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ABSTRACT 
DNA sequencing instruments are enabling genomic analyses of unprecedented scope and 
scale, widening the gap between our abilities to generate and interpret sequence data. 
Established methods for computational sequence analysis generally consider the nucleotide-
level resolution of sequences, and while these approaches are sufficiently accurate, increasingly 
ambitious and data-intensive analyses are rendering them impractical for demanding 
applications such as genome and metagenome assembly. Comparable analytical challenges 
are encountered in other data-intensive fields involving sequential data such as signal 
processing and time series analysis. By representing nucleic acid composition numerically it is 
possible to apply dimensionality reduction methods from these fields to sequences of 
nucleotides, enabling their approximate representation. To explore the applicability of signal 
decomposition methods in sequence assembly, we implemented a short read aligner and 
evaluated its performance against simulated high diversity viral sequences alongside four 
existing aligners. Using our prototype implementation, approximate sequence representations 
reduced overall alignment time by up to 14-fold compared to that of uncompressed sequences, 
and without any reduction in alignment accuracy. Despite using heavily approximated sequence 
representations, our implementation yielded alignments of similar overall accuracy to existing 
aligners, outperforming all other tools tested at high levels of sequence variation. Our approach 
was also applied to the de novo assembly of a simulated diverse viral population. We have 
demonstrated that full sequence resolution is not a prerequisite of accurate sequence alignment 
and that analytical performance may be retained or even enhanced through appropriate 
dimensionality reduction of sequences. 
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INTRODUCTION 
Contemporary sequencing technologies have massively parallelised the determination of 
nucleotide order within genetic material, making it possible to rapidly sequence the genomes of 
individuals, populations and interspecies samples (Margulies et al. 2005; Bentley et al. 2008; 
Eid et al. 2009; Rothberg et al. 2011). However, the sequences generated by these instruments 
are usually considerably shorter in length than the genomic regions they are used to study. 
Genomic analyses accordingly begin with the process of sequence assembly, wherein 
sequence fragments (reads) are reconstructed into the larger sequences from which they 
originated. Computational methods play a vital role in the assembly of short read datasets, and 
a wide variety of assemblers and related tools have been developed in tandem with emerging 
sequencing platforms (Schatz et al. 2010). 
 
Where the objective of a nucleotide sequencing experiment is to derive a single consensus 
sequence representing the genome of an individual, various computational methods are 
applicable. Seed-and-extend alignment methods using suffix array derivatives such as the 
Burrows-Wheeler Transform have emerged as the preferred approach for assembling short 
reads informed by a supplied reference sequence (Li and Durbin 2009; Shrestha et al. 2014), 
while graph-based methods employing Overlap Layout Consensus (OLC) (Kececioglu and 
Myers 1995; Myers 1995) and de Bruijn graphs of k-mers (Pevzner et al. 2001) have become 
established for reference-free de novo sequence assembly. However, the effectiveness of these 
approaches varies considerably for characterising genetic variation within populations (‘deep’ 
sequencing), or interspecies biodiversity within a metagenomics sample. 
 
Within populations comprised of divergent variants, such as those established by a virus within 
their host, bias associated with use of a reference sequence can lead to valuable read 
information being discarded during assembly (Archer et al. 2010). While this can be overcome 
by constructing a data-specific reference sequence after initial reference alignment, this still 
necessitates use of a reference sequence for the initial alignment, a limiting factor for 
sequencing unknown species, which, for example, are often abundant in metagenomic samples. 
On the other hand, while de novo approaches require little a priori knowledge of target 
sequence composition, they are very computationally intensive and their performance scales 
poorly with datasets of increasing size. Indeed, the underlying problem of de novo assembly is 
NP-hard (Myers 1995), with the presence of genetic diversity serving to further increase the 
complexity of computational solutions. As such, aggressive heuristics are typically employed in 
order to reduce the running time of de novo assemblers, which in turn can compromise 
assembly quality. 
 
The challenge of diverse population assembly is exacerbated by the scale of sequencing 
datasets. Contemporary sequencing platforms may generate billions of reads, and their ongoing 
development is giving rise to increasing read lengths, posing growing challenges for efficient 
sequence analysis. A key challenge to be overcome when analysing any sufficiently large 
dataset arises when its size exceeds the capacity of a computer’s working memory. If, for 
example, stored short read data exceeds the capacity of a computer’s random access memory 
(RAM), this data must be exhaustively ‘swapped’ between RAM and disk storage that is orders 
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of magnitude slower to access, forming a major analysis bottleneck (Yang and Wu 2006). De 
novo assembly in particular requires manyfold more memory than is needed to store the read 
information itself. Additionally, the use of all-to-all pairwise comparison for read alignment (and 
numerous data mining tasks) scales poorly (quadratic time complexity) with increasing data 
size. While indexing structures such as suffix arrays are often used reduce the burden of 
pairwise sequence comparison, their performance generally deteriorates with increasing 
sequence length in accordance with the phenomenon known as the ‘curse of dimensionality’ 
(Verleysen and François 2005). 
 
Comparable analytical challenges involving high dimensional sequential data are encountered 
in other data-intensive fields such as signal processing and time series analysis, in which a 
number of effective dimensionality reduction methods have been proposed, including the 
discrete wavelet transform (DWT) (Chan and Fu 1999), the discrete Fourier transform (DFT) 
(Agrawal et al. 1993) and piecewise aggregate approximation (PAA) (Geurts 2001; Keogh et al. 
2001). Through selective preservation of data features, the use of such approaches can allow 
accurate analyses to be performed with reduced computational overhead. Crucially, 
dimensionality reduction may be performed to approximate data to lower dimensional space 
without the loss of useful information, since only minor data characteristics are discarded (Ye 
2003). Due to the successive nature of base observations within nucleic acids, many of these 
approximation approaches can also be applied to sequences of nucleotides (Silverman and 
Linsker 1986) and amino acids (Cheever et al. 1989). Since most of these representation 
approaches are suitable only for numerical sequences, an appropriate numerical sequence 
transformation must be performed prior to using these methods. 
 
Many methods for transforming symbolic nucleotide sequences into numerical sequences have 
been proposed (Kwan and Arniker 2009), permitting the application of various digital signal 
processing techniques to appropriately transformed nucleotide sequences. They include the 
Voss (1992) method (Voss 1992), the DNA walk (Berger et al. 2004), (Lobry 1996), the real 
number method (Chakravarthy et al. 2004), the complex number (Anastassiou 2001), and the 
tetrahedron method (Silverman and Linsker 1986). Fundamentally, all the nucleotide to 
numerical sequence transformation approaches convert a nucleotide sequence into a numerical 
sequence by assigning a unique number or vector to each nucleotide base. Some of the 
methods, including the complex number and the real number methods, introduce biasing 
mathematical properties to the transformed sequence, yet are appropriate for use in certain 
applications such as the detection of AT or GC biases in sequence composition (Arneodo et al. 
1998). The Voss and the tetrahedron methods, among others, are notable as they do not 
introduce biases in internucleotide distance, and thus represent good starting points for numeric 
analysis of nucleotide sequences. 
 
Although various methods from the field of signal processing have previously been applied to 
nucleotide sequences (Silverman and Linsker 1986; Cheever et al. 1989; Katoh et al. 2002), 
they have yet to be applied to the problem of short read assembly. We tested the use of 
established signal processing techniques for assembling short DNA sequencing reads both with 
and without use of a reference sequence, and present a prototype approach for reducing the 
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computational expense of read alignment using signal processing techniques from the field of 
time series data mining. We benchmarked the alignment accuracy of a proof-of-concept short 
read alignment implementation against existing tools, before demonstrating the applicability of 
our approach to de novo assembly. 
 
 
RESULTS 
The four stages of our approach are: i) transforming symbolic nucleotide sequences to 
numerical sequences, ii) creating approximate representations of reads and, where appropriate, 
of a reference sequence, iii) performing accelerated comparison of the reduced dimensionality 
sequence representations to identify candidate alignments, and iv) verifying and finishing 
candidate alignments using original, full resolution sequences. 
 
The symbolic to numerical sequence transformation can be performed using one of several 
methods, including the real number (Chakravarthy et al. 2004) and three dimensional DNA walk 
methods (Lobry 1996) methods illustrated in figures 1 and 3D respectively. The subsequent 
approximation step can be performed using a representation method such as the DFT, the DWT 
or PAA. Each of these can be used to approximate transformed sequences to different levels of 
resolution, permitting reduced complexity sequence analysis (compared in figure 1). Similarity 
between pairs of reduced dimensionality sequence representations can then be efficiently 
established using an appropriate distance measure, enabling candidate alignments to be 
identified. Finally, these alignments are rigorously assessed using original, full resolution data 
and conventional pairwise alignment algorithms. 
 
Sequence approximation 
Effective methods for approximating sequential data should: i) accurately represent data without 
loss of useful information, ii) have low computational overheads, iii) facilitate rapid comparison 
of data, and iv) provide lower bounding — where the distance between data representations is 
always smaller or equal to that of the original data  — guaranteeing no false negative results 
(Faloutsos et al. 1994). 
 
The DFT, the DWT and PAA are three widely used sequential data representation methods 
which satisfy these requirements (Mitsa 2010). The DFT decomposes a numerically 
transformed nucleotide sequence with n positions (dimensions) into a series of n frequency 
components ordered by their frequency. A subset of the resulting Fourier frequencies can be 
used to represent the original sequence at reduced resolution (Agrawal et al. 1993), and the 
tradeoff between analytical speed and accuracy can be varied according to the number of 
frequencies considered (Mörchen 2003). 
 
The DWT is a set of averaging and differencing functions that may be used recursively to 
represent sequential data at different resolutions (Chan and Fu 1999). Unlike the DFT, the DWT 
provides time-frequency localisation, and so better accommodates changes in signal frequency 
over time (i.e. non-stationary signals) compared with the DFT and related methods (Wu et al. 
2000). A drawback of the DWT is its requirement of input with length of an integer exponent of 
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two (i.e. 2n). Where sequences have a length other than 2n, they are padded with zeros up to 
the next integer exponent of two prior to application of the DWT. The corresponding DWT 
representations are then truncated in order to remove the bias associated with artificial padding 
(Percival and Walden 2006). For example, in order to approximate a time series with 500 data 
points to a resolution of three (i.e. 23), artificial padding must be added to increase its length to 
512 (29) – the next integer exponent of two. In this case, the final, eighth wavelet should be 
truncated so as to avoid introducing bias. 
 
In PAA (Geurts 2001; Keogh et al. 2001), a numerical sequence is divided into n equally sized 
windows, the mean values of which together form a compressed sequence representation. The 
selection of n determines the resolution of the representation. While PAA is faster and easier to 
implement than the DFT and the DWT, unlike these two methods it is irreversible meaning that 
the original sequence cannot be recovered from the representations. Figure 1 depicts DFT, 
DWT and PAA sequence representations of a numerically transformed viral sequence (HIV-1). 
 
Reference-based alignment 
To demonstrate the applicability of sequential data representations in the process of read 
alignment, we implemented a naive sequential scanning k-Nearest Neighbours (kNN) read 
alignment algorithm in the Matlab environment. In our proof-of-concept implementation (table 1), 
the prerequisite numerical sequence transformation is performed using a four dimensional 
binary mapping approach proposed by Voss (1992); chosen since it introduces no biases in 
internucleotide distance, and since its binary nature removes the need for normalisation prior to 
analysis. Approximate representations of transformed sequence k-mers are constructed using 
one of three implemented methods: the DFT, the DWT and PAA. Euclidean distance was 
used as a similarity measure for read and reference sequence comparison as: i) it is fast and 
easily implemented, ii) it is applicable to many different representation methods, and iii) its 
performance compares with more sophisticated ‘elastic’ similarity methods for kNN search in 
medium to large datasets (Wang et al. 2013). After generating candidate alignments between 
reads and reference k-mers through pairwise comparison, these candidates alignments are 
verified through Needleman-Wunsch (NW) global alignment of their corresponding original 
sequences. Finally NW alignment scores are used to identify best alignments for each read and 
to reject false positives, and the algorithm’s gapped output is used to construct alignments in the 
widely used Sequence Alignment/Map (SAM) file format. 
 
Benchmarking 
The accuracy our proof-of-concept aligner implementation (three variants) and four existing 
tools was evaluated against simulated HIV-1 reads generated with CuReSim (Caboche et al. 
2014). Sixteen viral population datasets with combined rates of base insertions, deletions and 
substitutions of 0-10% were simulated, and CuReSim’s companion tool CuReSimEval was used 
to quantify alignment accuracy in terms of F-score, a balanced measure of precision and recall. 
 
The relative performance of three numerical sequence approximation methods was assessed 
against simulated reads with 6% and 10% variation from the simulated reference sequence. 
These two simulated datasets were aligned using an otherwise identical implementation using: 
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i) DWT representations of k-mers, ii) DFT representations of k-mers, iii) PAA representations of 
k-mers, and finally iv) numerically transformed but uncompressed k-mers (thus, removing the 
overhead of building approximate sequence representations). 
 
We observed that in spite of their associated overheads, the use of approximate sequence 
representations dramatically reduced execution time and yielded alignments of equal or greater 
accuracy than could be obtained using uncompressed sequences. For simulated reads with 6% 
variation, alignment of uncompressed (baseline) sequences was performed in 734 seconds (s) 
with an F-score of 0.697. For the same dataset, PAA approximated sequences were aligned 
fastest and most accurately with an execution time of 54s (~14-fold faster than baseline) and an 
F-score of 0.704, while the DWT approximated sequences were aligned in 445s (~2 fold faster) 
with an F-score of 0.698, and the DFT approximated sequences were aligned in 120s (~6-fold 
faster) with an F-score of 0.692. 
 
Alignment of reads with 10% overall variation was performed in 853s using uncompressed 
sequences giving rise to an F-score of 0.567. The PAA approximated sequences were again 
aligned fastest in 60s with an F-score of 0.572, while the DWT approximated sequences were 
aligned most accurately (F-score 0.577) but most slowly with an execution time of 516s, and the 
DFT approximated sequences were aligned in 138s with an F-score of 0.575. 
 
The alignment accuracy of our signal decomposition approach was also evaluated alongside the 
existing read aligners Bowtie2 (Langmead and Salzberg 2012), BWA-MEM (Li and Durbin 
2009), Mosaik (Lee et al. 2014), and Segemehl (Otto et al. 2014). Three variants of our 
approach using the DFT, the DWT and PAA dimensionality reduction methods were tested, 
using otherwise identical parameters and k-mers of length 100-300 nucleotides. As existing 
tools were all configured with default parameters and run once per dataset, so as to provide a 
conservative comparison of our tool’s performance, the results we present for our approach 
correspond to the worst-performing k-mer for each dataset. 
 
Using a strict definition of mapping correctness where reads are considered correctly mapped 
only if their exact start position is identified, the performance of the tested aligners was relatively 
similar. Segemehl generally produced the most accurate alignments in terms of F-score (figure 
2A-C), its accuracy falling behind those of other tools only at the highest rate of sequence 
variation tested. Our implementation was outperformed by several existing tools in terms of 
strict start position accuracy. This can be mostly attributed to the use of a global alignment 
algorithm for the alignment finishing step, which, in the presence of insertion variation near the 
beginning of reads, tended to insert gaps rather than truncate the aligned region. Consequently, 
in some cases our approach identified a starting position one or two bases prior to that deemed 
correct by CuReSimEval. The challenges associated with assessing alignment correctness for 
benchmarking purposes are discussed by Holtgrewe et al. (2011). 

Accordingly, a relaxed correctness definition (correct start position ±10 bases) was also 
considered, negating the impact of: i) multiple possible alignments associated with simulated 
variation near the start of reads, ii) use of different gapped alignment algorithms, and iii) the use 
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of different algorithm parameters including scoring matrices and match, mismatch and gap 
extension penalties. Under this relaxed definition, our signal decomposition approach yielded 
the most accurate overall alignments for reads containing both insertion/deletion and 
substitution variation (figure 2F), while our DFT-based implementation offered joint best 
performance for reads containing only substitutions (figure 2E). Alignment accuracy for reads 
containing only insertion/deletion variation was comparable but slightly below the average of 
existing tools tested (figure 2D). Notably, the relative performance of our approach improved 
considerably with increasing rates of sequence variation, and existing tools were outperformed 
at the highest rates tested. 
 
De novo assembly 
To demonstrate the applicability of our approach to de novo assembly of short reads, we 
implemented a naive algorithm for all-against-all k-mer comparison using wavelet 
representations. Reads are first transformed using the Voss method. Every k-mer of each 
transformed read is subsequently identified and approximated to a reduced dimensionality 
wavelet representation using the DWT. These approximated k-mers are then compared with 
one another to establish their pairwise similarities in terms of Euclidean distance, and to 
construct a weighted graph such as shown in figure 3A. Finally, a breadth-first search (BFS) 
algorithm identifies the shortest path through the graph (figure 3B), and after attribution of k-
mers to their corresponding reads, yields an assembly of short reads (figure 3C). Additionally, a 
numerical transformation such as the DNA walk may subsequently be used to aid visualisation 
of the assembly (figure 3D). 
 
We implemented this algorithm and assembled simulated HIV populations. The dimensionality 
of the numerically transformed sequences was reduced by 16-fold using the DWT prior to 
alignment, and the deviation of the resulting assemblies from the reference sequence used for 
read simulation was quantified using CuReSimEval. Figure 4A illustrates the three dimensional 
‘walk’ of the HIV-1 reference sequence HXB2 (accession number: K03455.1), while figures 4B, 
4C and 4D depict the three dimensional surface plots, of de novo alignments for reads with 2%, 
4% and 6% variation. The alignments of the 0%, 2%, 4% and 6% variation datasets had F-
scores of 1, 0.9979, 0.9255 and 0.7772 respectively. 
 
 
DISCUSSION 
We have demonstrated application of a flexible sequence alignment heuristic leveraging 
established signal decomposition methods. Our prototype implementation aligned simulated 
viral reads with comparable overall precision and recall to existing tools, and excelled in the 
alignment of reads with the high levels of sequence diversity often observed in RNA virus 
populations (Archer et al. 2010). Our results show that base-level sequence resolution is not a 
prerequisite of accurate sequence alignment and that analytical performance can be preserved 
or even enhanced through appropriate dimensionality reduction of sequences. For example, 
respective six and fourteen fold reductions in execution time were observed during our tests of 
DFT and PAA-represented sequences, yet in both cases alignment accuracy was marginally 
better than that obtained using full resolution sequences. The approach’s applicability to de 
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novo assembly of divergent sequences was also demonstrated. While our implementation 
makes use of k-mers, the approximate nature of the representation approaches means that 
optimal k-mer selection is considerably less important than it is with conventional exact k-mer 
matching methods. The inherent error tolerance of the approach also permits use of higher k 
values than would be suitable for use with conventional seed-and-extend algorithms, reducing 
the burden of pairwise comparison, and, in de novo assembly, the complexity of building and 
searching an assembly graph. 
 
As demonstrated, nucleotide sequences may be represented as series of numeric vectors, 
enabling the application of existing analytical methods from a variety of mathematical and 
engineering fields. Indeed, to represent the composition of nucleic acid molecules as symbolic 
sequences is entirely arbitrary. By using proven signal decomposition methods, it is possible to 
create approximate representations of nucleotide sequences, permitting substantial reductions 
in the spatiotemporal complexity of their analysis without necessarily compromising analytical 
accuracy. In the context of sequence alignment, pairwise comparison of conservative, lower 
bounding representations of sequences may be performed to quickly reduce the search space 
of a more rigorous and computationally demanding final alignment stage, all without giving rise 
to false negative alignments. While we have applied this approach heuristically, an end-to-end 
alignment strategy using sequence representations of iteratively increasing resolution is 
conceivable, and an optimised implementation could allow time-efficient analyses of large, high 
complexity sequencing datasets without sacrificing analytical accuracy. 
 
Efficient mining of terabase-scale biological sequences requires us to look beyond substring 
indexing algorithms towards more versatile methods of compression for both data storage and 
analysis. The use of probabilistic data structures can considerably reduce the computer memory 
required for in-memory sequence lookups at the expense of a few false positives, and Bloom 
filters and related data structures have seen broad application in k-mer centric tasks such as 
error correction (Shi et al. 2010), in silico read normalisation (Zhang et al. 2014) and de novo 
assembly (Salikhov et al. 2013; Berlin et al. 2014). However, while these hash-based 
approaches perform very well on datasets with high sequence redundancy, for large datasets 
with many distinct k-mers, large amounts of memory are still necessary (Zhang et al. 2014). 
Lower bounding approximation (such as DFT, DWT and PAA) exhibits the same attractive one-
sided error offered by these probabilistic data structures, yet – rather than hashes – constructs 
intrinsically useful sequence representations, permitting their comparison with one another. 
Furthermore, approximation allows compression of standalone sequence composition, enabling 
flexible reduction of sequence resolution according to analytical requirements, so that redundant 
sequence precision need not hinder analysis. In large datasets, the associated reductions in 
resource usage can be significant. While the problem of read alignment to a known reference 
sequence is largely solved, the assembly of large and/or poorly characterised sequenced 
genomes remains limited by computational methods. Moreover, consideration of the 
metagenomic composition of mixed biological samples further extends the scope and scale of 
the assembly problem beyond what is tractable using conventional sequence comparison 
approaches. Through implementing prototypes of a reference-based and a de novo aligner, we 
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have demonstrated that numerical sequence approximations represent a tractable and versatile 
approach to short read analysis. 
 
 
METHODS 
Symbolic to numeric sequence transformation 
The Voss transformation is a fixed mapping approach, which turns a nucleotide sequence with n 
dimensions into a 4n-dimensional binary matrix. Each row vector in the matrix represents a 
nucleotide base (symbols G, C, A and T), while each column vector represents a sequence 
position. Binary values are assigned to each cell, indicating the presence or absence of each 
nucleotide base at each sequence position (equation 1). Where V4i is the binary indicator for 
presence of a nucleotide in the ith position of the sequence S with n bases. 

V4i  =

1i
1 if  i =  C

0 otherwise

⎧
⎨
⎩

2i
1 if  i =  G

0 otherwise

⎧
⎨
⎩

3i
1 if  i =  A

0 otherwise

⎧
⎨
⎩

4i
1 if  i =  T

0 otherwise

⎧
⎨
⎩

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 ,  ∀ i ∈  Sn

        (1) 

Since the Voss transformation does not introduce inter-base mathematical bias, the pairwise 
distances between different transformed bases is the same. 

DNA walks are graphical portrayals of the trajectories of nucleotide sequences in Hilbert space. 
In two dimensional DNA walks (Berger et al. 2004), the pyrimidines cytosine and thymine 
(symbols C and T) have an upward trajectory while the purines adenine and guanine (A and G) 
have a downward trajectory. The sequence’s graph expands in a cumulative manner with each 
consecutive nucleotide in sequence (equation 2). In three dimensional DNA walks (Lobry 1996), 
the cardinal directions north, south, east or west are assigned to each nucleotide base. In this 
way, a nucleotide sequence is represented as a three dimensional graph. DNA walks allow 
intuitive visualisation of sequence composition and variation (such as the viral genome in figure 
4A). 

Similarity search approaches for sequential data 
Suitable methods for measuring the similarity of sequential data include the Lp-norms (Yi and 
Faloutsos 2000), Dynamic Time Warping (DTW) (Keogh and Ratanamahatana 2005), Longest 
Common SubSequence (LCSS) (Vlachos et al. 2002) and alignment algorithms such as the 
Needleman-Wunsch and Smith-Waterman algorithms. Euclidean distance is arguably the most 
widely used Lp-norm method for sequential data comparison. Lp-norms are straightforward and 
fast to compute, but require input data of the same dimensionality (sequence length). For 
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comparing sequences of different length, a workaround is to truncate the longer sequence to the 
same length as the shorter sequence. Furthermore, Lp-norm methods do not accommodate for 
shifting in the x-axis (time or position) and are thus limited for identifying similar features 
between data that are offset. Elastic similarity/dissimilarity methods such as LCSS, DTW and 
various alignment algorithms permit comparison of data with different dimensions and tolerate 
shifts in the x-axis. These properties of elastic similarity methods can be very useful in the 
analysis of datasets such as speech signals, but are computationally expensive (Kotsakos et al. 
2013) in comparison with measures of Euclidean distance. 
 
Similarity search strategies can be broadly classified into whole matching and subsequence 
matching methods. Whole matching is appropriate for comparing sequences with similar overall 
characteristics—including length—with the queried sequence. Subsequence matching, by 
contrast, is more suited to identifying similarity between a short query sequence and limited, 
subsequence regions of longer sequences. Subsequence matching can however be effectively 
adapted for whole matching purposes through copying to a new dataset each subsequence 
falling within a sliding window of the longer sequence. The newly created dataset is then used 
for whole matching similarity search (Das et al. 1998). In spite of the storage redundancies 
associated with this approach, it is both fast and easily implemented, and so was used for our 
prototype alignment algorithm. 
 
Read simulation ….after transformations 
Using CuReSim, sixteen pyrosequencing runs of an HIV-1 HXB2 reference sequence (GenBank 
accession number: K03455.1) were simulated with a mean single read length of 400 nucleotides 
and mean coverage depth of 100 reads: i) in the absence of variation or sequencing error, ii) 
with base insertion/deletion rates of 1-5%, iii) with base substitution rates of 1-5%, and iv) with 
matching insertion/deletion and substitution rates of 1-5% (2%, 4%, 6%, 8%, and 10% overall 
variation) so as to simulate the heterogeneity present in diverse viral populations. Read quality 
was simulated at a fixed value of Sanger Q30. CuReSim recorded the exact origin of each 
simulated read with respect to the reference sequence, enabling critical evaluation of 
alignments using CuReSimEval in terms of precision, recall and F-score. 

Benchmarking 
Alignment accuracy was evaluated according to strict and relaxed definitions of mapping 
correctness. Correct read mapping according to the strict definition required exact identification 
of a read’s starting position on the reference sequence, while the relaxed definition extended 
correctness to include ten positions to either side (±10 bases) of the known start position. These 
criteria were assessed using CureSimEval. 
 
The relative performance of three dimensionality reduction methods was evaluated using 
simulated reads with 6% and 10% variation. These two read datasets were aligned using an 
otherwise identical implementation using: i) DWT representations of Voss-transformed k-mers, 
ii) DFT representations of Voss-transformed k-mers, iii) PAA representations of Voss-
transformed k-mers, and finally iv) Voss-transformed but uncompressed k-mers (and thus 
removing the overhead of building approximate sequence representations). 
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The three variants of our alignment implementation were evaluated in terms of mapping 
accuracy alongside the four existing read aligners Bowtie2 2.2.3, BWA-MEM 0.7.10, MOSAIK 
2.2.3 and Segemehl 0.1.9 under Mac OS 10.9.4 using default parameters. The accuracy of 
these tools together with our proof-of-concept implementation was evaluated against the 
simulated reads using CuReSimEval. 
 
In our prototype reference aligner implementation, DWT k-mer representations had a resolution 
of eight wavelets and were truncated where necessary to remove bias associated with artificially 
padding sequence length to the next highest integer exponent of two, while PAA 
representations had a length of eight, and the DFT representations used the first six frequencies 
from each sequence’s Fourier series. Different k-mer lengths of 100-300 nucleotides (in 
increments of ten) were evaluated. In all cases, the Euclidean distance was used as a measure 
of sequence similarity. In the final, full resolution sequence alignment stage, default Matlab NW 
scoring parameters and the NUC44 [ftp://ftp.ncbi.nih.gov/blast/matrices/] were used. In order to 
provide a conservative comparison of our tool’s performance with the existing tools which were 
tested with default parameters, the results presented correspond to the worst-performing k-mer 
length in terms of F-score for each read dataset. 
 
Application to de novo assembly 
All-to-all pairwise comparison of DWT k-mer representations was performed using Euclidean 
distance to inform the construction of a weighted assembly graph. The shortest path through the 
graph was identified using a BFS algorithm implemented in Matlab R2013a. Simulated HIV-1 
HXB2 reads with sequence variation of 0%, 2%, 4% and 6% were assembled. Forward reads 
were represented by their initial k-mers of length 256, and these 256-mers were approximated 
to a resolution of 16 wavelets prior to graph construction. 
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FIGURE LEGENDS 
Figure 1. A numerically transformed DNA sequence represented at different levels of spatial 
resolution using (A) discrete Fourier transforms (DFT), (B) discrete wavelet transforms (DWT) 
and (C) piecewise aggregate approximation (PAA). A 30 nucleotide sequence (top) is shown 
transformed into a numerical sequence (black lines) using the real number transformation 
method (T=1.5, C=0.5, G=-0.5 and A=-1.5). (A) DFT representations of the sequence with 5 
(red), 3 (blue) and 1 (green) respective Fourier frequencies. (B) DWT representations of the 
same sequence with 8 wavelets (red), 4 wavelets (blue), and 2 wavelets (green). (C) PAA 
representations of the same sequence with 8 (red), 5 (blue ) and 3 (green) respective 
coefficients. 
 
Figure 2. Accuracy of our prototype aligners and four established tools in aligning simulated 
400 nucleotide (mean) reads with varying levels of sequence variation. A-C depict alignment 
accuracies according to a strict criteria, requiring identification of a read's exact starting position 
determined by the read simulator, while in D-F a relaxed (±10 base) criteria is used. A and D 
show results for reads with 0-5% insertion/deletion variation, while B and E correspond to reads 
with 0-5% substitution variation. C and F show obtained accuracies for reads with combined, 
equally contributing insertion/deletion and substitution rates of 0-10%. 
 
Figure 3. A de novo read assembly methodology for numerically represented nucleotide 
sequences. All-against-all sequence comparison (A) enables construction of a read graph with 
weighted edges. The weight assigned to each edge is the smallest pairwise distance between 
every possible k-mer representation of the two reads. The shortest path in the graph is identified 
with a breadth-first search algorithm (B), thereby enabling read alignment (C). A DNA walk of 
aligned reads (D) may subsequently be used to illustrate alignment characteristics. 
 
Figure 4. A three-dimensional DNA walk of the HIV-1 HXB2 genome (A) also plotted with de 
novo alignments of three simulated HXB2 sequencing datasets of 2%, 4%, and 6% rates of 
combined insertion/deletion and substitution variation (B-D respectively). Plotting DNA walks of 
aligned short reads enables intuitive visualisation of the nature and extent of sequence diversity 
across a genomic region, with sequence variants each represented by a distinct trajectory 
through space. 
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TABLES 
 
Table 1: Implementation of Sequential Scanning alignment 

1) Transform short reads (of forward and reverse strand origin) and reference genome into 
numerical sequences 

2) Select appropriate k-mer length 

3) Create approximate representations (ref_kmer_reps) of each k-mer component of the 
numerically transformed reference sequence. 

4) Create approximate representations (read_reps) of the initial k-mer of each numerically 
transformed read. 

5) Identify potential candidate positions using DWT representations. 
 
for each read i 
  best_dist = null 
  candidate_positions = [] 
  for each ref_kmer j 
     if dist(read i,ref_kmer j) < best_dist 
        best_dist = dist(read i,ref_kmer j) 
        candidate_positions_i[1] = j 
     elseif dist(read i,ref_kmer j) == best_dist 
        candidate_positions_i[+1] = j 
     end 
  end 
end 
 

6) Align approximate results on original data with Needleman-Wunsch algorithm (NWA). 
 
for each read i 
  best_aln_score = null 
  best_aln = [] 
  for each ref_kmer j in candidate_positions_i 
     if NWA_score(ref_kmer j,read i) > best_aln_score 
        best_aln_score = NWA_score(ref_kmer j,read i) 
        best_aln = NWA_aln(ref_kmer j,read i) 
     end 
  end 
end 
 

7) Output alignment in Sequence Alignment/Map (SAM) format . 
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