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Abstract 14 

Background 15 

 The identification of modules or communities of related variables is a key step in the 16 

analysis and modelling of biological systems. Many module identification procedures are 17 

available, but few of these can determine the module partitions best fitting a given dataset in 18 

the absence of previous information, in an unsupervised way, and when the links between 19 

variables have different weights. Here I propose such a procedure, which uses the stability 20 

under bootstrap resampling of different alternative module structures as a criterion to identify 21 

the structure best fitting to a set of variables. In its present implementation, the procedure 22 

uses linear correlations as link weights. 23 

Results 24 
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 2

 Computer simulations show that the procedure is useful for problems involving 1 

moderate numbers of variables, such as those commonly found in gene regulation cascades or 2 

metabolic pathways, and also that it can detect hierarchical network structures, in which 3 

modules are composed of smaller sub modules. The procedure becomes less practical as the 4 

number of variables increases, due to increases in processing time.  5 

Conclusions 6 

The proposed procedure may be a valuable and robust network analysis tool. Because it is 7 

based on comparing the amount of evidence for different module partitions structures, this 8 

procedure may detect the existence of hierarchical network structures. 9 

 10 

 11 

 12 

Keywords: network structure, hierarchical communities, weighted networks, unsupervised 13 

clustering, modularity. 14 

 15 

 16 

 17 

Background 18 

 Complex systems are often modelled and analysed as networks of related elements 19 

(nodes) connected by edges representing the relationship between them [1]. In Biology, many 20 

of these networks show a modular structure: nodes can be grouped into communities or 21 

modules so that there is a dense web of edges among nodes in the same module and a thin 22 

one between nodes in different modules [2-5]. Such structure, or modularity, has been 23 

observed in gene expression networks [6, 7], protein-protein interactions [8], metabolic [9] 24 

[10] and developmental [11, 12] pathways, and species interactions in ecosystems [13, 14].  25 
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 1 

 The building of models for the study of network structure, function, regulation or 2 

evolution may require the use of module identification (also called community detection) 3 

procedures. Many such procedures have been proposed. Some are confirmatory, requiring a 4 

prior knowledge of module demarcations or at least of the number of modules present (e.g., 5 

[15, 16]). Other procedures (e.g., [17-23]) are exploratory and unsupervised, making no 6 

assumptions about modules. They use a previously known set of edges between nodes to 7 

identify the partitions among nodes that maximize some criterion of modular structure. 8 

Typically, they do not consider variation in the strength of the links between different nodes, 9 

i.e., they are unweighted. This may of course entail a loss of relevant information, as the 10 

heterogeneity in edge weights may be fundamental for the understanding of the whole 11 

network [24]. There are finally exploratory, unsupervised procedures considering different 12 

weights for each edge. In this category are the procedures of Rosvall and Bergstrom [25], 13 

based on simulated annealing and Blondel et al. [26] based on the maximization of 14 

modularity, defined as the number of edges falling within modules minus the number 15 

expected if edges were placed at random [19]. These two procedures are fast and applicable 16 

to very large networks [27], but they do not take into account the degree of precision in the 17 

estimation of these edges’ weights. This may be not critical when the focus is on the 18 

identification of large-scale patterns in big data sets, but might become an important 19 

limitation in smaller problems as those typically found in  the analysis of gene regulation 20 

pathways, where the basic aim is to determine the location of variables into particular 21 

modules. In these situations it can be important to consider the robustness of module 22 

allocations, which would depend heavily on the precision in the estimation of edges weights 23 

[24]. 24 

 25 
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 4

 Here I propose a new procedure combining a clustering algorithm with bootstrap 1 

resampling to identify modules of correlated variables measured in the same individuals. In 2 

cluster analysis terminology, these modules would be R-mode (because it is the variables, not 3 

the measured individuals that are being grouped [28]) variational (because the edges consist 4 

on correlations between the variables, which are represented as nodes [29]) clusters. The 5 

procedure takes into account that the correlations constituting the network edges may vary 6 

and their value may have been estimated with limited precision. I use computer simulation to 7 

show that it is superior to the procedure of Blondel et al. in the identification of variational 8 

modules in data sets with a moderate number of variables, and also that it can detect the 9 

existence of hierarchical module structures. 10 

 11 

Implementation 12 

 For an n-variables dataset, a clustering method (in the present implementation of the 13 

procedure, k-means clustering, based on the R kmeans function) is applied to obtain partitions 14 

into 2 to n-1 clusters. A vector of variables’ coincidences c of length (n2-n)/2 (i.e., the number 15 

of non-redundant pair wise combinations of variables) is obtained for each of these n-2 16 

cluster analyses, with values of 1 if the two corresponding variables were assigned to the 17 

same cluster in that analysis and of 0 otherwise. Now the stability of each of the n-2 analyses 18 

is tested by bootstrap resampling of the individuals’ observations in the original dataset. For 19 

each resample, the above n-2 cluster analyses are done and the corresponding c vectors 20 

obtained. These vectors are then compared across bootstrap samples.  21 

 22 

 If a real, detectable module structure existed in the data, bootstrap-replicated cluster 23 

analyses considering the real number of modules-clusters would tend to allocate variables in 24 

the same clusters, so that the variance across resamples would be low for each element in c. 25 
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 5

A given pair of variables would tend to be either in the same cluster, the corresponding c 1 

value being one in most of resamples, or in different clusters, the c tending to be zero. In 2 

analyses considering wrong numbers of clusters -or analyses of data with no community 3 

structure-, each bootstrap replicate would result in clusters containing random combinations 4 

of variables, and the c values variance across bootstraps would be higher. In the procedure 5 

proposed here, the variances between resamples are calculated for each element of c and 6 

number of clusters, and the number of cluster partitions with the minimum value for the sum 7 

of these (n2-n)/2 variances (i.e., that resulting in the most stable c vectors) is selected as the 8 

best estimate of community structure in the original data. Figure 1 illustrates the basic 9 

framework for this approach. The sum of variances can be used to compare the results 10 

obtained for the different numbers of clusters. 11 

 12 

 It must be taken into account however that the distribution of this sum of variances is 13 

not independent of the number and size of clusters considered in the successive n-2 analyses. 14 

To correct for this effect, the sums are made relative to their expected values in a null 15 

situation with the same number of clusters and a lack of correlation between variables. The 16 

result is the variance criterion used below. The null situation values are obtained by 17 

randomizing the observed variable values independently across individuals. Thus, while the 18 

univariate distributions are maintained, any correlation between variables disappears. 19 

 20 

 I studied the performance of the proposed method in simulated datasets of grouped 21 

variables xij :  22 

  23 

xij = ci + eij 24 

 25 
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 6

 where ci was common to all x variables in module i and caused correlation among 1 

them, and eij was specific to each x. The considered datasets differed in number of variables, 2 

distribution of module sizes, total number of observations, correlation between variables in 3 

the same module and variables distributions (Table 1).  4 

 5 

 I studied the ability of the proposed method to detect hierarchical correlation 6 

structures (i.e., the presence of sub-modules within modules) by simulating datasets with 7 

variables: 8 

 9 

xijk = gi + sij + eijk 10 

 11 

 where gi, sij and eijk are module, sub-module and variable-specific effects. 12 

 13 

 14 

Results and discussion 15 

 In the non-hierarchical cases, the proposed procedure was able to identify the correct 16 

number of modules even for small size samples and moderate correlations between variables 17 

in the same module (Fig. 2). Thus, a sample size of 25 (Fig. 2e) was enough to easily identify 18 

two modules of four variables having a correlation of 0.375, and modules of variables having 19 

a correlation of 0.231 were easily detected using samples of size 100 (Fig. 2d). The 20 

performance of the procedure did not obviously depend on module number and size, the 21 

homogeneity of these sizes (Fig. 2g, 2h) or the variables’ distributions (Fig. 2i, 2j). The less 22 

favourable situations were those with the lowest correlation within modules (0.167, Fig. 2c) 23 

and the lowest number of variables (four variables, Fig. 2k). In the latter case, the variance 24 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 2, 2014. ; https://doi.org/10.1101/008656doi: bioRxiv preprint 

https://doi.org/10.1101/008656
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

criterion was clearly under the corresponding value for the null case, but the differences 1 

between the two and the three clusters solutions were very slight. 2 

 3 

The proposed procedure detected was able to detect hierarchical modular structures, 4 

especially when the hierarchy was regular, i.e., the pattern of subdivision was the same in all 5 

clusters (Fig. 3a, 3d and 3e). These regular partitions appeared as local minima in the sum of 6 

variances profile: two and four clusters in Figure 3a; two, four and eight clusters in Figure 3d. 7 

The procedure failed in the case of four modules and eight sub-modules (Fig. 3e) in which 8 

there the second local minimum was found for nine clusters, instead of eight. This suggests 9 

that correct community identification might require larger sample sizes as datasets become 10 

less structured and the number of independent modules increases.  11 

 12 

 Defining a single correct result becomes harder for less regular partitions. For 13 

example, in Figure 3b two or three clusters could be identified. While the partition into two 14 

modules was easily identified, that into three modules resulted in a local maximum instead of 15 

a minimum. This maximum disappeared when the correlation between variables in the large 16 

module in the right of the diagram increased (Fig. 3c), which, not unexpectedly, suggests that 17 

community detection is easier when edges within these communities are strong. In any case, 18 

the low criterion values for two and three clusters seen in Figure 3c would not be 19 

unambiguous evidence of hierarchical clustering, because the criterion values neighbouring a 20 

minimum can be also low in non-hierarchical situations (see for example Fig. 1h and Fig. 1k). 21 

 22 

 Figures 3e and 3f show many consecutive low values for the variance criterion. This 23 

could be in relation with the fact that many partitions are possible in these cases. For 24 

example, partitions into four, five, six or eight clusters could be possible in Figure 3e. 25 
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However, this could not explain all results. The criterion values remained low beyond eight, 1 

the last “correct” number of clusters. In any case, a comparison of Figures 2 and 3 suggests 2 

that profiles showing several points of inflexion could be indicators of hierarchical modular 3 

structures. 4 

 5 

 I made multi-sample simulations to compare the proposed procedure with that of 6 

Blondel et al. (for the latter I used the R CRAN package igraph [29]). Neither procedure ever 7 

failed to identify two modules for sample sizes of one hundred and moderate correlations of 8 

0.375 (Fig. 4 2C3). The Blondel et al. procedure was somewhat better than that proposed here 9 

when the correlation was reduced to 0.167 (Fig. 4 2C1). However, it was clearly worse in the 10 

case of four modules, as it failed to find four clusters as the most frequent result when the 11 

correlation was 0.375 (Fig. 4 4C3) and completely failed to detect them when the correlation 12 

was 0.167 (Fig. 4 4C1). In the same situations, the right solution of four clusters was that 13 

most frequently found by the proposed procedure. 14 

 15 

 In the hierarchical cases, the Blondel et al. procedure found only two clusters in an 16 

overwhelming majority of replicates, whereas the proposed procedure found two and four 17 

clusters as the most frequent solutions. For individual replicates, the proposed procedure 18 

would detect hierarchical situations as multiple minima for the variance criterion, as in Figure 19 

3a. The proposed procedure was able to detect the hierarchical structure in most replicates 20 

when the correlation was moderate (Fig. 4 2/2C3, in italics), but only in a minority when the 21 

correlation was low (Fig. 4 2/2C1). 22 

 23 

 The proposed procedure was better than the Blondel et al. procedure in most 24 

simulations made here, especially for the cases involving the smallest module sizes. The low 25 
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performance of the Blondel et al. procedure was likely related to the modularity-based 1 

methods’ “resolution limit in community detection”. This limit is most likely to occur when 2 

the number of module internal links is of the order of the square root of twice the total 3 

number of links in the network or smaller (Fortunato and Barthelemy 2007), i.e., when 4 

modules are small. The proposed procedure seems to be unaffected by that limit, since it can 5 

easily detect two-variables modules (see Fig. 1b). However, the use of bootstrap resampling 6 

by this procedure might command too many computational resources to be practical for the 7 

analysis of large sets of variables, as those in genome-wide or human social networks. Thus, 8 

the proposed procedure could be a useful complement for low computational complexity, 9 

large-scale procedures such as that of Blondel’s et al., especially when small modules are 10 

involved. The two procedures would not be equivalent for any problem size, however, 11 

because they do not use the same kind of information. Instead of starting with a previously 12 

known set of edge weights, the procedure proposed here simultaneously estimates both the 13 

weights and the community structure. The approach of measuring the consistency of a found 14 

community structure was already proposed by Duch and Arenas [21]. They used an extremal 15 

optimization algorithm that could result in different network partitions in different runs, so 16 

that they could calculate the fraction of times a pair of nodes was allocated to the same 17 

module. However, they did not use consistency as a criterion to identify the optimum 18 

community structure among a set of possible structures, as done here. 19 

 20 

 Figure 2 considers only from 2 to n-1 as possible cluster numbers. This is because 21 

considering coincidences in module allocation (and it could be argued that the very idea of 22 

clustering) does not make sense when there are n clusters of size one (and therefore no 23 

coincidences) or there is a single cluster including all variables (total coincidence). However, 24 

because the proposed procedure compares the obtained results with those expected under the 25 
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absence of community structure, it is possible to detect this absence: if none of the 2 to n-1 1 

partitions were below the lower 2.5 percentile of the null distribution. In such a case, it would 2 

be concluded that there is no community structure. Thus, the proposed procedure does not 3 

only provide an estimate of the number of modules, but also of the reliability of that estimate 4 

and of the overall degree of structure in the data. It also makes it possible to compare the 5 

reliability of alternative solutions. 6 

 7 

 It must be noted that, while being able to detect some hierarchical modular structures, 8 

the proposed procedure does not provide a formal diagnostic for such structures. As seen in 9 

the results section, some of the variance criterion results could correspond both to 10 

hierarchical and no-hierarchical structures. These structures are more easily detected when 11 

the hierarchy is regular, in the sense that variables groups are composed of the same number 12 

of subgroups, of the same size and the same correlation between variables. This tends to 13 

result in separate minima for the variance criterion, which is characteristic of hierarchical 14 

structures. 15 

 16 

 The present formulation of the proposed procedure uses correlations as distance 17 

measures between variables and K-means as the clustering algorithm, but its approach of 18 

evaluating alternative partitionings based on measuring its consistency in the face of 19 

resampling would be compatible in principle with any combination of distance definitions 20 

and clustering algorithms.  21 

 22 

Conclusions 23 
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The proposed procedure could be a useful tool for the analysis of networks of small to 1 

moderate size, making it possible to get an unsupervised estimate of the number of clusters 2 

present. 3 

 4 

 5 

 6 

Availability and requirements 7 

 BoCluSt is available as an R function in Sourceforge: 8 

http://sourceforge.net/projects/boclust/files/BoCluSt.txt/download 9 

 10 
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 8 

 9 

 Figure 1. Community structure detection in a four variables (A to D) example. Cluster 10 

analyses considering two (up) and three clusters (down) are applied to four resamples (Rs) 11 

drawn from the same original data set. In each resample, each pair of variables is given a 12 

value of one if the two variables were allocated to the same cluster and zero otherwise. When 13 

the number of clusters considered in the analysis corresponds to the true community structure 14 

in the data (the two clusters case in this example), variables tend to be allocated to the same 15 

clusters in different resamples (Co – cluster composition). Thus, the above 0/1 values 16 

recording the presence/absence of coincidences have low variances (in cursive) when 17 

calculated within pairs of variables (columns in the arrays). Variances increase when other 18 

cluster numbers are considered (three in this example) because allocations become less stable 19 

under resampling. The sum of c variances (on a grey background) will be minimum for the 20 

number of clusters best fitting the true community structure.  21 

 22 

 Figure 2. Values for the variance criterion (circles) in the cases listed in Table 1 (a 23 

single, randomly taken simulated data set per case, with 100 randomized null data sets and 24 

500 bootstrap resamples per data set), along with the lower 2.5 percentile (simple lines) for 25 
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the corresponding null situation of no correlation between variables. Grey circles mark the 1 

value for the true number of modules in the original sample. 2 

 3 

 Figure 3. Analysis of hierarchical communities (a single, randomly taken simulated 4 

data set per case, with 100 randomized null data sets and 500 bootstrap resamples per data 5 

set). The graphs (left) show the variance criterion for all possible numbers of clusters along 6 

with the lower 2.5 percentile for the corresponding null situation of no correlation between 7 

variables (simple lines). Grey circles mark correct clustering results for regular partitions. 8 

The diagrams to the right represent the different situations. The grayscale indicate the value 9 

of the correlation between variables (triangles) in the same ellipse. These were 0.273 and 10 

0.545 in the eight variables cases (a – c), and 0.214, 0.429 and 0.643 in the 16 variables cases 11 

(d to f). 12 

 13 

 Figure 4. Frequency of numbers of clusters detected in computer simulations (1000 14 

replicates, eight variables). 2C and 4C are cases with two and four variable modules 15 

respectively, and 2/2C, hierarchical situations of two modules each divided in two sub-16 

modules. The numbers to the right of the Cs mark the variance of components c, common to 17 

variables in the same module or sub-module: 1, variance = 0.01; 3, variance = 0.03 (the 18 

variance of component e was = 0.05 in all cases). Circles and squares show results for the 19 

proposed and the Blondel et al. procedures respectively. Grey symbols mark the value for the 20 

true number(s) of clusters. Results for one cluster are given in the x axe to ease the graphs’ 21 

interpretation. This could never be the number of clusters detected because the results for the 22 

simulated and randomized cases are always identical in that case: all variables in the same 23 

and only cluster. The smaller font values are the numbers of replicates finding correct and 24 

significant results. In the hierarchical cases, this is two significant minima in the variance 25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 2, 2014. ; https://doi.org/10.1101/008656doi: bioRxiv preprint 

https://doi.org/10.1101/008656
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

criterion for two and four clusters with the proposed procedure. In italics, number of 1 

replicates finding the same two minima, whether significant or not. 2 

 3 

 4 

 5 

Table 1. Cases considered in Figure 2.  6 

These differed in number and distribution of variables, number and sizes of modules (there 7 

were as many modules as sizes listed), sample sizes, variables distributions and variance of 8 

the components c common to variables in the same correlated group. In all cases, every 9 

variable included an independent component e with variance = 0.050. The correlations 10 

corresponding to the three considered variances of c were 0.375, 0.231 and 0.167. * c was 11 

generated as a beta variable with parameters α = 0.246 and β = 2, and e (see main text) as a 12 

beta variable with α = 0.625 and β = 2,using R function rbeta; the resulting x, c and e 13 

distributions were markedly asymmetric. ** c was generated as a uniform variable with range 14 

0 to 0.600 and e as a uniform variable with range 0 to 0.775 using R function runif. 15 

Case Variables 

number 

Modules 

sizes 

Sample size Components 

distribution 

v(c) 

a 8 4, 4 100 Normal 0.030 

b 8 2, 2, 2, 2 100 Normal 0.030 

c 8 4, 4 100 Normal 0.010 

d 8 4, 4 100 Normal 0.015 

e 8 4, 4 25 Normal 0.030 

f 8 4, 4 50 Normal 0.030 

g 8 1,1,1,1,1,1,2 100 Normal 0.030 

h 8 5, 2, 1 100 Normal 0.030 
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i 8 4, 4 100 Beta 0.030* 

j 8 4, 4 100 Uniform 0.030** 

k 4 2, 2 100 Normal 0.030 

l 16 8, 8 100 Normal 0.030 

 1 
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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