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The 2014 epidemic of the Ebola virus is governed by a genetically diverse

viral population. In the early Sierra Leone outbreak, a recent study

has identified new mutations that generate genetically distinct sequence

clades [1]. Here we find evidence that major Sierra Leone clades have

systematic differences in growth rate and reproduction number. If this

growth heterogeneity remains stable, it will generate major shifts in clade

frequencies and influence the overall epidemic dynamics on time scales

within the current outbreak. Our method is based on simple summary

statistics of clade growth, which can be inferred from genealogical trees

with an underlying clade-specific birth-death model of the infection dy-

namics. This method can be used to perform realtime tracking of an

evolving epidemic and identify emerging clades of epidemiological or evo-

lutionary significance.

In a recent study, Gire et al. present a comprehensive genomic analysis of the

current Ebola virus epidemic in its early growth phase [1]. Based on a near-complete

sequence sample of cases, they reconstruct the seeding event and the subsequent

rapid expansion of the epidemic in Sierra Leone in May and June 2014. Estimates

of the basic reproduction number R0 for Sierra Leone vary between 1.7 and 2.2 [2,3],

the most recent estimate of the reproduction number is R = 1.4 ± 0.1 [2]. In the

current outbreak, the Ebola virus has evolved new genetic diversity. In particular,
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Gire et al. identify early mutations that delineate major sequence clades in Sierra

Leone [1].

In this paper, we develop a method for the statistical analysis of epidemic pro-

cesses that is based on simple summary statistics of individual clades. Using this

method, we study evolutionary consequences of the genetic structure in the Sierra

Leone population. We identify a sequence clade that has larger growth rate and re-

production number than its genetic background. We discuss likely causes for growth

heterogeneity within the Sierra Leone outbreak, which include transient epidemio-

logical factors and adaptive evolution.

Genealogical trees of the Sierra Leone outbreak

We construct a Bayesian posterior ensemble of genealogical trees from the Sierra

Leone sequences of ref. [1] (see Methods). Internal nodes represent new infections

and external nodes mark the termination of infectivity in an individual; however, this

type of analysis does not attempt to reconstruct detailed transmission chains [4, 5].

The sample tree of Fig. 1 shows three major sequence clades, in accordance with

the results Gire et al. (see Fig. 3b and Fig. 4a of ref. [1]). Four point mutations on an

early branch separate the ancestral clade 1 from clade 2, which carries the derived

alleles and covers 36% of the Sierra Leone sequences. These mutations probably

occurred prior to the seeding of the epidemic in Sierra Leone [1]. A further intergenic

mutation between genes VP30 and VP24 at position 10218 occurred within Sierra

Leone. This mutation separates clade 2 from clade 3, which carries the derived allele

and covers 56% of the sequences. VP30 is a virus-specific transcription factor that

mediates transcription activation [6], while VP24 suppresses interferon production

[7] and also inhibits viral transcription and replication [8]. All other mutations occur

on peripheral branches of the tree and have derived allele frequencies below 8%.

Inference of clade-specific growth

From these trees, we record the growth dynamics of each clade until a given time t

by three observables: the cumulative number of new infections Iα(t), the cumulative

number of terminations of infectivity Eα(t), and the cumulative infectivity period on

all clade lineages Tα(t), where α denotes clades 1,2,3. Fig. 2a shows these observables
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averaged over 10 high-scoring trees; data from individual trees show only minor

deviations from these averages (Fig. S2). For the derived clades, the number of

internal nodes, the number of external nodes and total tree length increase more

rapidly in clade 3 than in clade 2 (Fig. 2a). Hence, these data suggest an exponential

growth with clade-specific growth rates. The ancestral clade 1 is clearly subleading

and probably extinct after the end of May (including these strains into a combined

clade 1&2 does not affect the results of the following analysis).

To determine clade growth rates and their statistical significance, a probabilistic

phylodynamic model is needed [9]. We use a birth-death model: new infections

and terminations of infectivity are treated as independent Poisson processes on each

lineage, which are characterized by clade-specific rates bα and dα. The applicability

of this model to the Ebola epidemic is supported by the statistics of successive

infection and termination events in individual lineages, which occur at a clade-

specific rate (bα + dα) (Methods and Fig. 2b). The rates bα and dα determine

the growth rate rα = bα − dα and the reproductive number Rα = bα/dα of each

clade [10, 11]. If we identify the growth rates rα with Malthusian fitness, any such

birth-death model can be interpreted as a fitness model.

For a given sample of posterior trees, we can infer the underlying clade-specific

birth-death model using a Bayesian approach that accounts for uncertainty in tree

reconstruction [10,11]. Importantly, the likelihood of the model with rates bα and dα
depends on the summary statistics Iα, Eα, and Tα of our sequence sample in a simple

way (Methods, Fig. S3). We evaluate this likelihood for a family of models with

clade 2 and clade 3 growing at distinct rates r2 and r3, and we denote their growth

rate difference by s = r3− r2. We also evaluate the likelihood of background models

that have common rates b2 = b3 and d2 = d3, which implies s = 0. Our analysis

reveals a substantial growth difference between clades: in the global maximum-

likelihood model, clade 3 has growth rate r∗3 = 0.104, compared to r∗2 = 0.051 for

clade 2. The difference s∗ = 0.053 is of the same order of magnitude as the absolute

growth rates (all rates are measured in units of 1/day). The best background model

has a growth rate r0 = 0.082 for the combined clade 2&3, which is consistent with

the uniform growth parameters inferred in ref. [3]. The log-likelihood difference

between these models is 4.74, which implies P = 8.7 × 10−3 (log-likelihood ratio

test).
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Epidemiological determinants of clade-specific growth

The growth difference between early clades may be due to transient epidemiological

effects, such as superspreading [1, 12], or be associated with environmental factors.

Individual superspreading events may give a short-time growth rate difference be-

tween small clades, but multiple events average out over longer time scales and do

not affect systematic growth rate differences between genetic clades. Given the un-

certainties in reconstructing individual transmission chains, the evidence for multiple

superspreading events in the Sierra Leone outbreak remains limited [3].

Similarly, we expect that environmental effects are more pronounced for the

absolute growth rates r2 and r3, while their difference s remains more stable. Because

the data set of this study comes from a confined geographical region in eastern

Sierra Leone (most later cases occurred in the Jawie chiefdom) [1], geographical

heterogeneity is likely to have limited effects on the inferred clade dynamics over

the period of the data set. However, growth rates may change if any of the Sierra

Leone clades establishes itself beyond its initial geographical region.

Adaptive evolution within an epidemic

If the observed growth heterogeneity remains stable, we can use clade-specific evo-

lutionary models to predict the future evolution of clade frequencies [13]. This

analysis predicts that clade 3 will outgrow clade 2 within a period of order 1/s∗,

which amounts to a few months (counted from the end of June 2014, Methods).

Evolutionary clade displacement is expected, in particular, if the growth difference

between clades 2 and 3 is caused by their genetic difference. In that case, the mu-

tation that separates these clades conveys a fitness increase s∗ = 0.055, and the

resulting changes in clade frequencies are adaptive.

Adaptive evolution within an epidemic has two important characteristics. First,

clade frequency shifts caused by fitness differences are predicted to occur even when

increased immunity and intervention curb the overall number of infections. Second,

adaptive evolution feeds back on the overall dynamics of infections: it increases the

mean population fitness, which accelerates the epidemic and increases its peak size

(for details, see Methods).

Forthcoming genetic data will allow a clade-specific inference on broader regional
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and temporal scales, which is essential to distinguish between epidemiological and

evolutionary determinants of clade dynamics. If growth differences are primarily

caused by external factors, there are only weak correlations between growth rates

and genetic differences. In the case of adaptive evolution, we expect a continual

turnover of clades that is caused by their genetic differences: high-fitness alleles

tend to fixation, while further new alleles gain substantial population frequencies

and add fitness variance to the population.

Conclusion

We have developed a method to infer clade-resolved epidemiological parameters from

timed sequence data of an evolving epidemic. Our method uses only simple phylo-

dynamic summary statistics that measure the growth dynamics of individual clades

and are robust under fluctuations of inferred pathogen genealogies. We use these

summary statistics to infer the rates bα, dα of a clade-specific birth-death infection

model, which distinguishes our method from related inference schemes based on

coalescent trees [13, 18]. The underlying Bayesian statistical analysis distinguishes

systematic shifts in clade frequencies from stochastic effects in the transmission

process that contribute to genetic drift. The same effects also generate large fluctu-

ations in the overall number of infections during the initial “stuttering” phase of an

epidemic [14].

In the 2014 Ebola epidemic, we have identified a genetic variant that has a sub-

stantially higher growth rate than its progenitor clade. We conclude that a viral

epidemic can develop strong growth heterogeneity even on the limited temporal

and spatial scales of its initial outbreak. If that heterogeneity has a genetic cause,

our analysis suggests that selection can shape a fast-evolving pathogen on the time

scales of a single epidemic. This mode of adaptation is much faster than the adap-

tive changes between epidemics addressed in previous studies [1, 12]. However, we

caution against over-interpretation of our early results. All predictions starting from

the initial phase of an epidemic are probabilistic extrapolations; they are based on

limited data and subject to confounding factors such as variation in sampling den-

sity. As more sequence data emerge, updated clade-specific inference will suggest

targets for detailed epidemiological investigation and provide predictive insight into

the dynamics of the epidemic. This joint evolutionary and epidemiological analysis
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will suggest targets for detailed epidemiological investigation and provide predictive

insight into the dynamics of the epidemic.

Materials and Methods

Sequence data and tree reconstruction. We use the Ebola virus sequence data

of Gire at al. [1]. These data consist of complete genomes isolated from 78 Sierra

Leone patients between late May and mid June 2014, together with three Guinea

sequences from March 2014 used as outgroup. These data cover more than 70% of

all cases reported until June 16, 2014 [1].

Our analysis is based on consensus sequences for each patient. In addition, deep-

sequencing identifies sequence diversity within patients [1]. Sequence site 10218,

which separates clade 2 from clade 3, is polymorphic in 12 of 78 individuals, with

minor allele frequencies < 25% in 11 of 12 cases. Therefore, the consensus sequences

provide an accurate representation of the allele frequencies in the viral population.

We reconstruct genealogical trees from these sequences using the BEAST software

package [15]. The inference is based on a demographic model with exponential

growth, a strict molecular clock and an HKY nucleotide substitution model [16].

Clade-specific birth-death models. We analyze the tree data using birth-death

models, because our sequence sample covers a large proportion of the underlying

viral population. Simpler coalescent models require a small sampling fraction and

are not applicable to this data set [9, 17]. We consider birth-death models for a

population that consists of k sequence clades labelled by an index α = 1, . . . , k

(with k = 3 for the data set of this study). Any such model is specified by 2k

independent, stationary Poisson processes with rates bα and dα, which govern birth

(infection) and death (termination of infectivity) for the lineages in each clade.

This model generates genealogical trees with a clade-specific distribution of branch

lengths, which is given by a Poissonian with average (bα + dα).

Tree summary statistics. For a given tree, we obtain summary statistics Iα(t),

Eα(t), and Tα(t) as the total number of internal nodes, external nodes, and the

sum of branch lengths up to time t within a given clade α. The node numbers

determine the number of lineages (tree branches) in clade α present at a given time,
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Lα(t) = Iα(t) − Eα(t), which is related to the cumulative branch length by

Ṫα(t) = Lα(t) (1)

with dots denoting derivatives with respect to t. In a birth-death process with rates

bα, dα, the expectation values of these quantities in a completely sampled population

follow the deterministic dynamical equations

İα(t) = bαLα(t),

Ėα(t) = dαLα(t),

L̇α(t) = rαLα(t) with rα = bα − dα. (2)

These equations lead to exponential growth,

Iα(t) = bαTα(t) = Cα bα exp(rαt),

Eα(t) = dαTα(t) = Cα dα exp(rαt),

Tα(t) = Cα exp(rαt), (3)

where Cα is common constant. Importantly, these equations determine the growth

rate and the relative amplitudes of all three observables in terms of the two param-

eters bα, dα. In Fig. S3, we compare the analytical growth dynamics with numerical

simulations.

Sampling effects. In order to link these growth dynamics to genealogical data, we

must take into account the incomplete sampling of infection cases. We first consider

temporally homogeneous sampling of a fraction ρ of the cases, which applies to our

data set for the bulk of the observation period (see the discussion below). If the

dynamics of the full population follows a stationary birth-death process with rates

bα and dα, the genealogy of sampled lineages is described by a similar birth-death

process with observed rates bα(ρ) and dα(ρ). These rates are lower than the full-

population rates, because the sampling removes a part of the internal and external

nodes from the genealogical tree, but they maintain the growth rate bα(ρ)−dα(ρ) =

rα. The observed birth rate takes the form bα(ρ) = bα[1 − Gα(ρ)], where Gα(ρ) is

the probability that a subclade emerging from an infection event is not sampled in
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any of its lineages. Denoting the time of the initial infection by t0, this probability

is given by

Gα(ρ) =

∫ ∞
t0

[(1 − ρ)dα + bαG
2
α(ρ)] e−(bα+dα)(t−t0) dt =

(1 − ρ)dα + bαG
2
α(ρ)

bα + dα
, (4)

which determines the observed rates

bα(ρ) =
1

2

(
bα − dα +

√
(bα − dα)2 + 4ρbαdα

)
,

dα(ρ) =
1

2

(
dα − bα +

√
(bα − dα)2 + 4ρbαdα

)
. (5)

These rates interpolate between the full-population rates

bα(ρ=1) = bα, dα(ρ=1) = dα (6)

and the limit of low bulk sampling,

bα(ρ=0) = rα, dα(ρ=0) = 0, (7)

in which the genealogy reduces to a coalescent tree. The observed summary statistics

Iα(t; ρ), Eα(t; ρ), and Tα(t; ρ) follow the dynamical equations

İα(t; ρ) = bα(ρ)Lα(t; ρ)

Ėα(t; ρ) = dα(ρ)Lα(t, ρ) = ρdαLα(t),

Ṫα(t; ρ) = Lα(t; ρ),

L̇α(t; ρ) = rαLα(t, ρ), (8)

which again lead to exponential growth

Iα(t; ρ) = bαTα(t; ρ) = Cα(ρ) bα(ρ) exp(rαt),

Eα(t; ρ) = dαTα(t; ρ) = Cα(ρ) dα(ρ) exp(rαt),

Tα(t) = Cα(ρ) exp(rαt) (9)

with Cα(ρ) = Cαdαρ/dα(ρ). As shown by comparison with equation (3), these

quantities grow exponentially at the same rate as in the full population, but with

modified relative amplitudes.
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If the sampling of the population ends at a given time tf , the observed infection

and termination rates become explicitly time-dependent. The infection rate takes

the form bα(t; tf , ρ) = bα[1 −Gα((t; tf , ρ)], where Gα(t; tf , ρ) is the probability that

a subclade starting with an infection event at time t is not sampled in any of its

lineages before tf . This probability is the solution of the differential equation

∂

∂t
Gα(t; tf , ρ) = (bα + dα)Gα(t; tf , ρ) − bαG

2
α(t; tf , ρ) − (1 − ρ)dα (10)

with the boundary condition G(tf , tf , ρ) = 1 [10,11]. We obtain

bα(t; tf , ρ) = bα(ρ)

[
1 − bα(ρ) + dα(ρ)

bα(ρ) + dα(ρ) exp[(bα(ρ) + dα(ρ))(tf − t)]

]
. (11)

The observed summary statistics Iα(t; tf , ρ), Eα(t; tf , ρ), and Tα(t; tf , ρ) follow the

dynamical equations

İα(t; tf , ρ) = bα(t, tf , ρ)Lα(t; tf , ρ)

Ėα(t; tf , ρ) = dα(ρ)Lα(t; ρ) = ρdαLα(t),

Ṫα(t; tf , ρ) = Lα(t; tf , ρ),

L̇α(t; tf , ρ) = bα(t, tf , ρ)Lα(t; tf , ρ) − dα (ρ)Lα(t; ρ). (12)

These equations can be integrated analytically. We find

Lα(t; tf , ρ) = Cα(ρ) rα exp(rαt)
1 − exp[−(bα(ρ) + dα(ρ))(tf − t)]

1 + bα
dα

exp[−(bα(ρ) + dα(ρ))(tf − t)]

= Cα(ρ) rα exp(rαt) [1 −O(exp[−(bα(ρ) + dα(ρ))(tf − t)])],

Iα(t; tf , ρ) = Cα(ρ) bα(ρ) exp(rαt)
1 + dα(ρ)

bα(ρ)
exp[−(bα(ρ) + dα(ρ))(tf − t)]

1 + bα(ρ)
dα(ρ)

exp[−(bα(ρ) + dα(ρ))(tf − t)]

= Cα(ρ) bα(ρ) exp(rαt) [1 −O(exp[−(bα(ρ) + dα(ρ))(tf − t)])],

Eα(t; tf , ρ) = Cα(ρ) dα(ρ) exp(rαt),

Tα(t; tf , ρ) = Cα(ρ) exp(rαt)
[
1 −O

(
exp[−(bα(ρ) + dα(ρ))(tf − t)]

)]
. (13)

The full solution for Tα(t; tf , ρ) is given in terms of hypergeometric functions.

Expanding this solution about tf shows that termination of sampling does not affect

the dynamics (3) and (9) for the bulk of the observation period, but it substantially

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 6, 2014. ; https://doi.org/10.1101/011171doi: bioRxiv preprint 

https://doi.org/10.1101/011171


depletes the observed summary statistics Tα(t; tf , ρ) and Iα(t; tf , ρ) over a boundary

interval of length 1/(bα + dα) before the termination point tf . Because there is no

boundary depletion for Eα(t, tf ), the relative amplitudes of the observed summary

statistics in the boundary interval are modified compared to the bulk period. In

Fig. S3, the solutions (9) and (13) are plotted and compared to numerical simula-

tions.

Data analysis of Ebola clades. The tree-averaged data of Fig. 2a follow an

exponential pattern for most of the observation period; the exponential behavior

can also be inferred from individual high-scoring trees (Fig. S2). Deviations from

exponential growth for early times are caused by the stochasticity of birth and

death events at low Lα(t). Deviations towards the end of the sampling period can

in part be explained by the boundary sampling effects discussed above; the relative

amplitudes of the summary statistics change in qualitative agreement with equations

(13). In addition, the coherent increase of E2(t) and E3(t) suggests an increase of

the sampling density towards the end of the period. Variations in sampling density

can be attributed to differences in reporting, incubation, and continued infectivity

after sampling. These factors are only partially accounted for in our and in previous

models of the sampling process [11]. However, the tree data admit a self-consistent

joint fit of the form (9) with ρ = 0.7 [1], which is consistent with homogeneous

sampling, over the bulk observation period. From this fit, we estimate the summary

statistics Eo
α, Ioα, and T oα at the end of the period.

Bayesian statistics. The summary data Iα, Eα and Tα determine the likelihood

of a clade-specific, stationary birth-death process as a function of its parameters

bα, dα. Given a prior distribution P0(b1, . . . , bk, d1, . . . , dk) and data from a full

genealogical tree, the posterior probability distribution takes the simple form

Q(b1, . . . , bk, d1, . . . , dk) = P0(b1, . . . , bk, d1, . . . , dk) ×

exp
k∑

α=1

[
− (bα + dα)Tα + Iα log bα + Eα log dα

]
(14)
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see refs. [10, 11] for a more detailed discussion of genealogical birth-death models.

The resulting global maximum-likelihood values are

b∗α =
Iα
Tα
, d∗α =

Eα
Tα
, r∗α =

Iα − Eα
Tα

, (15)

assuming a flat prior distribution. The parameters (15) reproduce the relative am-

plitudes in equations (3), which allows for an important consistency check of the

data analysis: the observed time dependence of the summary statistics Iα(t), Eα(t)

and Tα(t) in a given clade should match the maximum-likelihood growth rate rα
inferred from the node and branch statistics of that clade. Similarly, we can infer

the full-population parameters bα, dα from the summary statistics Ioα, Eo
α, and T oα

of homogeously sampled genealogical trees. The posterior probability distribution

takes the form

Q(b1, . . . , bk, d1, . . . , dk) = P0(b1, . . . , bk, d1, . . . , dk) ×

exp
k∑

α=1

[
− (bα(ρ) + dα(ρ))T oα + Ioα log bα(ρ) + Eo

α log dα(ρ)

+ log
ρ(bα + dα)√

(bα − dα)2 + 4ρbαdα

]
(16)

with an additional term generated by the Jacobian of the transformation of variables

(5); this term turns out to be numerically small for our data. The inferred maximum-

likelihood parameter values for Ebola clades reported in the main text (α = 2, 3)

have error margins below 10% due to tree reconstruction uncertainties; we also find

our results to be robust to the choice of the BEAST demographic prior. Our analysis

uses the simplest clade-specific epidemiological model applicable to this data set;

this model allows quantification of sampling effects at high sampling density and

avoids the risk of overfitting. Our inference method can be extended to temporally

inhomogeneous sampling, which will be the subject of a future publication.

Evolutionary consequences of clade-specific growth. The epidemiological

dynamics studied in this paper can be extended to a multi-strain Susceptible-

Infected-Recovered (SIR) model of the form introduced by Gog and Grenfell [19].

In a minimal clade-specific model [13], S(t) denotes the number of hosts susceptible
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to infection, Lα(t) and Eα(t) are the numbers of hosts infected and after termi-

nation of infectivity by a strain of clade α, respectively (the notation is chosen to

emphasize the relation of these quantities to the tree summary statistics introduced

above). In the minimal model, the expectation values of these quantities follow the

deterministic dynamical equations,

Ṡ(t) = −S(t)

S0

k∑
α=1

bαLα(t), (17)

L̇α(t) =

(
bα
S(t)

S0

− dα

)
Lα(t) ≡ rα(t)Lα(t), (18)

Ėα(t) = dαLα(t), (19)

where S0 denotes the initial number of susceptible hosts. This model assumes that

all strains are antigenically equivalent. The relationship between deterministic SIR

dynamics and the underlying stochastic processes is discussed in ref. [20]. The

minimal model can be used to derive two generic consequences of heterogeneity in

growth parameters:

1. Evolutionary displacement of clades [13]. According to equation (18), the clade

frequencies Xα(t) = Lα(t)/
∑

α Lα(t) follow the evolution equation

Ẋα(t) = [rα(t) − r̄(t)]Xα(t) with r̄(t) =
k∑

α=1

rα(t)Xα(t). (20)

For the Ebola clades (α = 2, 3) in the initial growth phase of the epidemic

(S(t) ≈ S0(t)), we obtain

X3(t)

X2(t)
=
X3(t0)

X2(t0)
exp[s∗(t− t0)] (21)

with t0 at the end of June, X2(t0) = 1 −X3(t0) ≈ 0.5, and s∗ = 0.055.

2. Acceleration of the epidemic. In the initial growth phase, the net growth

rate (or population mean fitness) r̄(t) increases with time as a result of clade

frequency shifts,

˙̄r(t) =
k∑

α=1

(
rα(t) − r̄(t)

)2
Xα(t) +O

(
S(t)

S0

)
. (22)
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(10218, A)

(800,     A)
(8928,   C)
(15963, A)
(17142, C)

Clade 1

Clade 2

Clade 3

Figure 1: Genealogical tree of the Sierra Leone sequences. This tree shows

that the Sierra Leone population falls into three genetic clades: the ancestral clade 1

(gray) and the derived clades 2 (blue) and 3 (red). The mutations distinguishing

these clades are marked by black dots. Fig. S1 shows the same tree with sequence

annotations.
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Figure 2: Evolution of the Sierra Leone clades. (a) The number of new in-

fections, Iα(t) (green lines), the number of terminations of infectivity, Eα(t) (yellow

lines), and the cumulative infectivity period Tα(t) (purple lines) in clade α until

time t are plotted against t for clade 2 (left) and clade 3 (right). Solid lines: data

averaged over 10 high-scoring trees. Short-dashed lines: joint fits to the exponen-

tial growth law of equations (9) with the maximum-likelihood parameters b∗α, d∗α
(α = 2, 3) and a sampling fraction ρ = 0.7 (Methods). Long-dashed lines: inferred

values of these statistics for a full genealogy, as given by equations (5). (b) The

number of infection/termination events up to time t for individual lineages within

clade 2 (blue) and clade 3 (red). Infections are shown as filled dots, terminations of

infectivity as open circles. Dashed lines with slope bα + dα mark the expected rates.
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Figure S1: Annotated genealogical tree of the Sierra Leone sequences. The tree

of Fig. 1 is shown with sample names, GenBank accession numbers and collection dates

of all 81 sequences.
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Figure S2: Growth variation between inferred genealogies. Summary statistics

Iα(t) (yellow lines), Eα(t) (green lines), and Tα(t) (purple lines) from 10 high-scoring

BEAST trees. Single-tree fits to the exponential growth law (9) (thin dashed lines) are

consistent with the clade-specific growth rates (slopes) rα inferred from tree-averaged data

(thick-dashed lines, as in Fig. 2a).
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Figure S3: Summary statistics of birth-death genealogical trees. The time-

dependent observables I(t), E(t), and T (t) are shown for a birth-death process with

rates b = 0.10 and d = 0.05 (dashed lines: analytical results, solid lines: simulations).

(a) Full tree. The analytical form given by equations (3) is shown by short-dashed lines

and is repeated in (b,c) for comparison. (b) Tree with homogeneous sampling (fraction

of sampled individuals: ρ = 0.4). The analytical form given by equations (9) is shown by

long-dashed lines. Homogeneous sampling modifies the amplitudes of all three observables

but leaves their exponential growth at rate r = b − d invariant. (c) Tree with period

sampling (fraction of sampled individuals: ρ = 0.4, end of sampling period: tf = 150).

The analytical form given by equations (13) is shown by long-dashed lines. Termination

of sampling substantially depletes the observables I(t) and T (t) over a boundary interval

of length 1/(b+ d).
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