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Abstract

Motivation: Understanding global gene regulation depends critically on accu-
rate annotation of regulatory elements that are functional in a given cell type. CEN-
TIPEDE, a powerful, probabilistic framework for identifying transcription factor bind-
ing sites from tissue-specific DNase I cleavage patterns and genomic sequence content,
leverages the hypersensitivity of factor-bound chromatin and the information in the
DNase I spatial cleavage profile characteristic of each DNA binding protein to accu-
rately infer functional factor binding sites. However, the model for the spatial profile
in this framework underestimates the substantial variation in the DNase I cleavage
profiles across factor-bound genomic locations and across replicate measurements of
chromatin accessibility.

Results: In this work, we adapt a multi-scale modeling framework for inhomoge-
neous Poisson processes to better model the underlying variation in DNase I cleavage
patterns across genomic locations bound by a transcription factor. In addition to mod-
eling variation, we also model spatial structure in the heterogeneity in DNase I cleavage
patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid
cell line, we demonstrate the improved performance of this model for several transcrip-
tion factors by comparing against the Chip-Seq peaks for those factors. Finally, we
propose an extension to this framework that allows for a more flexible background
model and evaluate the additional gain in accuracy achieved when the background
model parameters are estimated using DNase-seq data from naked DNA. The pro-
posed model can also be applied to paired-end ATAC-seq and DNase-seq data in a
straightforward manner.

Availability: msCentipede, a Python implementation of an algorithm to infer
transcription factor binding using this model, is made available at
https://github.com/rajanil/msCentipede

1 Introduction

A central challenge in modern genomics is the accurate identification of all the regulatory
sequences that are active in a given cell type and a description of the mechanisms by which
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they regulate gene expression. One key mechanism is by recruiting transcription factors
which bind to the DNA at characteristic nucleotide sequences. Chromatin immunoprecipi-
tation followed by sequencing (ChIP-seq) provides a direct measurement of DNA sequences
bound by transcription factors (either directly or through a co-factor); however, each ChIP-
seq experiment provides information for only one transcription factor at a time. DNase-seq
(Boyle et al., 2008; Hesselberth et al., 2009) provides an indirect measurement of active reg-
ulatory sequences by exploiting the increased sensitivity of nucleosome-depleted chromatin
to DNase I enzyme. While DNase-seq provides information on the active regulatory regions
in the genome, identifying which transcription factors are bound to these regions and their
organization requires statistical modelling of the spatial structure in DNase sensitivity in
active regulatory regions (Pique-Regi et al., 2010; Boyle et al., 2011; Luo and Hartemink,
2013; Piper et al., 2013; Sherwood et al., 2014).

Pique-Regi et al. (2010) put forward a probabilistic framework to infer sequence motif
instances that are bound by transcription factors by combining sequence information with
the information in DNase I cleavage patterns measured from DNase-seq assays. The model,
CENTIPEDE, relies on two observations: (1) chromatin around motif instances bound by
transcription factors typically has higher DNase I sensitivity than chromatin around unbound
motif instances, and (2) each transcription factor has a characteristic DNase I cleavage
profile around bound motif instances. Based on these observations, given a putative bound
motif instance, CENTIPEDE models the number of reads mapped to each base pair along
a window around the motif site as a mixture of two components (bound vs unbound), and
infers the probability that each site is bound. Specifically, conditional on being bound (or
unbound), CENTIPEDE models (1) the total number of DNase-seq reads using a negative
binomial distribution, and (2) DNase-seq read counts along a window, conditional on the
total number of reads, using a multinomial distribution, with independent sets of parameters
for bound and unbound sites.

The multinomial model, however, effectively assumes that given enough number of reads,
the DNase I read count profiles would be the same at all bound sites. Instead, we observe
that the read count profiles often have larger variation across factor-bound genomic locations
than a multinomial distribution can model. Based on this, we hypothesized that improved
modeling of the excess variation would likely lead to improved performance in predicting
transcription factor binding.

To illustrate the excess variation, we make use of the connection between the multino-
mial distribution and binomial distribution. Specifically, if the read counts per base pair are
multinomially distributed conditional on the total read count in a genomic window, then
the number of reads mapping to the left half of the window conditional on total read count
should be binomially distributed. Based on this, we can compare the true distribution of
the proportion of reads mapping to the left half of a genomic window to a distribution of
proportions computed by sampling read counts from a binomial distribution (see Supple-
mentary Methods for details). Ideally, we would like to illustrate overdispersion in the read
counts mapping to the left half of the window across genomic sites. However, since the total
read counts vary substantially across genomic sites, we resorted to using proportions rather
than absolute read counts to illustrate the overdispersion across genomic sites.

In Figure 1, we observe that the distribution of ‘true’ proportions has a higher variance
than that of ‘simulated’ proportions, suggesting that the multinomial distribution is insuffi-
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Figure 1: Excess variation in DNase I cleavage rate along the genome that is not explained
by binomial sampling. For a set of 1000 SP1 motif instances with high ChIP-seq signal, we
computed, for a 100bp window around each motif instance, the ratio of number of DNase I
cuts mapped to the left half of the window to the number of DNase I cuts mapped to the
entire window. The histogram of these ‘true ratios’ is shown in orange. For each window,
we also simulated read counts mapping to the left half of the window by sampling from
a binomial distribution whose parameter is estimated from these data (see Supplementary
Methods for more details). A histogram of ‘simulated ratios’ computed from these simulated
read counts is shown in gray.

cient to model the variation in read profiles across genomic sites bound by the transcription
factor. We also observe overdispersion in the ‘true’ proportions across multiple scales and
window sizes. Furthermore, when multiple replicate DNase-seq measurements are available
for the same cell type, CENTIPEDE has often been applied after pooling replicates. If there
is substantial heterogeneity between replicates, then pooling replicates tends to introduce
more variation in the read count profiles, exacerbating the limitation of the multinomial
model in this framework.

Motivated by recent work applying multi-scale methods to analyses of high-throughput
sequencing data (Shim and Stephens, 2013; Shim et al., 2014), we use hierarchical multi-
scale models to better model heterogeneity in the read profiles across genomic locations and
across replicate measurements of chromatin accessibility. Modeling the data at multiple
scales explicitly allows us to infer different amounts of genomewide variation at each scale,
and enables the automatic identification of relevant scales during inference. In addition, the
proposed multi-scale modeling framework better models spatial structure in the heterogeneity
in DNase I cleavage patterns induced by the binding of a particular transcription factor.
Finally, when DNase-seq data from naked DNA are available, we propose a flexible DNase
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I cleavage background model, the parameters of which are estimated from these additional
DNase-seq data.

2 Models and Methods

Consider a genomic window (site) of length L centered around each of N putative binding
motifs, with L assumed to be a power of 2 (L = 2J). Let Xn = (Xn

i )L
i=1 be the sequence

of read counts for the nth site, where Xn
i is read count at ith base pair in the site. Let Zn

denote a binary indicator for whether the nth site is bound (Zn = 1). Following the model
in CENTIPEDE, a mixture model at the nth site can be written as

P(Xn) = P(Xn|Zn = 1)P(Zn = 1)

+P(Xn|Zn = 0)P(Zn = 0), (1)

where the mixing proportion P(Zn = 1) = ζ can be modeled as a logistic function of genomic
information (e.g. motif position weight matrix score and motif sequence conservation score)
as in CENTIPEDE.

2.1 msCentipede model at bound motifs

We modeled the profile of read counts at the nth site Xn conditional on Zn = 1 using a Poisson
model: Xn

l ∼ Pois(µn
l ) for l = 1, . . . , L. We allowed the mean read profile µn = (µn

1 , . . . , µ
n
L)

to vary across sites by using a hierarchical version of the multi-scale model for inhomogeneous
Poisson processes introduced by (Kolaczyk, 1999) and (Timmermann and Nowak, 1999).

To introduce the ideas behind the multi-scale model, consider a single site with parameter
vector µ = (µ1, . . . , µL) (so drop the superscript n for simplicity). The key idea behind multi-
scale Poisson models is to reparameterize this model in terms of parameters that capture
spatial variation in µ at multiple scales, as follows. Let [µ+]ba denote the sum

∑b
j=a µj. At

the “zeroth” scale, define a single intensity parameter λ0 that captures the total intensity in
the region

λ0 := [µ+]L1 (2)

At the first scale define a single parameter that captures the relative intensity in the first
half of the region vs the entire region:

p11 =
[µ+]

L/2
1

[µ+]L1
. (3)

At the second scale, define two parameters: one that captures the relative intensity in the
first quarter of the region vs the first half; and one that captures the relative intensity in the
third quarter vs the second half.

p21 =
[µ+]

L/4
1

[µ+]
L/2
1

; p22 =
[µ+]

3L/4
L/2+1

[µ+]LL/2+1

. (4)
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At the third scale there are four parameters p31, . . . , p34 that similarly capture the relative
intensity of an eighth of the region vs each quarter. This continues up to the Jth scale
(where recall J = log2(L)), in which there are L/2 = 2J−1 parameters of the form

pJ1 = µ1/(µ1 + µ2); pJ2 = µ3/(µ3 + µ4); . . . (5)

Combining across scales 0 to J this defines a total of L parameters, p = (λ0, p11, p21, p22, . . . , pJ(L/2)),
which are a one-one function of µ. That is, this defines a reparameterization of the model
from µ = (µ1, . . . , µL) to p = (λ0, p11, p21, p22, . . . , pJ(L/2)).

This reparameterization has two key features: i) the likelihood P(X|p) factorizes into a
product form over the L elements of p (just as the likelihood P(X|µ) factorizes into a product
over the L elements of µ). Indeed, from elementary properties of the Poisson distribution,
this factorization includes a Poisson likelihood for λ0 and a Binomial likelihood for each of
the other parameters in p; see Supplementary Methods and Kolaczyk (1999) for details. ii)
spatially-structured perturbations to the vector µ are captured by large perturbations in
just a few elements of p. (By a spatially-structured perturbation, we mean a modification
µi → µi+δi such that δi tends to be similar to δj when |i−j| is small.) This property is related
to the similar key property of wavelets (Donoho and Johnstone, 1995), which are perhaps
the best known multi-scale methods: spatially smooth signals tend to be concentrated into
a small number of wavelet coefficients.

As a consequence of ii) we modeled spatially-smooth heterogeneity in µ1, . . . , µn across
putative binding sites using a simple hierarchical model for p1, . . . , pn (where we have reintro-
duced superscript n to index sites). Specifically, we introduced parameters p̄ = (λ̄0, p̄11, p̄21, p̄22, . . . , p̄J(L/2))
to represent the mean cleavage pattern across sites, and then assumed that site specific pa-
rameters p1, . . . , pn are independent and identically distributed given p̄, with

λn
0 |p̄, Z

n = 1 ∼ gamma(α, α/λ̄0) (6)

pn
jk|p̄, Z

n = 1 ∼ beta(p̄jkτj, (1 − p̄jk)τj) (7)

for k = 1, . . . , 2j−1 and j = 1, . . . , J , where α and τj are hyperparameters that control
variability in the parameters at different scales.

2.2 msCentipede model at unbound motifs

We modeled the read count profile at the nth site Xn conditional on Zn = 0 using the same
Poisson model, but with different distributions for the parameters:

λn
0 |Z

n = 0 ∼ gamma(αo, αo/λ̄o
0) (8)

pn
jk|Z

n = 0 ∼ δ0.5 (9)

where δ0.5 denotes the distribution with point mass on 0.5. Note that this means that
pn

jk = 0.5, which is equivalent to assuming that the Poisson rates µ = (µ1, . . . , µL) are all
equal, resulting in uniformly distributed reads over the entire site. That is, it corresponds
to the commonly-used assumption that there is no spatial structure in the read count profile
when the transcription factor is not bound to its motif. (See Section 2.4 for a more flexible
model for unbound sites.)
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2.3 CENTIPEDE is a special case of msCentipede

The above msCentipede model (8-9) for unbound sites is exactly the same as the CEN-
TIPEDE model for unbound sites. (The assumption of a gamma distribution for the Poisson
rate parameter λn

0 in (8) implies a negative binomial distribution for the total read-counts,
which is exactly the model assumed by CENTIPEDE.) Furthermore, the msCentipede model
for bound sites (7) becomes equivalent to the original CENTIPEDE model for bound sites in
the special case τj → ∞, which corresponds to no heterogeneity in the shape of the cleavage
pattern across bound sites. That is, msCentipede is an extension of CENTIPEDE to allow
for heterogeneity in the shape of the cleavage pattern across bound sites.

2.4 Flexible model for background DNase I cleavage rate

A number of studies have highlighted a strong sequence preference for DNase I cleavage
(Hesselberth et al., 2009; Koohy et al., 2013; He et al., 2014). This sequence preference
would cause the distribution of reads at unbound motif instances to be i) systematically
non-uniform near the shared core motif; and ii) varying among motif instances away from
the shared core motif (due to differences in the surrounding sequence). To account for these
factors we consider a more flexible model for unbound sites. Specifically, we modify (9) as
follows:

pn
jk|p̄

o, τ o, Zn = 0 ∼ beta(p̄o
jkτ

o
j , (1 − p̄o

jk)τ
o
j ), (10)

where the background parameters p̄o
jk and τ o control the mean profile and the variance

about this mean respectively. We estimated these background parameters using DNase-seq
reads from naked DNA around the same set of motif instances, and refer to the method
using this more flexible background model as msCentipede-flexbg. (In principle it is also
possible to estimate these parameters using the DNase-seq data from chromatin, as part of
the clustering of motif instances into bound and unbound motifs, but when we tried this
we found msCentipede performed worse in practice than the uniform model (9), presumably
because of the cost associated with attempting to estimate the many additional parameters
of this more flexible model; see Discussion).

2.5 msCentipede when multiple replicates are available

When multiple replicates are available, msCentipede treats the replicates as independent
samples. Ideally, it is desirable to model the heterogeneity across genomic sites and the
heterogeneity across replicates separately. However, in practice, we usually have only two
or three replicate DNase-seq measurements in a given cell type, making it difficult to ac-
curately quantify the heterogeneity across replicates. Instead, our approach assumed that
heterogeneity across replicates and heterogeneity across genomic sites were the same (see
Supplementary Methods for more details).

2.6 Parameter estimation and inference

The parameters in msCentipede, ζ, α, λ̄0, αo, λ̄o
0, τj, p̄jk, k = 1, . . . , 2j−1 and j = 1, . . . , J ,

were estimated by maximizing the likelihood across all putative binding sites using an
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expectation-maximization algorithm (see Supplementary Material for details). When DNase-
seq data assayed in naked DNA were available, the background parameters p̄o

jk and τ o
j were

first estimated using naked DNA assays; keeping these fixed, we, then, learned the remaining
model parameters.

Inference on binding sites can be performed by computing the posterior odds for each
site:

P(nth site is bound|Xn)

P(nth site is unbound|Xn)
=

P(Zn = 1|Xn)

1 − P(Zn = 1|Xn)
. (11)

Detailed computation of P(Zn = 1|Xn) is given in Supplementary Methods.

3 Applications

In this section, we evaluate the accuracy of msCentipede on a set of transcription factors
for which high quality ChIP-seq data and highly informative position-weight matrix (PWM)
models are available. We also evaluate the gain in performance achieved when we use a more
flexible model for background DNase I cleavage rate, with parameters for this model learned
using DNase-seq data from naked DNA.

3.1 Description of data and validation metrics

We executed msCentipede and CENTIPEDE using DNase-seq and ATAC-seq measurements
assayed in the GM12878 lymphoblastoid cell line as data. Two replicate measurements
using the UW DNase-seq protocol (Hesselberth et al., 2009) and four replicate ATAC-seq
measurements (Buenrostro et al., 2013) were available for this cell line. The DNase-seq data
were single-end reads that can be converted to counts of DNase I nicks for each base pair in a
straightforward manner. The ATAC-seq data were paired-end reads; however, we ignored the
information in the length of DNA fragments and used the counts of transpositions for each
base pair as data. In addition, we executed PIQ (Sherwood et al., 2014) using DNase-seq
data to compare its performance with msCentipede.

We compared the three algorithms on a set of 50 transcription factors with ChIP-seq
data assayed by ENCODE in the same cell line (ENCODE, 2012), and for which PWM
models were computed using data from high-throughput SELEX experiments (Jolma et al.,
2010, 2013). For each transcription factor, we identified a genomewide set of high-quality
putative binding sites (PBS) using human genome reference GrCh37; for each PBS, the
likelihood ratio for the PWM model vs a background model exceeded 1000. Using a 64 base-
pair window around each PBS, we filtered out those sites that had fewer than 80% of bases
in their window to be uniquely mappable. For each of the remaining sites, we computed
the posterior probability that the transcription factor is bound, using CENTIPEDE and
msCentipede. We used DNase-seq read count data from naked DNA derived from the IMR90
cell line (Lazarovici et al., 2013) to fit the background model parameters in msCentipede-
flexbg. In the case of PIQ, we used the “score” output by the algorithm as a measure of
confidence of whether a motif instance is bound. When multiple replicate measurements are
available, we executed PIQ by providing data from the replicates as separate input files.
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We evaluated the accuracy of each algorithm using Area under the Receiver Operating
Curve (AuROC). To compute the AuROC, we selected a gold standard set of ‘bound motif
instances’ and ‘unbound motif instances’; bound motif instances were PBS that lied within a
ChIP-seq peak identified by a peak caller and ‘unbound motif instances’ were PBS that lied
outside ChIP-seq peaks and had fewer ChIP reads than reads from a control IP experiment
mapping to a 400 base pair window around the PBS, after controlling for total read depth.
For each transcription factor, we executed two peak callers, MACS (Zhang et al., 2008) and
GEM (Guo et al., 2012), each with a 1% FDR cutoff, to generate two gold standard sets
of bound and unbound motif instances. In this paper, we illustrate the accuracy of the
algorithms evaluated against gold standards generated using MACS when using DNase-seq
measurements as data. The accuracy of all three algorithms improved by a modest amount
when using the gold standards generated by GEM, presumably due to the use of sequence
information by GEM to better identify ChIP-seq peaks (see Figure S2).

3.2 Results

3.2.1 msCentipede achieves improved accuracy:

msCentipede achieved AuROC comparable to or better than CENTIPEDE across a broad
range of transcription factors when each algorithm was applied to chromatin accessibility
measurements from a single DNase-seq assay as shown in Figure 2a. Compared with PIQ,
we observed that msCentipede achieved substantially higher AuROC for some factors and
lower AuROC for others, as shown in Figure 2c. When multiple replicates are available,
CENTIPEDE treats them by pooling the replicate datasets; however, msCentipede treats
replicates by modeling them as independent samples. By modeling the replicates appro-
priately and accounting for heterogeneity across genomic sites and replicates, msCentipede
achieved substantial increase in AuROC compared to CENTIPEDE and PIQ for a broad
range of transcription factors, as illustrated in Figures 2b and 2d. Similar improvements in
accuracy for msCentipede compared to CENTIPEDE were observed when using ATAC-seq
measurements as data (see Figure S3).

For each transcription factor, the hyperparameter τ gives a measure of heterogeneity in
read distribution across genomic sites and replicates, with lower values indicating greater
heterogeneity. In Figure S4, we observed that the values of the hyperparameters τj were
rather small, suggesting that we were able to increase power by better modeling variation in
the data. Furthermore, as expected, we observed a higher degree of overdispersion in read
distribution at finer resolutions compared to coarser resolutions for a number of transcription
factors.

3.2.2 Modeling DNase I cleavage patterns improves factor binding inference:

In recent work, He et al. (2014) and Sung et al. (2014) demonstrated that strong DNA se-
quence preference for DNase I cleavage could pose a challenge to using the detailed shape
of DNase cleavage profiles for inferring transcription factor binding. Specifically, He et al.

(2014) identified motif instances that lie within peaks in ChIP-seq measurements for a tran-
scription factor in a given cell line. Using these instances, they showed that, in a region
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of ∼20 bp surrounding the motif, the mean DNase I cleavage profile estimated from naked
DNA (unbound sites) matched the mean cleavage profile estimated using DNase-seq data
from the same cell line (bound sites). Starting from similar observations, Sung et al. (2014)
clarified that although sequence-preference effects were evident for all transcription factors,
some transcription factors - those with slower-binding kinetics - show an appreciable reduc-
tion in the cut profile around the bound motifs (a “footprint”), whereas others - those with
faster-binding kinetics - show little or no footprint.

These observations raise two questions: first, whether the uniform background model
(assumed by CENTIPEDE, and msCentipede) for the unbound sites might be better replaced
by a non-uniform background model capable of capturing the sequence preference effects
around the motifs; second, whether it might be better to entirely ignore the DNase I cleavage
profile when attempting to distinguish between bound and unbound sites - and, rather, to
focus only on the total intensity of DNase I hypersensitivity in the region. To test this, we
compared the accuracy of three different models for transcription factor binding:

1. ‘no cleavage profile’ model that ignores the cleavage profile, and simply models the
total DNase read counts using Poisson-gamma distributions at bound and unbound
sites (described earlier).

2. msCentipede

3. msCentipede-flexbg, which allows for a non-uniform background model, with parame-
ters estimated using DNase-seq measurements from naked DNA around the same set
of PBS.

Comparing first the msCentipede model with the no-cleavage model, we found the ac-
curacy of msCentipede to be substantially greater for a broad range of transcription factors
(Figure 3a). This result may appear to conflict with results from He et al. (2014); Sung et al.

(2014) showing that cleavage patterns within factor-bound motif instances are driven pri-
marily by sequence preferences for DNase I cleavage, which suggests that use of the cleavage
profile to identify binding sites could increase false positive findings. However, we note that
i) sequence preference effects, while presumably occuring genome wide, are shared across
binding sites only in the small region around the shared sequence motif (typically 10 − 20
bp), while most methods to detect factor binding, including ours, make use of cleavage pat-
terns in much larger windows (typically 50 − 100 bp) around the motif instance, and ii) for
some factors – those with slower binding kinetics – the footprint effect (i.e. the systematic
overall decrease in DNase signal surrounding the motif) may be helpful in distinguishing
bound and unbound sites, and the benefits of this could outweigh the unmodelled sequence
preference effects.

We turn now to the comparison of msCentipede with msCentipede-flexbg. Note that
msCentipede-flexbg, by modeling the background cleavage profile using naked DNA assays,
has the potential to eliminate false positives due to sequence-driven cleavage patterns high-
lighted by He et al. (2014); Sung et al. (2014). And indeed, we found that, for most factors,
the estimated mean background cleavage profile, captured by the parameters p̄o

jk, was non-
uniform within the motif, reflecting precisely the sequence preferences for DNase I cleavage
(Figure S5). However, we also found that this improved background model resulted in only
modest improvements in accuracy of identifying bound sites (Figure S6).
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Using transcription factor EBF1 as an example, Figure 3b illustrates that all three mod-
els have very similar true positive rates up to a false positive rate of 3 − 4%. However,
incorporating the DNase cleavage profile substantially increased the true positive rate for
false positive rates larger than 4%. This suggests that while modeling the total DNase read
counts alone was sufficient to accurately identify bound PBS with highest total DNase-seq
signal, incorporation of the DNase cleavage profile was necessary to identify bound PBS with
moderate total DNase-seq signal. These PBS may be indicative of low occupancy sites where
the binding of the transcription factor is in a less stable equilibrium and the factor is likely
bound to the DNA at these PBS in a smaller fraction of the cells assayed.

4 Discussion

We developed msCentipede, a hierarchical multi-scale model to accurately identify bind-
ing of a transcription factor using sequencing reads from DNase-seq or ATAC-seq assays
and the sequence content of putative binding sites for that factor in the genome. While
previous approaches like CENTIPEDE have successfully used the characteristic profile of
DNA hypersensitivity to DNase I around bound motif instances to identify factor binding
sites, the multinomial model used in CENTIPEDE ignores spatial structure in the data and
makes a strong assumption on the heterogeneity in read distribution across bound sites in
the genome. The hierarchical multi-scale model explicitly allows for heterogeneity in the
read distribution across bound sites (with different amounts at different scales), resulting in
a substantial increase in accuracy across a broad range of transcription factors. Finally, we
proposed a more flexible background model that requires the availability of DNase-seq (or
ATAC-seq) data assayed in naked DNA. This flexible background model has the potential
to account for heterogeneity in background DNase I cleavage rate specific to the sequence
context of motif instances of the transcription factor.

A simple extension to CENTIPEDE that can account for heterogeneity across sites is
to allow for site-specific parameters in the multinomial distribution and to model these
site-specific parameters using a Dirichlet distribution. However, this multinomial-Dirichlet
model is not sufficiently flexible to capture potential spatial structure in heterogeneity in
DNase I cleavage. The proposed multi-scale model allows different amounts of heterogeneity
across different scales and effectively captures spatial structure in the heterogeneity. It is
fairly straightforward to extend the proposed framework to model spatial structure in the
mean cleavage pattern (p̄) as usually modeled in multi-scale approaches (Kolaczyk, 1999;
Donoho and Johnstone, 1995; Shim et al., 2014). However, we found that this extension
was computationally expensive and gave very minor improvements in accuracy, presumably
because there were so many motif instances that we could accurately estimate the mean
pattern without spatial smoothing.

When considering a flexible model at unbound motif instances which allows for spatial
structure and heterogeneity in background DNase I cleavage patterns, it is natural to estimate
the parameters of this model using data from the relevant cell type. However, we observed
that when all the parameters in the flexible model are estimated using data from chromatin,
the model tended to estimate smaller values for the precision parameter, τ , at bound sites
resulting in a large number of ‘true’ unbound sites being incorrectly identified as bound.
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Currently, we suggest using the flexible model (msCentipede-flexbg) only when DNase-seq
(or ATAC-seq) data assayed in naked DNA is available. However, a framework that allows
estimation of heterogeneity in background DNase I cleavage from data assayed in the relevant
cell type may be be more accurate.

msCentipede-flexbg estimates spatial structure and heterogeneity in the background
model using DNase-seq data from naked DNA at all motif instances; thus, the heterogeneity
in background read distribution is primarily driven by variation in sequence context around
motif instances. However, within a cell type, variation in background chromatin context at
unbound sites (e.g., whether the motif instance is in the linker region or in DNA wrapped
around a nucleosome, and which other transcription factors are bound at or close to the
motif instance) is likely to be a larger source of heterogeneity in background read distribu-
tion than variation in sequence context. This intuition suggests that we should estimate
the precision parameter at unbound sites τ o using DNase-seq data from chromatin, rather
than using DNase-seq data from naked DNA. However, using this approach, we observed the
background precision parameter τ o in msCentipede-flexbg was consistently underestimated
when this parameter was estimated using data from chromatin, resulting in a high false pos-
itive rate. Extensions to these models that accurately capture the background heterogeneity
in the data across genomic sites would be a useful avenue for future research.

Funding: This work was funded by grants from the NIH (HG02585 to M.S., HG007036 to
J.K.P., and MH084703 to Y.G. and J.K.P.), and by the Howard Hughes Medical Institute.
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Figure 2: Accuracy of msCentipede, CENTIPEDE and PIQ across a range of transcription
factors. Each point corresponds to a different factor and accuracy is measured by area under
the ROC curve. Blue points correpond to factors where msCentipede achieves higher accu-
racy than CENTIPEDE (top panels) or PIQ (bottom panels), and orange points correspond
to a worse performance by msCentipede. In the left panels (a), the algorithms are compared
using data from a single replicate, while the right panels (b) show results when data from
multiple library replicates are analyzed.
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Figure 3: Modeling factor-specific DNase I cleavage profile and sequence bias in DNase
cleavage increases prediction accuracy. (a) Modeling the DNase I cleavage profile at bound
sites increases the prediction accuracy of msCentipede across a broad range of transcription
factors. Each point on the plot corresponds to a different transcription factor. (b) We
show the ROC curves for transcription factor EBF1 for three different models of increasing
complexity. We observe a substantial increase in accuracy when incorporating a multi-
scale model for the factor-specific cleavage profile; however, the increase in accuracy when
modeling the background cleavage rate using naked DNA data is rather modest. This holds
true for a broad range of factors as shown in supplementary Figure S6.
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