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1 Abstract

1.1 Motivation:
Circularized Chromosome Conformation Capture (4C) is a powerful technique
for studying the spatial interactions of a specific genomic region called the “view-
point” with the rest of the genome, both in a single condition or comparing
different experimental conditions or cell types. Observed ligation frequencies
show a strong, regular dependence on genomic distance from the viewpoint,
on top of which specific interaction peaks are superimposed. Here, we address
the computational task to find these specific interactions and to detect changes
between interaction profiles of different conditions.

1.2 Results:
We model the overall trend of decreasing interaction frequency with genomic
distance by fitting a smooth monotonously decreasing function to suitably trans-
formed count data. Based on the fit, z-scores are calculated from the residuals,
with high z scores being interpreted as peaks providing evidence for specific
interactions. To compare different conditions, we normalize fragment counts
between samples, and call for differential contact frequencies using the statisti-
cal method DESeq2 adapted from RNA-Seq analysis.

1.3 Availability and Implementation:
A full end-to-end analysis pipeline is implemented in the R package FourCSeq
available at www.bioconductor.org.

1.4 Contact:
felix.klein@embl.de, whuber@embl.de
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2 Introduction
Circularized Chromosome Conformation Capture (4C) couples the low-throughput
Chromosome Conformation Capture (3C) technique (Dekker et al., 2002) for
studying chromatin–chromatin interactions with high throughput sequencing (Si-
monis et al., 2006; Stadhouders et al., 2013). 4C detects the contacts of a chosen
viewpoint with, in principle, the entire genome. The 4C protocol consists of six
main steps (Stadhouders et al., 2013). First, the chromatin is cross-linked with
formaldehyde to fix DNA-protein complexes, thereby capturing DNA sequences
that are in close spatial proximity. In the next step, the cross-linked chro-
matin is digested with a restriction enzyme. In the third step, the fragment
ends from the digestion treatment are ligated under dilute conditions to favor
intra-complex ligation, ligating DNA sequences that have been in close spatial
proximity. After this, the cross-linking is reversed, followed by a second round of
digestion with a different restriction enzyme to obtain smaller DNA molecules.
These molecules are then circularized and PCR amplified. The resulting library
is sequenced. The possibility to multiplex several viewpoints in one sequencing
library further increases the throughput.

As result, the distribution of reads from a 4C sequencing library throughout
the genome provides an estimate of the contact frequencies of the viewpoint with
the rest of the genome. Overall, the 4C signal decreases with genomic distance
from the viewpoint and reaches a constant level of noise for large distances.
Specific interactions of DNA elements sit on top of this overall trend. The
task is to extract interactions that stand out from the general trend. If 4C has
been performed on samples with different cell types, developmental stages or
experimental treatments, a possible next steps is the detection of changes in
interaction frequencies between the sample groups.

Several analysis approaches for the first step, detection of interactions, have
already been developed for 4C sequencing data. The approach by Thongjuea
et al. (2013) uses a non-parametric smoothing spline on library-size normalized
count data to estimate the signal decrease with distance to the viewpoint and
detects interactions by calculating z-scores from the residuals of this fit. Another
approach, used by van de Werken et al. (2012) and Splinter et al. (2012), is based
on either a semi-quantitative contact profile in the proximity of the viewpoint,
an empirically estimated contact background model or binary contact profile
combined with a window based enrichment and permutation analysis.

Clearly missing is a method that uses replicate information to detect con-
sistent peaks and to statistically infer changes in contact frequencies between
different conditions.

We address these needs with the following approach. We use a distance-
dependent monotonous fit to estimate the signal decay with increasing dis-
tance from the viewpoint, since the unspecific component of the signal decreases
monotonously. As input to the fit we use variance-stabilized read count data
(Anders and Huber, 2010). To detect strong interactions we calculate z-scores
from the fit residuals and associated p-values. For the comparison of different
conditions we use the methods implemented in the DESeq2 package (Love et al.,

2

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 23, 2014. ; https://doi.org/10.1101/009548doi: bioRxiv preprint 

https://doi.org/10.1101/009548
http://creativecommons.org/licenses/by-nc-nd/4.0/


2014).

Counting at

restriction

fragments

Sequencing of 

the 4C library

Demultiplexing &

primer trimming

Alignment

to reference 

genome

Variance stabilizing

transformation &

trend fitting

Identify interactions

within a sample

Call differential interactions

between sample groups

Figure 1: Overall workflow of steps described in this paper.

3 Materials and Methods

3.1 Data preprocessing
The data processing pipeline (Figure 1) starts from the reads of the 4C library.
If several 4C libraries were multiplexed, the viewpoint primer sequences and, if
present, additional barcodes, are used to demultiplex the sample and trim of the
primer sequences. For the demultiplexing and trimming of primer sequences a
Python script is included in the package. The remaining sequences are aligned
to the full reference genome using a standard alignment tool.

The analysis pipeline of our R package starts with the binary alignment/map
(BAM) files output from the alignment. The following steps are now described
in more detail.

3.1.1 Cutting the reference genome

The input to the statistical analysis is a count table, with one row for each
restriction fragment, and one column for each sample, with the table entries
indicating how many reads have been assigned to each restriction fragment in
each sample. By restriction fragment, we mean the sequences between the cut-
ting sites of the first restriction enzyme, because this first digestion defines the
resolution at which interactions can be seen in 4C. To define fragments, we cut
the reference genome in-silico using the recognition sequence of the first cutter.
Fragments are delimited by adjacent cutting sites of the first restriction enzyme.
The second restriction enzyme is used to reduce the size of the fragments for
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efficient circularization and PCR amplification. Correspondingly, fragment ends
are defined as the genomic region between the start/end position of the frag-
ment and the cutting site of the second enzyme that is closest to the start/end
position of the fragment respectively (Figure 2a).

Since mainly fragments that contain a second cutting site are efficiently
amplified by the protocol, a fragment is considered valid if it contains at least
one cutting site of the second enzyme and has long enough fragments ends. By
default, a threshold of 20 nt on the minimum length of a fragment end is used.

a) Reference based classfication

of possible fragments

first cutter

second cutter

valid/  invalid

fragment end

valid/  invalid

fragment

b) Assigning aligned sequencing 

reads to restriction fragments

viewpoint primer starting at:

first cutter second cutter

Figure 2: (a) Schematic of the rules to define valid fragments, i. e., fragments that are
used subsequently in the analysis. The pink fragment end is smaller than the defined
threshold, but since the other fragment end is valid, the fragment is kept for analysis.
The red fragment is invalid because it does not contain a cutting site of the second
restriction enzyme and is removed from the analysis.
(b) If the sequencing primer starts at the first restriction enzyme cutting site, reads
(green arrows) that start at the fragment ends and are oriented towards the fragment
middle are kept for analysis. If the sequencing primer starts at the second restriction
enzyme cutting site, reads (green arrows) that start right next to the cutting site of
the second restriction enzyme and are directed towards the ends of the fragment are
kept for analysis.

3.1.2 Mapping of primer sequences

The primer sequence of the viewpoint is mapped to the reference genome to find
the fragment that contains the viewpoint. This fragment is used to calculate the
genomic distance to fragments on the same chromosome. The distance between
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the viewpoint and a fragment is taken as the genomic distance between the
middle of the viewpoint fragment and the middle of the other fragment.

3.1.3 Mapping reads to fragment ends

To filter out non-informative reads, we use the following criteria, motivated by
the 4C protocol: Only reads that fulfill the criteria are mapped to a fragment
end. A first condition is that reads should start directly at a restriction enzyme
cutting site. Additionally, the orientation of the read at the fragment end is
important and defined by the protocol (Figure 2b). If the sequencing library was
prepared with a primer starting next to a cutting site of the first cutting enzyme,
reads should be directed to the middle of the fragment. If the primer starts next
to a cutting site of the second cutter instead, reads should be directed towards
the fragment ends. The reads mapped to both fragment ends are combined for
subsequent analysis. To check for consistency between replicates, scatter plots
of count values can be created (Figure 3).

3.2 Detecting interactions
3.2.1 Variance-stabilizing transformation

The count values usually span several orders of magnitude. If a logarithmic
transformation were used for the count values, low abundance fragments would
tend to show large standard deviations across samples. On the other hand, if
untransformed data were used, the standard deviations across samples would be
very large for high abundance fragments. This heteroscedasticity would skew the
analysis towards either the fragments very far or very close to the viewpoint.
Therefore, we use the variance-stabilizing transformation v as introduced by
Anders and Huber (2010) and implemented in the DESeq2 package (Love et al.,
2014), to transform the count kij of fragment i in sample j to v(kij). After
transformation the standard deviations show less dependence on the fragment
abundance (Figure 4)

3.2.2 Trend fitting

The 4C signal decays with genomic distance from the viewpoint and converges
towards a constant level of background. This decay trend fj(di) is fitted using
the transformed count values v(kij) as a function of the logarithm of the genomic
distance di from each fragment i to the viewpoint.

The FourC package offers two implementations for the distance dependence
fit using the smooth monotone fit function of the fda package (Ramsay et al.,
2014). First, assuming that the general trend is symmetric around the view-
point, we fit a symmetric monotone curve on the combined data from both sides.
Second, we perform a monotone fit for each side of the viewpoint.

The latter case can be used if one is interested in finding asymmetries in
the interaction profiles of a viewpoint, which might be of particular interest at
boundaries of topological domains (Dixon et al., 2012). For both methods we
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provide standard parameters that work for a wide range of data and which can
be adjusted by the user if necessary.

An example of a symmetric monotone fit is shown in Figure 5.

3.2.3 z-scores of residuals

To find specific interactions that show higher interaction frequencies than ex-
pected at a given distance from the viewpoint, we calculate z-scores from the
residuals of the fit and look for large positive z-scores. The z-scores are calcu-
lated in the following way:

zij =
v(kij)− fj(di)

σj
, (1)

where σj = madi(v(kij)− fj(di)) is a robust estimator of scale, i runs over
all fragments and j over all samples.

Using the calculated z-scores and assuming that they follow a Normal dis-
tribution under the null hypothesis, one sided p-values are calculated for each
fragment. These p-values are adjusted for multiple testing using the method of
Benjamini and Hochberg (1995).

Specific interactions can now be found by looking for fragments with large
positive z-scores and small adjusted p-values (Section 4.2).

3.3 Differences between conditions
We have observed the distance dependence of the signal to be variable between
samples and this needs to be taken into account for comparisons. Therefore, we
calculate a matrix of normalization factors nij , such that the scaled read counts
nijkij for fragment i become comparable across the samples j. To this end,
we need the normalization factors to represent the fitted distance dependence
on the scale of the raw counts. Hence, we back-transform the fitted values fij
to the scale of raw counts and scale them to have unit geometric mean across
samples to obtain the normalization factors:

nij =
v−1(fj(di))

J

√∏J
j=1 v

−1(fj(di))
, (2)

where nij is the normalization factor, v−1(fj(di)) is the back transformed
fitted value at the genomic distance di. The index i runs over all fragments and
j over all samples.

With these normalization factors we use the methods implemented in the
DESeq2 package to detect differences between conditions (Love et al., 2014).
This approach performs a quantitative comparison of the normalized fragment
counts for each single fragment between conditions. The fold-change between
conditions is compared to the variability between biological replicates using a
Wald test. Significant interaction changes are called when the observed change
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between conditions is significantly stronger than what is expected from the size
of the changes seen between replicates.

4 Results
To illustrate our approach, we use a 4C data set of developing Drosophila
melanogaster embryos (Ghavi-Helm et al., 2014). In this data set 103 view-
points were selected throughout the D. melanogaster genome focusing on cis-
regulatory modules (CRMs). Samples were taken from embryos at 2-4 h and
6-8 h after fertilization either using whole embryos or mesoderm-specific cells
(Ghavi-Helm et al., 2014).

4.1 Preprocessing
Starting from FASTQ, files we used a Python program, which is included in
the FourCSeq package, to demultiplex the libraries and trim off bar codes and
adapters. Next we aligned the reads to the dm3 reference genome with Novoalign
(http://www.novocraft.com).

For short restriction fragments, we observed the problem that reads con-
tained the whole fragment and then continued through the cutting site of the
second restriction enzyme into the ligated fragments (in most cases the view-
point fragment). This often resulted in two possible alignments causing the
reads to be reported as not uniquely mapping. To address this problem and
rescue some of the shorter fragments we checked whether the restriction en-
zyme cutting site was found within unaligned reads. In such a case the end of
the read was trimmed at the restriction enzyme cutting site and alignment was
attempted again.

We then generated a fragment reference and mapped the aligned reads to
these fragments as described in Sections 3.1.1 and 3.1.3.

For quality control, the percentage of reads mapping to valid fragments from
all aligned reads was calculated. For our data this value was around 70-95%
in most cases. A value in that range should be obtained for a 4C library. If
the percentage is much smaller, the first region that should be investigated is
the region around the viewpoint, where a single fragment can pile up a high
percentage of the reads. Other possible reasons for low mapping percentages
might be reads that map either to invalid fragments, which have been removed
from analysis, or to new fragments, created by mutations relative to the reference
genome.

To check whether technical and biological replicates gave a similar signal,
scatter plots of the replicates were generated. For our data set, these plots
showed good agreement for higher count values in most cases. However, at
lower count values, the replicates show higher relative variation, as is expected
from Poisson noise. An example is shown in Figure 3.
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Figure 3: Correlation between two biological replicates of the apterous CRM viewpoint
for whole embryo tissue at 6-8 h after fertilization. In the plot a desity estimate of
the pairwise distribution of count values per fragment is shown. The x- and y-axes
(drawn in logarithmic scale, with zero) correspond to the counts for the fragments in
two biological replicate libraries for the same viewpoint and biological condition. The
replicates show good concordance for higher count values. Fragments with 0 counts
for both replicates are removed.
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Figure 4: Variance-stabilizing transformation. For each fragment, the mean and
standard deviation of its count data were computed across all samples for the apterous
CRM viewpoint. The plots visualize the distributions of these values for all fragments.
Fragments close to the viewpoint are on the right side with higher count values. When
the untransformed count data are considered (upper panel), the standard deviations
are very large for high abundance fragments (close to the viewpoint). When the
count data are considered on the logarithmic scale (middle panel), the standard de-
viations are very large for low abundance fragments (far from the viewpoint). Both
effects would make the analysis highly susceptible to noise either close or far from the
viewpoint respectively. When the data are transformed using a variance stabilizing
transformation, the standard deviations show less dependence on the fragment abun-
dance, allowing for a more consistent statistical treatment across the whole dynamic
range of the data.
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Figure 5: Symmetric monotonous fit of the variance-stabilized count data over the
logarithm of the distance from viewpoint for the apterous CRM viewpoint. The red
line shows the fit and the blue dashed line is the fit plus 3σ.

4.2 Detecting interactions
First, to reduce noise in the data, we removed fragments which had less than a
median of 40 counts across all samples for one viewpoint. Second, we removed
fragments that were too close to the viewpoint, because the high signal obtained
from these fragments is generally due to ligation caused by close linear proximity
to the viewpoint. The package therefore automatically defined the first valid
fragments as those that occurred directly after the strong initial signal decrease
with distance from the viewpoint where the signal began to increase again. The
parameters of the variance-stabilizing transformation were fitted on the count
values of the remaining fragments.

The result of the variance-stabilizing transformation is shown in Figure 4.
Next the decay trend is fitted on the transformed scale, using a monotonous
symmetric fit. The fit is shown in Figure 5. z-scores and associated p-values
were calculated from the fit residuals. Interactions were found by looking for
fragments with z-scores larger than 3 in both replicates and an adjusted p-
values smaller than 0.01 in at least one replicate. Figure 7 shows the results for
one of the viewpoints in ou data set, which is located in a cis-regulatory module
(CRM) close to the apterous (ap) gene. The fragments that show an interaction
are highlighted by red dots.

In mesoderm specific and whole embryo tissue at 6-8 h after fertilization the
interaction of the viewpoint with the ap gene promoter on the right side of the
viewpoint is captured. Further interactions are found as well, but could not be
directly attributed to a specific genomic element. In general we were able to
detect interactions between ten known enhancer-promoter pairs and many more
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Figure 6: MA plot of the apterous CRM viewpoint 4C profile comparison between
Drosophila embryo mesoderm tissue and whole embryo 6-8 h after fertilization. The
y axis shows the difference between log interaction counts for a given fragment which
is plotted against the average log interaction counts per fragment on the x-axis. Red
dots represent fragments that show differential interactions (p-adjusted < 0.01)

interactions throughout the set of 103 viewpoint (Ghavi-Helm et al., 2014).

4.3 Differences between conditions
To detect differences between conditions, we used the method described in Sec-
tion 3.3.

Figure 6 shows the MA plot comparing mesoderm tissue and whole embryo
for Drosophila embryos 6-8 h after fertilization. For the same viewpoint the
results of the analysis are shown in Figure 7. Fragments that have a adjusted
p-value of less than 0.01 for the Wald test are highlighted by blue points, or by
orange points, if they additionally are called as an interaction in the depicted
sample.

In general one can observe that the effect sizes for differential changes are
very small and the overall pattern of the interaction profiles remains largely
unchanged, as we recently reported (Ghavi-Helm et al., 2014).

However, for the strong interaction at the ap promoter we estimate a sig-
nificant fold change of 2.25 between the conditions. Stronger contacts in the
mesoderm tissue could be due to the fact that the ap gene is only expressed in
the mesoderm. Only 6 % of identified interactions showed evidence of interac-
tion changes across time and tissue context (Ghavi-Helm et al., 2014).
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Figure 7: Detection of interactions and differences: The figure shows the plot generated
by the FourCSeq to visualize the results. The upper 4 wide tracks show the variance-
stabilized counts for 2 biological replicates of Drosophila embryo mesoderm tissue
and whole embryo 6-8 h after fertilization for the apterous CRM viewpoint. The fit
of the distance dependence is shown as solid green line and the dashed blue lines
represent the fit ±3σ. Interactions detected by z-score > 3 in both replicates and p-
adjusted < 0.01 for at least one replicate are shown as red or orange points. Fragments
represented by orange points additionally show a differential interactions (p-adjusted
< 0.01, differential Wald test). Differential changes in the contact profile that are
not called as interactions are shown as blue points (p-adjusted < 0.01, differential
Wald test). The color bar below the 4C profiles shows whether the upper condition
(green) or the lower condition (red) has the higher signal for the detected differences
(p-adjusted < 0.01). The calculated log2 fold-change of the differential testing per
fragment are shown above the track at the bottom, which shows the gene model of
the region.
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5 Discussion
We described the functionality of the FourCSeq package available on Biocon-
ductor.

Our approach to detect peaks is in general similar to the method imple-
mented in the r3cseq package (Thongjuea et al., 2013). However, while Thongjuea
et al. (2013) do the fit on raw count scale, we use a variance-stabilizing trans-
formation on the data to have a more consistent statistical treatment across
the different orders of magnitude observed in the count data. To detect specific
interactions, we fit the decay of the variance stabilized 4C signal with distance
from the viewpoint and calculate z-scores from the fit residuals. With this
more consistent approach we were able to detect long-range chromatin interac-
tions that span genomic distances > 100 kb in the compact Drosophila genome
(Ghavi-Helm et al., 2014).

Instead of only looking at log2 fold-changes of single samples between con-
ditions as it is done in r3cseq, we make use of the framework for differential
expression analysis implemented in the DESeq2 package to detect differences
between groups of samples in different experimental conditions. With this ap-
proach we take the variability between replicates of the data for each genomic
position into account for the quantitative comparison of the fragment counts
between conditions. The fold-change between conditions is compared to the
variability of the data between biological replicates, and differential interaction
are called statistically significant only if the observed fold change between con-
ditions is significantly higher than what it is expected based on the noise level
in the data.

In contrast to our method, the method by van de Werken et al. (2012) uses
a customized approach for aligning reads to a reference of fragment ends. This
alignment data can be further normalized and visualized by the tool that they
provide. The results are plots of contact profiles and contact domainograms
generated by analyzing the data with different window sizes. However, with
this approach, comparisons of interaction profiles are only made qualitatively.

Our implementation allows the use of any FASTA file as reference genome;
for example the dm3 genome was used for the data shown in Section 4, whereas
the r3cseq package is limited to the mm9, hg18 and hg19 genomes.

To integrate called interactions and differences with other genomic data the
results from our package can be used within the Bioconductor framework of
GenomicRanges (Lawrence et al., 2013). Furthermore we provide the possibility
to export the interaction profiles as bigWig files for visual inspection in a genome
browser along with other tracks of interest.

In summary, our package provides the tools to analyze 4C sequencing data
and integrate the results with other genomic features. Its use will help to further
investigate and understand the role of chromatin 3D structure in biological
processes such as gene regulation and embryogenesis.
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