Ergisgjss ` Erg2jss
Er1rgis“1ss ` Er1rgjs“1ss

¸

(A3)

as |S| Ñ 8. Note that the independence of SNPs assumption can be relaxed for Equation (A3),

and a sufficient condition would be that the effective number of independent SNPs tends to 8. In

what follows, we derive each of the expectations in Equation (A3) conditional on ps, and we show

that the limiting value of pκij is the value given in Equation (A1), which does not depend on ps,

implying that the i.i.d. assumption can also be relaxed.

Recall that gis is the number of copies of the reference allele that individual i has at SNP s,

and thus gis can have a value of 0, 1, or 2. As in Thornton et al. (2012), we define the quantity µis

to be one half of the expectation of gis, conditional on individual i’s ancestry, ai, and the vector of

subpopulation-specific allele frequencies, ps, at SNP s:

µis ”
1

2
Ergis|ai,pss “ aTi ps “

K
ÿ

k“1

aki p
k
s . (A4)

The quantity µis can be interpreted as the individual-specific allele frequency for individual i at
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SNP s, and it is a linear combination of the subpopulation-specific allele frequencies weighted

by individual i’s autosomal ancestry proportions from each of the ancestral subpopulations. In

Thornton et al. (2012), both ai and ps are treated as fixed quantities. Here, we similarly treat the

ancestry vectors as fixed, and we implicitly condition on ai and aj throughout what follows, but we

allow ps to be a random vector for all s P S. Under our weak basic genetic modeling assumptions,

we calculate the following:

Erµiss “ EraTi pss “ aTi Erpss “ paTi 1qps “ ps (A5)

Erµisµjss “ E

«

K
ÿ

k“1

aki p
k
s

K
ÿ

k1“1

ak
1

j p
k1

s

ff

“

K
ÿ

k“1

K
ÿ

k1“1

aki a
k1

j Erpkspk
1

s s

“

K
ÿ

k“1

K
ÿ

k1“1

”

aki a
k1

j ppsq
2 ` aki a

k1

j

´

Erpkspk
1

s s ´ ppsq
2
¯ı

“ ppsq
2
K
ÿ

k“1

aki

K
ÿ

k1“1

ak
1

j `

K
ÿ

k“1

K
ÿ

k1“1

´

aki a
k1

j Covrpks , p
k1

s s

¯

“ ppsq
2 ` psp1´ psqa

T
i ΣKaj (A6)

The expectation Erg2iss can be obtained directly based on the genotype probabilities for indi-

vidual i conditional on ps, where the conditional probabilities that individual i has genotype 0, 1,

and 2 at SNP s are p1´ µisq
2, 2µisp1´ µisq, and µ2is, respectively. Thus we obtain

Erg2iss “ ErErg2is|psss

“ Er2µisp1´ µisq ` 4µ2iss

“ 2Erµiss ` 2Erµ2iss

“ 2ps ` 2ppsq
2 ` 2psp1´ psqa

T
i ΣKai. (A7)

To obtain Er1rgis“1ss, we note that the expectation of an indicator function is just the probability
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of the event it indicates, so

Er1rgis“1ss “ ErEr1rgis“1s|psss

“ ErPrgis “ 1|psss

“ Er2µisp1´ µisqs

“ 2psp1´ psqr1´ aTi ΣKais. (A8)

The final expectation that we must obtain for Equation (A3) is Ergisgjss. Since we are only

considering unrelated individuals here, the genotype values gis and gjs are independent conditional

on the vector of subpopulation allele frequencies, so Ergisgjs|pss “ Ergis|pssErgjs|pss. Therefore,

we can calculate

Ergisgjss “ ErErgisgjs|psss

“ ErErgis|pssErgjs|psss

“ 4Erµisµjss

“ 4ppsq
2 ` 4psp1´ psqa

T
i ΣKaj (A9)

Finally, plugging the expectations given in Equations (A7), (A8), and (A9) into Equation (A3), we

have

pκij Ñ
1

2

˜

1´
Erg2iss ´ 2Ergisgjss ` Erg2jss
Er1rgis“1ss ` Er1rgjs“1ss

¸

“
1

2

¨

˝1´
2psp1´ psq

”

2` aTi ΣKai ´ 4aTi ΣKaj ` aTj ΣKaj

ı

2psp1´ psqr2´ aTi ΣKai ´ aTj ΣKajs

˛

‚

“
1

2

˜

r2´ aTi ΣKai ´ aTj ΣKajs ´ r2` aTi ΣKai ´ 4aTi ΣKaj ` aTj ΣKajs

2´ aTi ΣKai ´ aTj ΣKaj

¸

“
4aTi ΣKaj ´ 2aTi ΣKai ´ 2aTj ΣKaj

4´ 2aTi ΣKai ´ 2aTj ΣKaj

“
´1

2pai ´ ajq
TΣKpai ´ ajq

1´ 1
2 ra

T
i ΣKai ` aTj ΣKajs

; (A10)

the limiting value of pκij that is given in Equation (A1). Note that the limiting value is not a

function of ps, and thus this convergence holds for any random ps.
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