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 Numerous methods of RNA-Seq data analysis have been developed, and there are more 

under active development. In this paper, our focus is on evaluating the impact of each 

processing stage; from pre-processing of sequencing reads to alignment/counting to count 

normalization to differential expression testing to downstream functional analysis, on the 

inferred functional pattern of biological response. We assess the impact of 6,912 combinations 

of technical and biological factors on the resulting signature of transcriptomic functional 

response. Given the absence of the ground truth, we use two complementary evaluation 
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criteria: a) consistency of the functional patterns identified in two similar comparisons, namely 

effects of a naturally-toxic medium and a medium with artificially reconstituted toxicity, and b) 

consistency of both gene-level and functional pattern results in RNA-Seq and microarray 

versions of the same study. Our results show that despite high variability at the low-level 

processing stage (read pre-processing, alignment and counting) and the differential expression 

calling stage, their impact on the inferred pattern of biological response was surprisingly low; 

they were instead overshadowed by the choice of the functional enrichment method. The latter 

have an impact comparable in magnitude to the impact of biological factors per se.  

 

Introduction 

 The ultimate goal of any transcriptomic experiment is to discover functional patterns of 

biological response to conditions of interest (treatments, environmental influences, mutations 

etc). However, transcriptomic analytical pipelines consist of multiple processing stages, and one 

would reason that the propagation of results from analytical choices made at earlier stages to 

the downstream steps might lead to vastly different conclusions. To the best of our knowledge, 

systematic comparison of the results between different combinations of analytical methods 

within a pipeline in context of the resulting functional signature of cellular response has not 

been previously addressed.  

 Soon after its invention, RNA-Seq1 started to aggressively replace microarrays in the 

field of transcriptomics2, and this shift is due to RNA-Seq’s impressively larger (at least 2 orders 

of magnitude) dynamic range and its ability to detect novel transcripts1.  
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 Both microarray and RNA-Seq technologies have their specific biases: given the same 

concentration of target cDNA, number of probe-target duplexes on a microarray will be strongly 

sequence-dependent3 and even physical position of the probe on the array may have an 

influence on the measurement by “fogging” the positions of low-intensity probes with the 

fluorescence emitted from their bright neighbors, resulting in artificial increase in estimated 

expression of numerous genes4. The observed phenomenon of “probe affinity effects” was 

addressed in low-level microarray processing algorithms such as RMA5. Recently, the 

phenomenon appeared to be in the focus of more mechanistic modeling efforts6. On the other 

hand, RNA-Seq has its own biases, starting from gene length bias that could be eliminated by 

normalizing for RNA length and for the total number of mapped reads7 and as uniform sampling 

of mRNA pool 8 to biases that belong to next-generation sequencing technology itself such as 

nucleotide per cycle bias and mappability bias9.  

  The nature and associated problems of hybridization- and sequencing-based 

transcriptomic technologies led to believe that microarrays and RNA-Seq will stay 

complementary10; this was supported by co-existence of reports that show RNA-Seq to be 

either more sensitive than microarrays11 or surprisingly less sensitive for low-expressed genes12. 

Apparently, the difference in conclusions stems directly from the lack of consistent, well-

established data processing routines. Long-term, one may expect prospering of RNA-Seq based 

on its objective advantages of high dynamic range and de novo transcriptome structure 

discovery, while all the technical issues are addressed by the analytical methods. However at 

present, the methods of RNA-Seq analysis are still rapidly evolving, and most importantly, 

detection of biologically meaningful responses remains a “bigger challenge” within both 
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microarray and RNA-Seq worlds13. This makes investigating the interface between data 

processing stages and functional pattern detection essential.  

  We use two orthogonal approaches to evaluate the results of various combinations of 

RNA-Seq pipeline processing: gene-level consistency of DE results on microarray and RNA-Seq 

platforms and – the key of this study - conservation of functional signatures in 2 biologically 

related comparisons within the RNA-Seq platform.  

 The published results by Schwalbach14 and Keating15 that compare three different 

conditions of E.coli growth: control (SynH, synthetic corn stover hydrolysate without the toxic 

components), naturally toxic medium (ACSH, corn stover hydrolysate containing toxic 

components of lignin decomposition) and artificially toxic medium (SynHLT, synthetic corn 

stover hydrolysate with added mixture of toxic components identified in ACSH) were used to 

help evaluate the relative impact of various stages of RNA-Seq processing on the inferred 

functional patterns of cellular response.  

 Our study shows that the lower level stages of the RNA-Seq analytical pipeline, while 

being highly diverse in nature and options, have surprisingly low influence on the derived 

functional pattern of the response. At the same time, choice of the functional enrichment 

methodology is found to be critical.  

Results 

 Overview 

 Our approach to evaluating various methods within an RNA-Seq data analysis pipeline is 

outlined in Fig.1. For every major stage of the pipeline (low-level processing, differential 
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expression calling and functional pattern detection) we evaluate the results using both internal 

and external criteria whenever possible. The internal criteria are restricted to a particular 

processing stage and do not rely on external information, e.g. results from a different gene 

expression measuring platform, or biological knowledge. Every evaluation stage will be 

described in the respective subsection of the Results. The key external evaluation approach 

used in this study is correlation between vectors of inferred functionality for the two 

biologically related comparisons (Fig.2). The level of similarity of the functional profiles derived 

for the two comparisons was selected as an external biological criterion because: a) the two 

toxic media are expected to cause similar profiles of cellular response because the composition 

of the artificially toxic medium was carefully matched to the composition of the naturally toxic 

medium and b) this expectation was recently supported experimentally15. In order to check the 

robustness of higher-level functional pattern detection, we have chosen two comparisons that 

are diverse enough to depart from checking gene-level signal reproducibility and similar enough 

to expect similar higher-level patterns of response.  

 In order to consider influences of both technical and biological nature on the same scale, 

the relative contributions of various processing stages were assessed in comparison with 

contribution from biological factors. For this purpose, all the combinations of the various 

methods were used to analyze time series data consisting of 3 growth stages (exponential, 

transitional and stationary15). 

 Exhaustive combining of 2 read pre-processing strategies,  2 alignment / counting 

pipelines,  3 count normalization methods, 2 pairwise comparisons, 4 DE calling methods, 3 

functional overrepresentation strategies, 4 geneset types, 2 directions of expression changes, 
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and 3 time points resulted in 6,912 vectors of functional enrichment results  (approximately 1 

million of individual gene set enrichment p-values). After removal of vectors with NA values, 

the pool of 3,145 pairwise correlations between the vectors representing the two biologically 

related comparisons was modeled as a function of all the technical processing factors plus 

biological factor (growth stage). This provided a big picture estimate of factor influence which 

complements the results of stage-specific evaluations.  

    Low-level processing and alignment / counting 

 We considered two options for read pre-processing: “RAW” (untrimmed)  vs. “QC” 

(trimmed reads) in order to investigate the tradeoff between having more sequence data and 

having more confident base calls at every base position in a read. For alignment/counting, we 

considered “BWA-HTSeq” vs. “Bowtie-RSEM” (see Materials and Methods) to investigate the 

difference between genome alignment followed by hard-threshold counting and transcriptome 

alignment followed by probabilistic counting.  

 Despite the very different approaches to obtaining the count estimates for each gene, 

the pairwise Pearson correlation coefficients across all the libraries (Fig. S1) were surprisingly 

similar, with respective differences for each of the 210 pairwise correlation coefficients within 

0.03 for both “RAW-Bowtie-RSEM minus RAW-BWA-HTSeq” and “QC-Bowtie-RSEM minus QC-

BWA-HTSeq” comparisons. To detect a trend in interlibrary correlation, values across the 4 

combinations of read pre-processing and alignment / counting pipelines, we counted for each 

combination - the numbers of times a particular method combination had the maximum 

correlation value across all four pipelines. Fig.3 shows that the RAW-Bowtie-RSEM pipeline was 

the overall winner, with 94 maximal values out of 210 comparisons and 12 out of 15 
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comparisons restricted to biological replicates. If we exclude the read trimming factor, the 

Bowtie-RSEM pipeline shows overall better performance as compared to BWA-HTSeq by having 

130 winners in 210 comparisons (p=0.00034) with the overall pool of libraries and 13 winners in 

15 comparisons (p=0.0037) between biological replicates. The effect of read pre-processing was 

opposite for the two alignment / counting methods: while it improved the interlibrary 

correlations for BWA-HTSeq, it affected the RSEM results in exactly the opposite way (Fig.3). 

This is not surprising, considering the nature of the methods: while BWA-HTSeq takes the 

supplied sequence information as is and therefore heavily depends on the quality of the base 

calls, RSEM incorporates nucleotide-level quality scores in its model 16 which allows the model 

to leverage the information in the lower-quality 3’-tail of the sequencing reads to construct 

better alignments. This shows the robustness of RSEM’s model even with a bacterial genome, 

where the complications of alternative splicing and high share of non-coding genomic DNA 

(major issues addressed by RSEM) are not applicable.  

 Differential expression calling  

 Genome-wide profiles of significance values of DE calling 

 Fig. S2 shows distributions of gene-level statistics for DE tests performed with 3 

methods (DESeq, EBSeq, edgeR and voom / limma). The overall profiles of significance level 

assignments are found to be dramatically method-dependent. Based on biological reasoning, 

when one may expect genes to be either differentially expressed between the conditions or 

not, the ideal-world genome-wide profile of DE significance value is expected to be bimodal 

with peaks near the extreme (0 or 1) values, with low density in the intermediate zone that 

represents “class assignment hesitation” of an algorithm.  Still, lack of discrimination against 
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the “hesitation zone” was very obvious for 3 out of 4 algorithms (Fig. S2 A,C,D). On the 

contrary, EBSeq (Fig. S2B) has demonstrated a trend of “hesitation zone avoidance”. While the 

latter observation is encouraging, the distribution profile alone cannot be taken as an evidence 

for a better biological relevance of EBSeq-generated output without other, complementary 

evaluation strategies.  

 Individual library-level expression overlaps between the conditions 

 The majority of the transcriptomic experiments (both microarray and RNA-Seq) have a 

low number of biological replicates, with 3 or even 2 replicates dominating the overall pool of 

publically available repositories such as GEO17. Given that fact, which represents the de facto 

limited information on true data variability for any given gene, a biologist conducting the 

experiment needs to stay on conservative side and focus on genes that show a consistent trend 

of differential expression between the conditions at the individual replicate level. With 2-3 

replicate experiments, having a replicate which shows a trend of expression change that is 

opposite to the mean trend between the two conditions is intuitively unreliable, and such 

genes would not be chosen for follow-up by an experimenter. To formalize this selection, we 

introduced a “critical coefficient” (crt) filter which is the ratio of the minimal expression level 

found across all the replicates the belong to the condition with higher mean expression level to 

the maximal expression level found across all the replicates the belong to the condition with 

lower mean expression level. Critical coefficient below 1 indicates the presence of unfavorable 

overlap of replicate-level expression values between the two conditions. We have actually used 

this filter in a number of earlier microarray studies18,19,20,21,22, which helped to improve the 

sensitivity –specificity balance and discover more consistent biological stories, according to our 
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in-house comparisons with alternative methods. The formal statistical properties of the critical 

coefficient will be reported elsewhere.  

 While the expectation of replicate-level consistency of expression changes in low-

replicate transcriptomic experiment stays in place after transitioning  the field from microarrays 

to RNA-Seq, the relevance of the critical coefficient in RNA-Seq world is not obvious, given the 

statistical sophistication implemented in the today’s RNA-Seq DE calling methods. Fig.4 shows 

critical coefficients plotted for the genes called differentially expressed (i.e. with FDR < 0.05) in 

SynH+LT vs. SynH at timepoint T2 by 4 methods. Surprisingly, 2 out of 4 methods (Fig.4 A,C) 

demonstrate noticeable presence of genes with overlapping library-level expression values 

between the conditions (log10(crt) < 0). The phenomenon included pronounced cases like gene 

“b4354” (Fig. S3) which had extremely low (<0.1) value of critical coefficient indicating dramatic 

overlap of the expression values between the conditions. While 3 out of 4 methods associated 

high FDR values with this gene (EBSeq: 0.87; DESeq: 0.60; voom/limma: 0.97), edgeR selected 

this gene as highly differentially expressed (FDR = 0.0000082). This fact should not be treated as 

an evidence for a particular inaccuracy of edgeR but rather as an evidence for meaningfulness 

of critical coefficient filtering on top of modern RNA-Seq differential expression calling 

methods. It should be noted that the genes selected as differentially expressed by voom / 

limma showed higher critical coefficient values overall, with a clear trend of those values to 

follow the statistical significance of the DE call; expression values for all the genes that were 

called differentially expressed by voom / limma at lower (< 0.005) FDR values were very well (at 

least 1.8 times) separated between the conditions at the level of individual libraries, while 

other methods assigned this strict level of statistical significance to numerous genes with 
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weakly separated or even overlapping library-level values (Fig.4). This agreement between 

voom / limma output and biological common sense expectations suggests that this recent 

adaptation of a well-developed microarray analysis framework to RNA-Seq data 23 deserves 

closer attention.  

 Consistency with microarray results  

 The same experimental design was used in the earlier study 14 employing microarray 

platform. We have used this publically available dataset to assess the robustness of differential 

expression results across the platforms. Since the ground truth is not available and both 

microarray and RNA-Seq platforms possess a mixture of features of positive and negative 

connotation (e.g. proven technology with established analytical toolset but low dynamic range 

and cross-hybridization problems vs. new technology with potentially higher precision but 

immature analytical toolset), we applied very neutral / agnostic consistency criterion defined as 

a ratio between number of genes called DE by both platforms (with same directionality of 

change) to the size of the pool of genes called DE by any platform, for every combination of the 

pipeline parameters and biological factors. The value of this Relative Intersection (RI) statistic 

varied widely (Fig. S4), from almost no overlap (0.01) to about ½ overlap (0.48) at gene level, 

with median of 0.19 and mean 0.24. Surprisingly, both read pre-processing and the choice of 

alignment / counting pipeline had clearly no influence of the interplatform DE result 

consistency (Fig. S5). Moving downstream the processing pipeline, beyond count values 

generation, we start to see the influence of the processing options: count normalization 

method showed a borderline influence on the RI (Fig. S6A), and choice of the method for 

subsequent DE test (Fig. S6B) had significant effect on this statistic. Still, biological factors such 
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as nature of the toxic medium (ACSH or SynH+LT – Fig. S7A), as well as growth stage (Fig. S7B) 

had the most pronounced effect on the RI.  

 Complementing the one-factor-at-a-time evaluation, we also took all the considered 

factors as parts of a generalized linear model that targets RI as a function of all the factors 

mentioned above plus the critical coefficient (the effect of the latter was not obvious during 

one factor at a time evaluation – not shown). The model confirmed the highest significance of 

biological factors, followed by DE calling choice and insignificance of the low-level processing 

options (Table 1). Artificially toxic (better controlled) medium resulted in better result 

correspondence across platforms, the latter decreased at stationary phase of growth when 

interference of multiple biological responses is observed. EBSeq, followed by edgeR, showed 

elevated RI values, compared to other 2 DE methods. Surprisingly, application of critical 

coefficient was neutral in terms of resulting interplatform agreement.  

 Overall, there is a trend of increasing the impact of the technical processing stages from 

upstream pre-processing to downstream differential expression testing. Keeping in mind the 

fact that the final result of the transcriptomic experiment is inferred pattern of functionality, 

evaluating the pipeline on the basis of functional pattern conservation is especially informative.  

 Relative impact of processing stages on the derived pattern of functionality  

 Overall model  

 We used 4 types of gene sets representing different dimensions of cellular functionality: 

133 KEGG pathways, 400 species-specific pathways, 172 regulons and 333 transporters, 

combined with 3 gene set enrichment strategies (see Materials and Methods). For every 
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combination of read pre-processing, count normalization, DE test, direction of expression 

change, gene set type, gene set enrichment strategy and cellular growth stage, we computed 

the correlation coefficient between the two (ACSH vs. SynH and SynH+LT vs. SynH) vectors of –

log10(GS-FDR) within each gene set type, where GS-FDR is the FDR associated with call of 

involvement of a particular gene set in the transcriptional response. Hence, for KEGG pathways 

we computed correlations between 133-mer vectors, for species-specific pathways – between 

400-mer vectors, and so forth.  

 The global overview of relative contribution of various processing stages on the resulting 

inferred functionality patterns was generated via the following Generalized Linear Model: 

FunCor ~ PreProcess + AlignCount + Normaliz + DEMethod + 

DEDirection + GeneSetType + FunSearchType + TimePoint  

where FunCor is the Pearson correlation between vector of –log10(GS-FDR) for ACSH vs. SynH 

comparison and the respective vector for SynH+LT vs. SynH comparison, PreProcess is the 

read pre-processing option (RAW or QC), AlignCount is the alignment / counting pipeline 

(BWA-HTSeq or Bowtie-RSEM), Normaliz is the gene length-agnostic count normalization 

method for subsequent DE test (MED, UPPER, TMM), DEMethod is the algorithm for DE calling 

(EBSeq, DESEq, edgeR, voom / limma), DEDirection is the direction of the expression 

changes (up or down), GeneSetType is the type of gene set (KEGG, sPW, TF, Transporters), 

FunSearchType is the enrichment testing strategy (cluster, Fisher, Fold), TimePoint is the 

growth stage of the cells (T2, T3, T4).  

 The model summary is shown in Table 2. The contribution of various processing stages 
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varies dramatically, with a clear trend of dramatically higher impact of biological factors 

(direction of the expression change and cell growth stage, absolute values of model coefficients 

0.28 and 0.25) over technical factors (maximal model coefficient 0.13) and increasing the 

impact of the stage on preservation of  the resulting signature of functionality towards the 

downstream analysis stages: the pre-processing and alignment / counting stages had no 

detectable influence of the functional signature preservation at all (“PreProcessRAW” and 

“AlignCountRSEM” lines in the Table 1), normalization, DE testing options and the choice of 

gene set type had significant influences, however of low magnitude (model coefficients within 

0.08), and the choice of functional overrepresentation strategy had the highest impact among 

all the technical factors.  

 The two most pronounced effects detected – expression change directionality and cell 

growth stage – are illustrated of Fig.5 and Fig.6, respectively. Fig.5 shows that the conservation 

of the inferred functional signature is dramatically higher in the case of downregulated genes, 

where more than half of the cases have Pearson correlation above 0.5. On the contrary, for 

upregulated genes we observe not only an overall left-shift of the distribution but also a 

substantial Gaussian component with peak around 0, representing cases of absence of any 

concordance between cellular responses to the two toxic media. Similar influence of the cell 

growth stage may be better illustrated when conditioned by the directionality of expression 

change (Fig.6), where the gradual divergence between the two toxic media from T2 through T3 

to T4 is clearly visible (Fig.6A), with main modes of the correlation values distribution for T2 

being above 0.5 and for T4 around 0. With the direction of changes that is favorable for 

functional signature conservation, i.e. downregulation, all the 3 growth stages have the main 
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peak of the correlation values distributions above 0.5, however the stationary stage (T4) still 

has a substantial tail at very low correlation values, with significant presence in the anti-

correlation zone (Fig.6B).  

 Sub-models conditioned by biological factors 

 While the overall impact distribution between biological and technical factors is clear, 

one cannot exclude the possibility of masking more subtle technical influences by the 

overwhelming effect of biological factors. To reveal possible conditional dependences of the 

impact of technical factors, we constructed the four models with restriction of the data to a 

particular combination of the most (or the least) favorable directionality of expression change 

(i.e. downregulation or upregulation) and the most / the least favorable growth stage (i.e. T2 or 

T4).  

 TableS1 shows the structures of those models. A key observation there is association of 

geneset type significance with the direction of the expression change. For example, regulons 

are positively associated with preservation of functional signatures between the 2 media in the 

case of upregulated genes (TableS1AC), and no such association is visible for downregulated 

genes (TableS1BD). The phenomenon is even more pronounced with transporters, when a 

positive effect in the case of upregulated, and negative effect for downregulated genes is 

observed (the latter, however, is below statistical significance for growth stage T2). As to the 

choice of the enrichment method, summarization of fold changes has very positive effect for 

downregulated genes (TableS1BD), which may be attributed to generally more pronounced 

effect of downregulation than upregulation in the toxic media. The latter method was also 

beneficial (however, with less magnitude) for upregulated genes at T2 (TableS1A).  
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 A noticeable phenomenon is the often-seen negative effect of TMM normalization on 

the functional signature conservation, visible in both the overall model (Table 2) and in 

condition-restricted models (TableS1ACD). Visualizing the distributions of functional correlation 

values for upregulated genes at growth stage T2, for example (Fig.7) revealed that while all the 

3 normalization methods have the main mode of distribution density above Pearson correlation 

of 0.5 and no simple scaling method (UPPER or MED) results in functional correlations below 

0.12, TMM has a large low-end tail heavily exposed to the anticorrelation zone (Fig.7).  

 The above observations suggest that choice of the gene set and even functional 

enrichment search strategy are deeply merged with a biological story.  

Discussion 

 In this work, we approached a “bird view” evaluation of all the stages of RNA-Seq 

analysis pipeline in order to estimate relative contribution of option variations at every stage of 

the pipeline on the resulting functional signature of the cellular response.  

 The main observation of this study is the vanishing influence of low-level processing 

stages, such as read pre-processing and alignment / counting options on the functional 

signature derived downstream. While not all the combinations of read alignment and counting 

were checked, the results suggest that this level of detail is not necessary for our purpose; the 

two alignment / counting pipelines, despite very different nature of the underlying methods, 

had negligible effect on the inferred functional patterns. Still, analysis of interlibrary 

correlations within the alignment / counting stage and their combined dependence on 

upstream read pre-processing has demonstrated the advantage of probabilistic counting 
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method (RSEM) that apparently can take advantage of lower-quality base calls to construct 

better alignments.  

 Checking relative agreement between RNA-Seq and microarray DE results on gene level 

discovered an overwhelming influence of biological factors on the agreement statistic, as 

compared to the technical parameters of the pipeline. Dependence of interplatform 

concordance on the magnitude of biological effect was reported recently 24. Still, it was 

somewhat counterintuitive that processing options of different nature affect the interplatform 

concordance in much lesser extent. Interestingly, the work of 24 compared 3 (limma, DESeq, 

edgeR) out of 4 DE methods applied to our study and found the results to be highly correlated. 

Our observation of different behavior of those methods in terms of genome-wide significance 

level distribution and preserving the consistency of the direction of expression changes 

provides another perspective and may motivate further developments of DE calling algorithms 

with consideration of biological expectations.  

 The main approach to method judgment applied here is conservation of functional 

signatures between 2 biologically related comparisons. While this approach is entirely different 

from microarray – RNA-Seq agreement evaluation, the bigger picture conclusions from the two 

were very similar: 1) biological factors have the most influence on the final result, 2) earlier 

stages of the processing pipeline have less impact on the final result than later stages, even if 

we vary the definition of the “final result” and consider either gene-level differential expression 

result across 2 platforms or geneset-level results within the same platform across two 

biologically related comparisons.  

 Examples of concordant conclusions from the two complementary types of evaluation 
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include: 1) advantage of simple median normalization which demonstrated both better array 

intersection and better functional pattern reproducibility, 2) overwhelming importance of 

biological factors: later time point in the experiment (i.e. the stationary phase of cell growth) 

showed dramatically less agreement with arrays and dramatically less functional conservation 

between related comparisons within RNA-Seq platform, 3) negligible effect of low-level 

processing stages.  Concerning the item 2, the stationary phase of bacterial cell growth, also 

known as conditional senescence 25 is characterized by co-existence of dying and living cells and 

transcriptional responses to nutrient limitations. Those factors complicate the transcriptome 

profile of stationary-phase bacteria, and our observation of lower interplatform concordance at 

this stage is in agreement with the report that responses involving specific mechanisms show 

better interplatform concordance than the complex responses  24. Beyond interplatform 

agreement issue at gene level, we show that the same principle is true when applied to within-

platform agreement between biologically related comparisons at the level of inferred 

functionality signatures.  

 Occasionally, multiple evaluation procedures may result in more questions than 

answers. For example, DE detection method EBSeq demonstrated best significance values 

distribution profile, poor consistency of direction of the DE effect across replicates, best 

coherence with microarray results and none to a marginal advantage on the functionality 

signature conservation. This confirms that we are far from providing a unified solution which is 

optimal for all the possible cases. The idea of needing to adapt the analysis to a particular 

experimental setup is further confirmed by our results on modeling the impact of the 

processing factors conditioned by the most influential biological factors (TableS1), from which 
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we see large interconnection of the best-performing analytical options and the biological 

context.  

 Our results suggest that RNA-Seq analysis should be extremely biology-aware, and 

special effort should be devoted to optimizing the last stage of the analysis, i.e. search for the 

functional patterns that form a unique signature of cellular response to the conditions of 

interest.  

Materials and Methods 

 Datasets 

 RNA-Seq and microarray datasets used in the previous works14,15 are available from GEO 

(accession number GSE58927). Microarray data was processed exactly as described14. For RNA-

Seq data processing options, see below.  

 Reads pre-processing 

 The options included using reads as they come from the sequencing facility – referred to 

as “RAW” reads, and performing read trimming, resulting in “QC” reads. “RAW” reads were 

already free from adaptor and other artificial sequences and had length of 100 nt. To generate 

“QC” reads, Trimmomatic software26 with the following rules: 1) remove the first 12 bases from 

5’end, 2) remove any number of nucleotides from 3’end that have the average quality score      

< 30 in a 3-nt sliding window, keep the trimmed read if 36 or more nucleotides  are left.  

 Alignment and counting  

 The genome alignment followed by hard-threshold counting pipeline (“BWA-HTSeq”) 
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included alignment of reads with BWA version 0.7.9a-r78627 and subsequent counting of 

genomic features’ coverage with HTSeq version 0.6.1p228 using default parameters. The 

transcriptome alignment followed by probabilistic counting pipeline (“RSEM”) included read 

alignment to the transcriptome with Bowtie version 0.12.729, followed by counting with RSEM 

version 1.2.416. For both pipelines, information of the type of strand – specificity of the libraries 

(generated with dUTP protocol) was supplied as "--stranded=reverse" or "--forward-prob 0" for 

BWA-HTSeq and RSEM pipelines, respectively. Fig. S8 shows our entire low-level processing 

pipeline (with read pre-processing and alignment / counting options). The pipeline code is 

available at https://github.com/scienceforever/GLSeq under GNU General Public License 

version 3.  

 Count normalization 

 The entire set of libraries was pre-normalized as a pool using one of the 3 methods: 

“MED” – median normalization from EBSeq30 package, “UPPER” – upper quartile (75 percentile) 

normalization from the same package, or “TMM” – trimmed mean of M values normalization31 

implemented in edgeR32 package.  

 Tests for differential expression 

 The pre-normalized count datasets were used as input to the 4 differential expression 

testing algorithms: EBSeq30, DESeq33, edgeR32 and voom / limma23. The default count 

normalization routines built in the packages were switched off.  

 Geneset enrichment analysis 

 Four types of gene sets – KEGG pathways, species-specific pathways, regulons and 
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transporters – were used. KEGG gene-pathway assignments were downloaded via 

Bioconductor’s KEGGREST34 package, other genesets were formatted from EcoCyc version 17.0 

35 flat files.  Cluster-based enrichment test with sets of responsive genes (FDR < 0.05) was 

performed with goseq package36, the two gene-level statistics summarization tests – Fisher’s 

combined probability test37 and summarization of median gene-level fold changes - using piano 

38 Bioconductor package. Statistical significance of the enrichment tests was estimated with 

100,000 data permutations.  

 Generalized Linear Modeling 

 Generating of the models was performed in R statistical environment. To refine the 

condition-specific models (presented in Supplementary tables), stepwise forward-backward 

regression was applied with Bayesian Information Criterion penalty. The models were 

additionally cleaned up by removing variables with p > 0.05. The initial models (Table 1 and 2) 

are presented before stepwise regression and p-value filtering, to demonstrate relative 

contributions of different processing factors explicitly.  
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Figure Legends  

Fig.1. Overview of multilevel RNA-Seq pipeline evaluation approach.  

Fig.2. Related biological comparisons used. Naturally toxic medium: ammonia-pretreated corn 

stover hydrolysate (ACSH); artificially toxic medium: synthetic hydrolysate with added cocktail 

of toxic compounds discovered in ACSH (“lignotoxins”); control medium: synthetic hydrolysate 
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with lignotoxins omitted. See 15 for further details.  

Fig.3. Number of pairwise comparisons a particular combination of read preprocessing and 

alignment / counting method resulted in the maximal value of Pearson correlation between the 

genome-wide vectors of counts. A, winning cases out of all the 210 pairs, irrespective to 

experimental conditions; B, winning cases out of 15 interreplicate comparisons. Cyan, BWA-

HTSeq pipeline; blue, Bowtie-RSEM pipeline.  

Fig.4. Critical Coefficients computed for genes that are called differentially expressed (FDR < 

0.05) by four DE calling methods. For EBSeq, posterior Probability of Equal Expression was used 

as a conservative estimate of FDR. A, EBSeq; B, DESeq; C, edgeR; D, voom / limma. Red, genes 

with critical coefficient values below 1 (corresponds to 0 in the log-scale applied).  

Fig.5. Distributions of correlation coefficients between vectors of -log10(GS-FDR) values 

computed for ACSH vs. SynH and SynH+LT vs. SynH comparisons for up- and downregulated 

genes.  

Fig.6. Distributions of correlation coefficients between vectors of -log10(GS-FDR) values 

computed for ACSH vs. SynH and SynH+LT vs. SynH comparisons for different cell growth 

stages, with datasets restricted to upregulated (A) and downregulated (B) genes.  

Fig.7. Distributions of correlation coefficients between vectors of -log10(GS-FDR) values 

computed for ACSH vs. SynH and SynH+LT vs. SynH comparisons for different count 

normalization methods, with datasets restricted to upregulated genes at exponential (T2) 

growth stage.  
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 Suppelementary Figures 

Fig. S1. Matrices of interlibrary Pearson correlation coefficients between vectors of counts for 

all the RNA-Seq libraries in the study. Color code for experimental conditions: blue, control 

(SynH without lignotoxins) medium; yellow, SynH with lignotoxins; red, ACSH. Shades of grey – 

growth stages (light to dark: exponential, transitional, and stationary). White-green gradient: 

color code for Pearson correlation values.  

Fig. S2. Genome-wide distributions of gene-level significance values for DE calls (A, C, D: 

Benjamini-Hochberg FDR; B: Posterior Probability of equal expression) for DESeq (A), EBSeq (B), 

edgeR (C) and voom / limma (D).  

Fig. S3. An example of gene with inconsistent library-level expression change between the 

conditions which was labeled as significantly DE by edgeR. C1-C2, expression levels in SynH; T1-

T3, expression levels in SynH+LT. FPKM levels are shown.  

Fig. S4. Distribution of Relative Intersection (RI) statistic across 576 comparisons of DE lists 

between microarray and RNA-Seq results.  

Fig. S5. Influence of read pre-processing options (A) and the choice of alignment / counting 

pipeline (B) on the RI.  

Fig. S6. Influence of count normalization (A) and DE calling method (B) options on the RI.  

Fig. S7. Influence of biological factors: nature of the toxic medium (A) and time point (B) on the 

RI.  
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Fig. S8. Pipeline for low-level RNA-Seq processing. Yellow, R scripts; dark grey, input data; light 

grey, intermediate / supplementary files; pink, sets of output files; blue, connections to a 

database that supplies and stores various run parameters. The top script launches semi-

autonomous downstream scripts that watch for the completion of the upstream steps. Both 

single- and paired-ended libraries and different types of strand-specificity are supported 
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Tables 

 

Factor Coefficient Std. Error t value Pr(>|t|) 

QCRAW 0.001 0.005 0.295 0.768 
alignRSEM -0.007 0.005 -1.332 0.183 
normTMM -0.005 0.006 -0.854 0.393 
normUPPER -0.017 0.006 -2.753 0.006 
compsynHLT 0.150 0.005 29.909 < 2e-16 
timeT3 -0.024 0.006 -3.925 9.74e-05 
timeT4 -0.172 0.006 -27.971 < 2e-16 
DEEBSeq 0.069 0.007 9.677 < 2e-16 
DEedgeR 0.045 0.007 6.361 4.15e-10 
DEvoom 0.005 0.007 0.772 0.440 
critTRUE -0.003 0.005 -0.610 0.542 
 

Table 1. Generalized Linear Model of the RNA-Seq - microarray DE results concordance 

(expressed as RI) as a function of the technical and biological factors combined. Levels of 

factors reported: QCRAW, no read pre-processing; alignRSEM, RSEM alignment / counting 

pipeline; normTMM, count normalization using TMM; normUPPER, count normalization using 

upper quartile; compsynHLT, biological comparison of SynH+LT vs. SynH; timeT3, transitional 

phase of cellular growth; timeT4, stationary phase of cellular growth; DEEBSeq, EBSeq as the DE 

calling algorithm; DEedgeR, edgeR as the DE calling algorithm; DEvoom, voom / limma as the DE 

calling algorithm;  critTRUE, critical coefficient of 1.15 applied. Bold, variables retained after 

forward-backward regression and p-value filtering.  
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Factor Coefficient Std. Error t value Pr(>|t|) 

DEDirectionUP -0.280 0.008 -36.572 < 2e-16 
GeneSetTypesPW -0.039 0.011 -3.657 0.00026 
GeneSetTypeTF  0.087 0.011  8.084 9.04e-16 
GeneSetTypeTransp  0.078 0.011  7.204 7.42e-13 
FunSearchTypepiano -0.023 0.009 -2.480 0.0132 
FunSearchTypepianoFOLD  0.130 0.009  13.880 < 2e-16 
PreProcessRAW  0.008 0.008  1.035 0.301 
AlignCountRSEM -0.001 0.008 -0.152 0.87914 
NormalizTMM -0.077 0.009 -8.577 < 2e-16 
NormalizUPPER -0.015 0.010 -1.525 0.127 
TimePointT3 -0.073 0.009 -8.078 9.50e-16 
TimePointT4 -0.249 0.010 -25.545 < 2e-16 
DEMethodEBSeq  0.009 0.010  0.819 0.413 
DEMethodedgeR  0.083 0.011  7.766 1.12e-14 
DEMethodvoom  0.047 0.011  4.242 2.29e-05 
 

Table 2. Generalized Linear Model of the correlation between vectors of functionality as a 

function of the technical and biological factors combined. Levels of factors reported: 

DEDirectionUP, genes upregulated in toxic media; GeneSetTypesPW, species-specific pathways 

as gene set type; GeneSetTypeTF, regulons as gene set type; GeneSetTypeTransp, Transporters 

as gene set type; FunSearchTypepiano, Fisher’s gene-level p-values summarization as 

enrichment test; FunSearchTypepianoFOLD, gene-level summarization of fold changes as 

enrichment test; PreProcessRAW, nor read pre-processing; AlignCountRSEM, Bowtie-RSEM 

alignment / counting pipeline; NormalizTMM, TMM count normalization; NormalizUPPER, 

upper quartile count normalization; TimePointT3, transitional phase of cellular growth; 

TimePointT4, stationary phase of cellular growth; DEMethodEBSeq, EBSeq as the DE calling 

algorithm; DEMethodedgeR, edgeR as the DE calling algorithm; DEMethodvoom, voom / limma 

as the DE calling algorithm. Bold, variables retained after forward-backward regression and p-

value filtering.  
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Factor Coefficient Std. Error t value Pr(>|t|) 
GeneSetTypeTransp 0.295 0.023 13.1 4.85e-34 
NormalizTMM -0.172 0.019 -8.95 5.54e-18 
DEMethodedgeR 0.159 0.023 7.00 7.49e-12 
DEMethodvoom 0.154 0.023 6.66 6.71e-11 
GeneSetTypeTF 0.151 0.023 6.69 5.72e-11 
FunSearchTypepianoFOLD 0.093 0.020 4.74 2.71e-06 
GeneSetTypesPW 0.077 0.023 3.43 6.57e-04 
DEMethodEBSeq 0.045 0.023 1.98 4.85e-02 
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Factor Coefficient Std. Error t value Pr(>|t|) 
FunSearchTypepianoFOLD 0.239 0.014 17.6 2.13e-55 
GeneSetTypesPW -0.225 0.016 -14.4 6.82e-40 
DEMethodEBSeq -0.037 0.016 -2.33 2.02e-02 
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Factor Coefficient Std. Error t value Pr(>|t|) 
GeneSetTypeTF 0.161 0.027 6.03 4.08e-09 
GeneSetTypeTransp 0.159 0.028 5.64 3.42e-08 
NormalizTMM -0.132 0.024 -5.57 5.08e-08 
DEMethodedgeR -0.129 0.027 -4.69 3.83e-06 
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Factor Coefficient Std. Error t value Pr(>|t|) 
FunSearchTypepianoFOLD 0.359 0.020 8.0 4.37e-54 
DEMethodedgeR 0.330 0.022 15.0 3.46e-41 
GeneSetTypeTransp -0.203 0.023 -8.76 5.05e-17 
NormalizTMM -0.123 0.020 -6.27 9.21e-10 
GeneSetTypesPW -0.070 0.023 -3.04 2.54e-03 
DEMethodEBSeq 0.070 0.022 3.16 1.69e-03 
NormalizUPPER -0.069 0.021 -3.28 1.13e-03 
GeneSetTypeTF -0.046 0.023 -1.99 4.72e-02 
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