
© Oxford University Press 2005 1 

Methods 

Alignment by numbers: sequence assembly using compressed 
numerical representations 
 
Avraam Tapinos1*, Bede Constantinides1, Douglas B Kell2,3, David L Robertson1*  
 
1Computational and Evolutionary Biology, Faculty of Life Sciences, The University of Manchester, Manchester, 
M13 9PT, UK. 
2School of Chemistry, and 3Manchester Institute of Biotechnology, The University of Manchester, Manchester, 
M1 7DN, UK 
*Correspondence to: david.robertson@manchester.ac.uk, avraam.tapinos@manchester.ac.uk 
 
 
ABSTRACT 
Motivation: DNA sequencing instruments are enabling genomic 
analyses of unprecedented scope and scale, widening the gap 
between our abilities to generate and interpret sequence data. 
Established methods for computational sequence analysis 
generally use nucleotide-level resolution of sequences, and while 
such approaches can be very accurate, increasingly ambitious 
and data-intensive analyses are rendering them impractical for 
applications such as genome and metagenome assembly. 
Comparable analytical challenges are encountered in other data-
intensive fields involving sequential data, such as signal 
processing, in which dimensionality reduction methods are 
routinely used to reduce the computational burden of analyses. 
We therefore seek to address the question of whether it is 
possible to improve the efficiency of sequence alignment by 
applying dimensionality reduction methods to numerically 
represented nucleotide sequences.  
 
Results: To explore the applicability of signal transformation and 
dimensionality reduction methods to sequence assembly, we 
implemented a short read aligner and evaluated its performance 
against simulated high diversity viral sequences alongside four 
existing aligners. Using our sequence transformation and feature 
selection approach, alignment time was reduced by up to 14-fold 
compared to uncompressed sequences and without reducing 
alignment accuracy. Despite using highly compressed sequence 
transformations, our implementation yielded alignments of similar 
overall accuracy to existing aligners, outperforming all other tools 
tested at high levels of sequence variation. Our approach was 
also applied to the de novo assembly of a simulated diverse viral 
population. Our results demonstrate that full sequence resolution 
is not a prerequisite of accurate sequence alignment and that 
analytical performance can be retained and even enhanced 
through appropriate dimensionality reduction of sequences. 
 

1 INTRODUCTION 
Contemporary sequencing technologies have massively 
parallelised the determination of nucleotide order within genetic 
material, making it possible to rapidly sequence the genomes of 

individuals, populations and interspecies samples (Bentley et al., 
2008; Eid et al., 2009; Margulies et al., 2005; Rothberg et al., 
2011; Salipante et al., 2014). However, the sequences generated 
by these instruments are usually considerably shorter in length 
than the genomic regions they are used to study. Genomic 
analyses accordingly begin with the process of sequence 
assembly, wherein sequence fragments (reads) are reconstructed 
into the larger sequences from which they originated. 
Computational methods play a vital role in the assembly of short 
reads, and a variety of assemblers and related tools have been 
developed in tandem with emerging sequencing platforms 
(Bradnam et al., 2013; Schatz et al., 2010; Shendure and Aiden, 
2012). 
 
Where the objective of a nucleotide sequencing experiment is to 
derive a single consensus sequence representing the genome of 
an individual, various computational methods are applicable. 
Seed-and-extend alignment methods using suffix array 
derivatives such as the Burrows-Wheeler Transform have 
emerged as the preferred approach for assembling short reads 
informed by a supplied reference sequence (Li and Durbin, 
2009; Shrestha et al., 2014), while graph-based methods 
employing Overlap Layout Consensus (OLC) (Kececioglu and 
Myers, 1995; Myers, 1995) and de Bruijn graphs of k-mers (Earl 
et al., 2011; Iqbal et al., 2012; Pevzner et al., 2001) have become 
established for reference-free de novo sequence assembly. 
However, the effectiveness of these approaches varies 
considerably (Bradnam et al., 2013) for characterising genetic 
variation within populations (‘deep’ sequencing), or inter-
species biodiversity within a metagenomic sample. 
 
Within populations comprising divergent variants, such as those 
established by a virus within their host, bias associated with the 
use of a reference sequence can lead to valuable read 
information being discarded during assembly (Archer et al., 
2010). While this can be overcome by constructing a data-
specific reference sequence after initial reference alignment, this 
still necessitates use of a reference sequence for the initial 
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alignment, a limiting factor for sequencing unknown species, 
often abundant in metagenomic samples. On the other hand, 
while de novo approaches require little a priori knowledge of 
target sequence composition, they are very computationally 
intensive and their performance scales poorly with datasets of 
increasing size (Myers, 1995). Indeed, the underlying problem 
of de novo assembly is NP-hard, with the presence of genetic 
diversity serving to increase further the complexity of 
computational solutions. As such, aggressive heuristics are 
typically employed in order to reduce the running time of de 
novo assemblers, which in turn can compromise assembly 
quality. 
 
The difficulty of diverse population assembly is exacerbated by 
the scale of sequencing datasets. Contemporary sequencing 
platforms may generate billions of reads per run, posing 
considerable challenges for timely computational sequence 
analysis. Of these, a key challenge to be overcome when 
analysing any sufficiently large dataset arises when its size 
exceeds the capacity of a computer’s working memory. If, for 
example, stored short read data exceeds the capacity of a 
computer’s random access memory (RAM), these data must be 
exhaustively ‘swapped’ between RAM and disk storage that is 
orders of magnitude slower to access, forming a major analysis 
bottleneck (Yang and Wu, 2006). De novo assembly in 
particular requires manyfold more memory, O(n2),than is needed 
to store the read information itself. Additionally, all-to-all 
pairwise comparison of reads scales poorly (quadratic O(n2) time 
complexity) with increasing data size. While indexing structures 
such as suffix arrays are often used to reduce the burden of 
pairwise sequence comparison, O(n log(n)), their performance 
generally deteriorates with increasing sequence length, in 
accordance with the phenomenon known as the ‘curse of 
dimensionality’ (Verleysen and François, 2005). 
 
Comparable analytical challenges involving high dimensional 
sequential data are encountered in other data-intensive fields 
such as signal and image processing, and time series analysis, 
where a number of effective dimensionality reduction methods 
have been proposed, including the discrete Fourier transform 
(DFT) (Agrawal et al., 1993), the discrete wavelet transform 
(DWT) (Chan and Fu, 1999; Woodward et al., 2004), and 
piecewise aggregate approximation (PAA) (Geurts, 2001; Keogh 
et al., 2001). The DFT or DWT may be used to transform data 
into their frequency or wavelet domains respectively, enabling 
the identification of major data characteristics and the 
suppression of minor features and/or noise (Shumway et al., 
2000). Within the field of data mining, such methods are 
commonly used to quickly obtain approximate solutions for a 
given problem. To do this, data are compared using major 
features of the transformations (usually at a much lower 
dimensionality than the original data) and are subsequently 
verified either by using original data, or by reversing the 
transformations (Ye, 2003). This verification step is important 

since feature selection can entail a loss of information which 
varies with both the selection process used and the composition 
of input data. Due to the ordered nature of genetic data, many of 
these transformation approaches can also be applied to 
sequences of nucleotides (Silverman and Linsker, 1986) and 
amino acids (Cheever et al., 1989). Since most of these 
transformation approaches are suitable only for numerical 
sequences, an appropriate numerical sequence representation 
must be applied prior to using these methods. 
 
Many methods for representing symbolic nucleotide sequences 
as numerical sequences have been proposed (Kwan and Arniker, 
2009), permitting the application of various digital signal 
processing techniques to nucleotide sequences. They include the 
Voss method (Voss, 1992), the DNA walk (Berger et al., 2004) 
(Lobry, 1996), the real number (Chakravarthy et al., 2004), 
complex number (Anastassiou, 2001), and tetrahedron methods 
(Silverman and Linsker, 1986). Fundamentally, all of these 
sequence representation approaches convert a nucleotide 
sequence into a numerical sequence by assigning a number or 
vector to each nucleotide. Some of the methods, including the 
complex number and the real number methods, introduce biasing 
mathematical properties to the transformed sequence, yet are 
appropriate for use in certain applications such as the detection 
of AT or GC biases in sequence composition (Arneodo et al., 
1998). The Voss and the tetrahedron methods, among others, are 
notable as they do not introduce biases in internucleotide 
distance, and thus represent a good starting point for pairwise 
comparison of nucleotide sequences. 
 
To investigate the applications of time series data mining 
techniques for sequence alignment, we used three established 
dimensionality reduction methods to align simulated short DNA 
sequencing reads both with and without use of a reference 
sequence. We benchmarked the accuracy of our short read 
aligner implementation against existing tools, and successfully 
demonstrated the applicability of our approach to de novo 
assembly. 
 

2 METHODS 
2.1 Symbolic to numeric sequence representations 
For the numerical representation step, we primarily focus on the Voss 
representation (Voss, 1992). This is a fixed mapping approach which 
turns a nucleotide sequence with n dimensions into a four-dimensional 
binary matrix of length n × 4.  
 
Each row vector in the matrix represents a nucleotide (symbols G, C, A 
and T), while each column vector represents a sequence position. Binary 
values are assigned to each cell, indicating the presence or absence of a 
nucleotide at each sequence position (equation 1). V4i is the binary 
indicator for presence of a nucleotide in the ith position of the sequence S 
with n nucleotides. Since the Voss representation does not introduce 
internucleotide mathematical bias, the pairwise distances between all the 
sets of non-similar transformed nucleotide is the same (for example, the 
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distance between A and T is equal to the distances between A and C as 
well as A and G). 
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By contrast, a DNA walk assigns trajectories to each sequence 
nucleotide and may be used to depict genetic sequences in Euclidean 
space. In two-dimensional DNA walks (Berger et al., 2004), the 
pyrimidines cytosine and thymine (symbols C and T) have an upward 
trajectory while the purines adenine and guanine (A and G) have a 
downward trajectory. The trajectory of the sequence extends in a 
cumulative manner with each consecutive nucleotide. In three-
dimensional DNA walks (Lobry, 1996), the cardinal directions north, 
south, east or west are assigned to each nucleotide. 
 

2.2 Sequence Transformation 
Effective methods for transforming/approximating sequential data 
should: i) accurately transform/approximate data without loss of useful 
information, ii) have low computational overheads, iii) facilitate rapid 

comparison of data, and iv) provide lower bounding—where the distance 
between data representations is always smaller than or equal to that of 
the original data—guaranteeing no false negative results (Faloutsos et 
al., 1994). The DFT and the DWT transformation methods and PAA 
approximation method satisfy these requirements and are widely used 
for analyzing discrete signals (Mitsa, 2010); we thus use them here. 
These methods can be used to transform/approximate nucleotide 
sequence numerical representations to different levels of resolution, 
permitting reduced dimensionality sequence analysis (compared in Fig. 
1). 
 
The DFT decomposes a numerically represented nucleotide sequence 
with n positions (dimensions) into a series of n frequency components 
ordered by their frequency. However, since the DFT method has high 
time complexity, O(n2), the fast Fourier transform (FFT) algorithm 
(Cooley and Tukey, 1965) with lower time complexity, O(n log(n)), is 
typically used instead. A prerequisite of the FFT algorithm is a signal 
with length equal to an integer exponent of two, 2n. Where sequences 
have a length other than 2n, they are padded with zeros up to the next 
integer exponent of two prior to application of the FFT. Because the 
DFT decomposition of a real signal is conjugate symmetric (Briggs, 
1995), half of the resulting frequency components can be safely 
discarded yet still permit complete signal reconstruction from the 
remaining frequencies. In time series data mining, a subset of the 
resulting Fourier frequencies are used to approximate the original 
sequence in a lower dimensional space (Agrawal et al., 1993), and the 
tradeoff between analytical speed and accuracy can be varied according 
to the number of frequencies considered (Mörchen, 2003).  
 
The DWT is a set of averaging and differencing functions that may be 
used recursively to represent sequential data at different resolutions 

 
Fig. 1. A numerically represented DNA sequence transformed at various levels of spatial resolution using the discrete Fourier transform (DFT) of the whole 
sequence (A), the Haar discrete wavelet transform (DWT) (B), and piecewise aggregate approximation (PAA) (C). A 30 nucleotide sequence (top) is 
represented as a numerical sequence (black lines) using the real number representation method (T=1.5, C=0.5, G=-0.5 and A=-1.5). DFT approximations of 
the sequence with 5 (red), 3 (blue) and 1 (green) respective Fourier frequencies (A). DWT approximations of the same sequence with 8 wavelets (red), 4 
wavelets (blue), and 2 wavelets (green) (B). PAA approximations of the same sequence with 8 (red), 5 (blue) and 3 (green) respective coefficients (C). 
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(Chan and Fu, 1999; Jensen and la Cour-Harbo, 2001). Unlike the DFT, 
the DWT provides time-frequency localisation, so better accommodates 
changes in signal frequency over time (non-stationary signals), 
compared with the DFT and related methods (Wu et al., 2000). As with 
the FFT, a drawback of the DWT is its requirement of input with length 
of an integer exponent of two, 2n. Where sequences have a length other 
than 2n, artificial zero padding is therefore added to increase the size of 
the signal up to the next integer exponent of two prior to application of 
the DWT. The corresponding DWT transformations are then truncated in 
order to remove the bias associated with artificial padding (Percival and 
Walden, 2006). For example, in order to generate the DWT 
transformation of a time series with 500 data points to a resolution of 
three, i.e. 23, artificial padding must be added to increase its length to 
512 (29) – the next integer exponent of two. In this case, the final, eighth 
wavelet should be truncated so as to avoid introducing bias. 
 
In PAA a numerical sequence is divided into n equally sized windows, 
the mean values of which together form a compressed sequence 
representation (Geurts, 2001; Keogh et al., 2001). The selection of n 
determines the resolution of the approximate representation. While PAA 
is faster and easier to implement than the DFT and the DWT, unlike 
these two methods it is irreversible, meaning that the original sequence 
cannot be recovered from the approximation. Fig. 1 depicts examples of 
the DFT, the DWT and PAA transformations of a short nucleotide 
sequence. 
 

2.3 Similarity search approaches for sequential data 
In addition to the DFT, the DWT and PAA, suitable methods for 
measuring the similarity of sequential data or transformations include the 
Lp-norms (Yi and Faloutsos, 2000), dynamic time warping (DTW) 
(Keogh and Ratanamahatana, 2005), longest common subsequence 
(LCSS) (Vlachos et al., 2002) and alignment approaches such as the 
Needleman-Wunsch and Smith-Waterman algorithms. Euclidean 
distance is arguably the most widely used Lp-norm method for 
sequential data comparison. Lp-norms are straightforward and fast to 
compute, but require input data of the same dimensionality (sequence 
length). For comparing sequences of different lengths, a workaround is 
to simply truncate the longer of the sequences. Furthermore, Lp-norm 
methods do not accommodate for shifts in the x-axis (time or position) 
and are thus limited in their ability to identify similar features within 
offset data. Elastic similarity/dissimilarity methods such as LCSS, 
unbounded DTW and various alignment algorithms permit comparison 
of data with different dimensions and tolerate shifts in the x-axis. These 
properties of elastic similarity methods can be very useful in the analysis 
of speech signals, for example, but can be computationally expensive 
(Kotsakos et al., 2013) in comparison with measures of Euclidean 
distance. Several approaches have been proposed to permit fast search 
with DTW, including the introduction of global constraints (wrapping 
path) or the use of lower bounding techniques such as LB_keogh (Keogh 
and Ratanamahatana, 2005). 
 
Similarity search strategies can be broadly classified into whole 
matching and subsequence matching methods. Whole matching is 
appropriate for comparing sequences with similar overall 
characteristics—including length—with the queried sequence. 
Subsequence matching, by contrast, is more suited to identifying 
similarity between a short query sequence and limited, subsequence 
regions of longer sequences. Subsequence matching can however be 
effectively adapted for whole matching purposes through copying to a 
new dataset each subsequence falling within a sliding window of the 

longer sequence. The newly created dataset is then used for whole 
matching indexing similarity search (Das et al., 1998). While using 
subsequence similarity search for clustering is flawed (Keogh and Lin, 
2005), here this approach is only used as a subroutine for extracting all 
possible subsequences from the genome, which are then used for 
indexing short reads to the genome. In spite of the storage redundancies 
associated with this approach, it is both fast and easily implemented, and 
so was used for our alignment algorithm. 

 

3 RESULTS 
In order to assess the performance of our sequence 
transformation and approximation approach, we implemented 

 
 
Fig. 2. Overview of our short read aligner implemented using time series 
transformation/approximation methods. (i) Creation of numerical 
representations of input sequences. (ii) Application of an appropriate 
signal decomposition method to transform sequences into their feature 
space. (iii) Use of approximated transformations to perform rapid data 
analysis in lower dimensional space. (iv) Validation of inferences against 
original, full-resolution input sequences. In the case of reference-based 
alignment, approximated read transformations were compared with a 
reference sequence. In our de novo implementation, pairwise comparisons 
were performed between all of the approximated read transformations. 
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reference-based and de novo read aligners. The four key stages 
of our approach (Fig. 2) are as follows: i) transforming 
nucleotide sequence characters into numerical sequences, ii) 
creating approximate transformations of reads and, where 
appropriate, of a reference sequence, iii) performing accelerated 
comparison of the sequence approximations created in the 
previous step in order to identify candidate alignments, and iv) 
verifying and finishing candidate alignments using original, full-
resolution sequences and the Needleman-Wunsch (NW) global 
alignment algorithm. 
 

3.1 Read simulation 
To facilitate performance evaluation of our read aligner 
implementation, sequencing reads were simulated. Using 
CuReSim (Caboche et al., 2014), sixteen pyrosequencing runs of 
an HIV-1 HXB2 reference sequence (9719 nucleotides, 
GenBank accession: K03455.1) were simulated with a mean 
single read length of 400 nucleotides and mean coverage depth 
of 100 reads: i) in the absence of variation or sequencing error, 
with ii) nucleotide insertion/deletion rates of 1–5%, iii) 
nucleotide substitution rates of 1–5%, and iv) matching 
insertion/deletion and substitution rates of 1–5% (2%, 4%, 6%, 
8%, and 10% overall variation) so as to simulate the 
heterogeneity present in diverse viral populations. Read quality 
was simulated at a fixed value of Sanger Q30. CuReSim 
recorded the exact origin of each simulated read with respect to 
the reference sequence, enabling later evaluation of alignments 
using in terms of precision, recall and F-Score. 
 

3.2 Reference-based alignment 
To demonstrate the applicability of sequential data 
transformations and feature selection in read alignment, we 
implemented a naive sequential scanning k-Nearest Neighbours 
(kNN) read alignment in the Matlab environment. In our 
implementation (Table 1), the prerequisite numerical sequence 
representation is performed using a four-dimensional binary 
mapping approach proposed by Voss, chosen since, as already 
noted, it introduces no biases in internucleotide distance, and 
since its binary nature removes the need for normalisation prior 
to analysis. Transformations of numerically represented 
sequence k-mers are constructed using one of three implemented 
methods: the DFT, the DWT and PAA. Euclidean distance was 
used as a similarity measure for read and reference sequence 
comparison as it is: i) fast and easily implemented, ii) applicable 
to many different transformation/approximation methods, and 
iii) its performance compares with more sophisticated ‘elastic’ 
similarity methods for kNN search in medium to large datasets 
(Wang et al., 2013). After generating candidate alignments 
between reads and reference k-mers through pairwise 
comparison of their transformations, these candidates alignments 
are verified NW global alignment of their corresponding original 
sequences. Finally, NW alignment scores are used to identify 
best alignments for each read and to reject false positives, and 

the algorithm’s gapped output is used to construct alignments in 
the widely used Sequence Alignment/Map (SAM) file format. 
 

3.3 Benchmarking 
CuReSim’s companion tool CuReSimEval was used to quantify 
alignment accuracy in terms of F-score, a balanced measure of 
precision and recall. The relative performance of three numerical 
sequence transformation methods was assessed against 
simulated reads with 6% and 10% variation from the HIV-1 
reference sequence. These two simulated datasets were aligned 
using an otherwise identical implementation using: i) the DWT 
transformation, ii) the DFT transformation, iii) PAA 
approximation of the Voss sequence representation of the 
nucleotide sequences and, finally, iv) the full resolution Voss 
representations of the sequences; thus removing the overhead of 
building approximate sequence transformations. 
 
We observed that in spite of their associated overheads, the use 
of approximate sequence transformations dramatically reduced 
execution time and yielded alignments of equal or greater 
accuracy than could be obtained using uncompressed sequences. 
For simulated reads with 6% variation, alignment of 
uncompressed (baseline) sequences was performed in 734 
seconds (s) with an F-score of 0.697. For the same dataset, 
PAA-approximated sequences were aligned fastest and most 
accurately with an execution time of 54s (~14-fold faster than 
baseline) and an F-score of 0.704, while the for the DWT 

Table 1. Pseudocode of the alignment procedure 
 
1) Represent short reads and reference genome as numerical sequences. 
2)  Select k-mer length. 
3) Create transformations of each k-mer component of the reference and 
the initial k-mer of the short reads. 
4) Identify candidate alignments using data transformations. 
for each read i 
  best_dist = null 
  candidate_positions = [] 
  for each ref_kmer j 
    if dist(read i,ref_kmer j) < best_dist 
      best_dist = dist(read i,ref_kmer j) 
      candidate_positions_i[1] = j 
    elseif dist(read i,ref_kmer j) == best_dist 
      candidate_positions_i[+1] = j 
    end 
  end 
end 

5) Align approximate results with original data with Needleman-Wunsch 
algorithm (NWA): 
for each read i 
  best_score = null 
  best_aln = [] 
  for each ref_kmer j in candidate_positions_i 
    if NWA_score(ref_kmer j,read i) > best _score 
      best_score = NWA_score(ref_kmer j,read i) 
      best_aln = NWA_aln(ref_kmer j,read i) 
    end 
  end 
end 

6) Output alignment in Sequence Alignment/Map (SAM) format. 
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implementation sequences were aligned in 445s (~2 fold faster) 
with an F-score of 0.698, and the DFT implementation 
sequences were aligned in 120s (~6-fold faster) with an F-score 
of 0.692. 
 
Alignment of reads with 10% overall variation was performed in 
853s using uncompressed sequences giving rise to an F-score of 
0.567. The PAA approximated sequences were again aligned 
fastest in 60s (again some 14-fold quicker) with an F-score of 
0.572, while the DWT transformed sequences were aligned most 
accurately (F-score 0.577) but most slowly with an execution 
time of 516s, and the DFT transformed sequences were aligned 
in 138s with an F-score of 0.575. 
 
The alignment accuracy of our signal decomposition approach 
was also evaluated alongside the existing read aligners Bowtie2 
(Langmead and Salzberg, 2012), BWA-MEM (Li and Durbin, 
2009), Mosaik (Lee et al., 2014), and Segemehl (Otto et al., 
2014). Three variants of our approach using the DFT, the DWT 
and PAA dimensionality reduction methods were tested, using 
otherwise identical parameters and k-mers of length 100–300 

nucleotides. Existing tools were all configured with default 
parameters and run once per dataset, so as to provide a 
conservative comparison of our implementation performance. 
Note, the results we present for our approach correspond to the 
worst performing k-mer for each dataset. 
 
Using a strict definition of mapping correctness where reads are 
considered correctly mapped only if their exact start position is 
identified, the performance of the tested aligners was relatively 
similar (Fig. 3A–C). Segemehl generally produced the most 
accurate alignments in terms of F-score, its accuracy falling 
behind those of other tools only at the highest rate of sequence 
variation tested. Our implementation was outperformed by 
several existing tools in terms of strict start position accuracy. 
This can mostly be attributed to the use of a global alignment 
algorithm for the alignment finishing step, which, in the 
presence of insertion variation near the beginning of reads, 
tended to insert gaps rather than truncate the aligned region. 
Consequently, in some cases our approach identified a starting 
position one or two nucleotides before that deemed correct by 
CuReSimEval. The challenges associated with assessing 

 
Fig. 3. Accuracy of our prototype aligner variants and four established tools in aligning simulated 400 nucleotide (mean length) reads with varying levels of 
sequence variation. A-C depict alignment accuracies according to a strict criteria, requiring identification of a read's exact starting position determined by the 
read simulator, while in D-F a relaxed (±10 nucleotides) criterion is used. A and D show results for reads with 0-5% insertion/deletion variation, while B and 
E correspond to reads with 0-5% substitution variation. C and F show obtained accuracies for reads with combined, equally contributing insertion/deletion 
and substitution rates of 0-10%. 
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alignment correctness for benchmarking purposes are discussed 
by (Holtgrewe et al., 2011). 
 
Accordingly, a relaxed ‘correctness’ definition (correct start 
position ±10 nucleotides) was also considered (Fig. 3D–F), 
negating the impact of: i) multiple possible alignments 
associated with simulated variation near the start of reads, ii) use 
of different gapped alignment algorithms, and iii) the use of 
different algorithm parameters including scoring matrices and 
match, mismatch and gap extension penalties. Under this relaxed 
definition, our signal decomposition approach yielded the most 
accurate overall alignments for reads containing both 
insertion/deletion and substitution variation (Fig. 3F), while our 
DFT-based implementation offered joint best performance for 
reads containing only substitutions (Fig. 3E). Alignment 
accuracy for reads containing only insertion/deletion variation 
was comparable but slightly below the average of existing tools 
tested (Fig. 3D). Notably, the relative performance of our 
approach improved considerably with increasing rates of 
sequence variation, and existing tools were outperformed at the 
highest rates tested. 
 

3.4 De novo assembly 
To demonstrate the applicability of our approach to the de novo 
assembly of short reads, we implemented a naive algorithm for 
all-against-all k-mer comparison using wavelet transformations 
(Fig. 4). Reads are first represented as numerical sequences 
using the Voss method. Every k-mer of each numerically 
represented read is subsequently identified and transformed to 
lower dimensional space using the DWT method. The k-mers’ 
transformations are then compared with one another to establish 
their pairwise similarities in terms of Euclidean distance, and to 
construct a weighted graph (Fig. 4A). Finally, a breadth-first 
search (BFS) algorithm identifies the shortest path through the 
graph (Fig. 4B), and after attribution of k-mers to their 

corresponding reads, yields an assembly of short reads (Fig. 4C). 
Additionally, a numerical representation such as the DNA walk 
may subsequently be used to aid visualisation of the assembly 
(Fig. 4D). 256mers were used in our tests, and each 256-mer 
representation was approximated to a length of 16. 
 
We applied our de novo aligner algorithm to the assembly of 
simulated short read data from viral populations (HIV-1). The 
dimensionality of the numerical sequence representations was 
reduced by ~16-fold using the DWT prior to alignment, and the 
deviation of the resulting assemblies from the reference 
sequence used for read simulation was quantified using 
CuReSimEval. Fig. 5A illustrates the three-dimensional ‘walk’ 
of the HIV-1 reference sequence HXB2, while Fig. 5B, 5C and 
5D depict the three-dimensional surface plots, of de novo 
alignments for reads with 2%, 4% and 6% variation. The 
alignments of the 0%, 2%, 4% and 6% variation datasets had F-
scores of 1, 0.9979, 0.9255 and 0.7772 respectively. Despite the 
high levels of variation in the data, and the use of large k-mers, 
our approach yields accurate alignments, highlighting the 
potential benefits of our approach for de novo alignment for 
processing nucleotide sequences. 
 

4 DISCUSSION 
Data compression methods enabling reversible compression of 
one-dimensional and multivariate signals, images, text and 
binary data are well established (Hendriks et al., 2013; Sheybani, 
2011; Tapinos and Mendes, 2013). Surprisingly, these methods 
have seen limited application to the problem of nucleotide 
sequence alignment. Here we have demonstrated the application 
of a flexible sequence alignment heuristic leveraging established 
signal compression and decomposition methods. Our 
implementation aligned simulated viral reads with comparable 
overall precision and recall to existing tools, and excelled in the  

 
Fig. 4. A de novo read assembly methodology for numerically represented nucleotide sequences. All-against-all sequence comparison (A) enables 
construction of a read graph with weighted edges. The weight assigned to each edge is the smallest pairwise distance between every possible k-mer 
representation of the two reads. The shortest path in the graph is identified with a breadth-first search algorithm (B), thereby enabling read alignment (C). A 
DNA walk of aligned reads (D) may subsequently be used as a three-dimensional graphical portrayal of the reads, illustrating alignment characteristics. 
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 alignment of reads with high levels of sequence diversity, as 
often observed in RNA virus populations (Archer et al., 2010). 
Our results show that full, nucleotide-level sequence resolution 
is not a prerequisite of accurate sequence alignment, and that 
analytical performance can be preserved or even enhanced 
through appropriate dimensionality reduction (compression) of 
sequences. For example, six-fold and fourteen-fold reductions in 
execution time were observed during our tests of the DFT and 
PAA-represented sequences, yet in both cases alignment 
accuracy was marginally better than that obtained using full 
resolution sequences. The approach’s applicability to de novo 
assembly of divergent sequences was also demonstrated. While 
our implementation makes use of k-mers, the nature of the 
transformation/compression approaches used means that optimal 
k-mer selection is considerably less important than it is with 
conventional exact k-mer matching methods. The inherent error 
tolerance of the approach also permits the use of larger k values 
than normally used with conventional sequence comparison 
algorithms, reducing the computational burden of pairwise 
comparison, and thus, in de novo assembly specifically, the 
complexity of building and searching an assembly graph. 
 
Efficient mining of terabase scale biological sequence datasets 
requires us to look beyond substring-indexing algorithms 
towards more versatile methods of compression for both data 
storage and analysis. The use of probabilistic data structures can 
reduce considerably the computer memory required for in-
memory sequence lookups at the expense of a few false 
positives, and Bloom filters and related data structures have seen 
broad application in k-mer centric tasks such as error correction 
(Shi et al., 2010), in silico read normalisation (Zhang et al., 
2014) and de novo assembly (Berlin et al., 2014; Salikhov et al., 
2013). However, while these hash-based approaches perform 
very well on datasets with high sequence redundancy, for large 
datasets with many distinct k-mers, large amounts of memory 
are still necessary (Zhang et al., 2014). Lower bounding 
transformations and approximation methods (such as the DFT, 
the DWT and PAA) exhibit the same attractive one-sided error 
offered by these probabilistic data structures, yet—unlike 
hashing—construct intrinsically useful sequence representations, 
permitting their comparison with one another. Furthermore, 
transformations allow compression of standalone sequence 
composition, enabling flexible reduction of sequence resolution 
according to analytical requirements, so that redundant sequence 
precision need not hinder analysis. In large datasets, the 
associated reductions in resource usage can be significant. While 
the problem of read alignment to a known reference sequence is 
largely solved, the assembly of large and/or poorly characterised 
sequenced genomes remains limited by computational methods. 
Moreover, consideration of the metagenomic composition of 
mixed biological samples further extends the scope and scale of 
the assembly problem beyond what is tractable using 
conventional sequence comparison approaches. Through 
implementing of reference-based and de novo aligners, we have 

 
Fig. 5. A three-dimensional DNA walk of the HIV-1 HXB2 genome (A) 
also plotted with de novo alignments of three simulated HXB2 
sequencing datasets of 2%, 4%, and 6% rates of combined 
insertion/deletion and substitution variation (B-D respectively). Plotting 
DNA walks of aligned short reads enables intuitive visualisation of the 
nature and extent of sequence diversity across a genomic region, with 
sequence variants each represented by a distinct trajectory through space. 
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demonstrated that the analysis of compressed representations 
provide a tractable, memory-efficient and versatile approach to 
the short-read-based reconstruction of genomes and 
metagenomes. 
 
In conclusion, short nucleotide sequences may be effectively 
represented as numerical series, enabling the application of 
existing analytical methods from a variety of mathematical and 
engineering fields for the purposes of sequence alignment and 
assembly. By using established signal decomposition methods, it 
is possible to create compressed representations of nucleotide 
sequences, permitting substantial reductions in the 
spatiotemporal complexity of their analysis without necessarily 
compromising analytical accuracy.  
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