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Abstract

Sequence-specific interactions between proteins and DNA play a central role in
DNA replication, repair, recombination, and control of gene expression. These interac-
tions can be studied in vitro using microfluidics, protein-binding microarrays (PBMs),
and other high-throughput techniques. Here we develop a biophysical approach to
predicting protein-DNA binding specificities from high-throughput in vitro data. Our
algorithm, called BindSter, accommodates multiple protein species competing for ac-
cess to DNA and alternative binding modes of the same protein, while rigorously taking
into account all sterically allowed configurations of DNA-bound particles. BindSter can
be used with a hierarchy of protein-DNA interaction models of increasing complexity.
We observe that the quality of BindSter predictions does not change significantly as
some of the energy parameters vary over a sizable range. To take this degeneracy
into account, we have developed a graphical representation of parameter uncertainties,
called IntervalLogo. We find that our simplest model, in which each nucleotide in
the binding site is treated independently, performs better than previous biophysical
approaches. The extensions of this model, in which contributions of longer words are
also considered, result in further improvements, underscoring the importance of higher-
order effects in protein-DNA energetics. In contrast, we find little evidence for multiple
binding modes for the transcription factors (TFs) in our dataset. Furthermore, there
is limited consistency in predictions for the same TF utilizing microfluidics and PBM
experimental platforms.

Introduction

Sequence-specific interactions between proteins and genomic DNA control numerous cellu-
lar processes. An important class of DNA-binding proteins is transcription factors (TFs),
which regulate expression of their target genes. Knowledge of in vivo binding locations of
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TF's is important for reconstructing regulatory networks of gene transcription and for under-
standing which factors control which genes. These locations can be mapped genome-wide
using chromatin immunoprecipitation followed by microarray hybridization (ChIP-chip) or
sequencing (ChIP-seq) [1, 2]. The latest version of this technique, ChIP-exo, uses exonu-
cleases to trim immunoprecipitated DNA fragments to precise locations of bound proteins,
achieving single-base-pair (bp) precision [3]. Many factors influence TF binding locations in
living cells, including chromatin structure, which strongly modulates DNA accessibility [4],
and cooperative or competing interactions with other DNA-binding proteins [5]. However,
the primary determinant of TF binding locations is intrinsic DNA sequence specificity: TFs
can recognize and bind their cognate sites on the background of numerous competing sites
available in the genome.

Therefore, an accurate in vitro picture of intrinsic TF-DNA binding affinity and specificity
can provide insights into in vivo TF function. For example, high-affinity TF binding sites
that are not occupied in vivo might indicate that these sites are covered with nucleosomes
(the nucleosome is a fundamental unit of chromatin which packages 147 bp of genomic DNA
into a tightly bent left-handed superhelix [6]). Conversely, low-affinity sites bound in vivo
might be a sign of indirect or cooperative binding [7]. Recently, several new technologies
have been developed that enable high-throughput in wvitro determination of protein-DNA
binding affinities (see [8] for a recent review). Here we focus on two of these technologies:
mechanically induced trapping of molecular interactions (MITOMI) [9, 10], and protein-
binding microarrays (PBM) [11, 12].

The MITOMI device uses microfluidics to simultaneously measure binding affinities of
a TF to a few thousand DNA probe sequences. The second-generation device [10] contains
4,160 unit cells; each cell has DNA probes with identical sequences, and a given sequence
appears in at least two unit cells. All DNA probes are 70 bp long: a probe starts with CGC
followed by a 52-bp variable region and a 15-bp fixed sequence at the 3’ end used for labeling
and primer extension. Sequences in the variable region are designed to accommodate all
65,536 DNA 8-mers. Two fluorescent labels are used to quantify the number of surface-
immobilized protein molecules (BODIPY) and protein-bound DNA probes (Cyb5); the ratio
of Cy5 to BODIPY fluorescence is linearly proportional to the total protein occupancy of
each probe. Fordyce et al. [10] report MITOMI measurements of 28 TFs from S. cerevisiae
comprising ten different families.

The PBM approach to studying protein-DNA interactions utilizes microarrays with up to
tens of thousands of spots. Each spot contains double-stranded DNA probes with identical
sequences; the total number of spots is high enough to allow for all possible permutations
of a 10 bp-long sequence. DNA probes are fluorescently labeled in order to monitor the
consistency of primer-directed DNA synthesis responsible for creating double-stranded DNA
at each spot on the array. TF molecules are added to the array and the array is subsequently
washed to remove weakly bound and unbound molecules. Finally, the number of remaining
bound proteins is quantified using a fluorescent antibody (Alexa488). The antibody fluores-
cence intensity (normalized by the DNA fluorescence intensity at each spot; DNA is labeled
with Cy3) is then proportional to the total protein occupancy of a given probe sequence.
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Here we present an algorithm, called BindSter, for inferring energetics of protein-DNA
interactions from high-throughput measurements such as MITOMI and PBM, which report
total protein occupancies for a set of DNA probe sequences. Under the assumption of
thermodynamic equilibrium, these occupancies can be computed using efficient recursive
techniques [13, 14] for an arbitrary protein-DNA interaction energy model. The parameters
of the model that determine binding energy can then be fit against the data. We consider all
sterically allowed configurations of proteins bound to each probe; multiple binding events,
overlapping sites, and multiple DNA-bound species (including alternative binding modes
of the same TF) are treated rigorously and do not entail significant computational costs.
Thus our framework is more consistent in treating steric exclusion and multiple-species
competition for DNA sequence compared to previous biophysical models of protein-DNA
energetics: MatrixREDUCE [15] and BEEML-PBM [16, 17].

Moreover, our approach is designed to test a hierarchy of protein-DNA energy models of
increasing complexity. We start with a basic mononucleotide model in which the contribution
of each nucleotide in the binding site to the total interaction energy is independent of all the
other nucleotides. This assumption is commonly used in constructing position-specific weight
matrices (PWMs) from TF binding site data [18]. Next, we extend the mononucleotide
model in two distinct ways by including: (a) dinucleotide contributions; (b) energies of di-
and trinucleotides regardless of their position within the binding site. In addition, we check
for alternative TF binding modes by fitting two models to the data either simultaneously or
sequentially. Although we have focused on 28 TFs with MITOMI data in this work, we have
also made predictions for 12 TFs using PBM data, and have carried out a detailed comparison
of PBM- and MITOMI-derived models. The software for our algorithm is available online
at: http://nucleosome.rutgers.edu/nucenergen/bindster/.

Materials and Methods

Physical model of protein-DNA interactions

Consider an ensemble of M species of particles distributed along a DNA segment of N bp in
length. The particles can bind anywhere within the DNA segment subject to steric exclusion
(adjacent particles cannot overlap). Partially bounds states (e.g. where the protein hangs off
the DNA) are also not allowed. Proteins may bind to either DNA strand. A grand-canonical
partition function for this system of DNA-bound particles is given by:

7 — Z e—E(conf) (]_)

conf

where “conf” denotes an arbitrary configuration of DNA-bound, non-overlapping particles,
and E(conf) is the total DNA-binding energy (for simplicity we set kg1 = 1, where kg is the
Boltzmann constant and 7' is the temperature; note that chemical potentials are included
implicitly into E(conf)).
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One can compute Z efficiently using a recursive relation:
M i
E?
Zh =7 et g, (2)
j=0

with the initial condition Zg =1 (¢ =1...N). Here, Zif is the forward partial partition
function, Ef is the binding energy for a species j particle at position 4, L; is the length of
the DNA footprint for a species j particle, and 6; is the Heavyside step function which is
equal to 1 when 7 is positive and 0 otherwise. The zeroth species represents the background
(no particle), with Ly = 1 and E? = 0 for all 1.

Likewise, we can compute the partial partition functions in the reverse direction:

M '
ro__ § r E!
Zi = Zi—i—Lje QN_Z‘_Lj+2, (3)
j=0

with the initial condition Z}_ ; =1 (i = N...1). Note that Zl = Zr = Z by construction.
Further, the probability of starting a particle of species j at position ¢ is given by:

-zl Pz,
pi— = an] 4
) Z Y ( )

where ¢ = 1...N — L; + 1. Note that P gives the probability of finding no particle at
position 7. The expected number of particles of species j covering bp 7 (particle occupancy
O]) is then given by O] = ZZ:i—Lj—&-l P! (i=1...N). Finally, the average total number of
particles on the entire DNA segment (V) is given by

M=) =3 > P o)

where (V) is the average total number of particles of species j. Correspondingly, Zj\il (N;)L;
yields the total occupancy of the DNA segment. Taking binding to both strands into account
amounts to replacing energies E! with “free energies” — log(e*Eg + e*E%'“C), where EY is the
binding energy of a particle of species j to the i...7+ L; — 1 site on the upper strand, and
E}™ is the binding energy of a particle of species j to the ¢ + L; — 1...7 site on the lower
strand.

We have also tested a simplified DNA-binding model which lacks steric exclusion. In this
model, binding of each particle at a given position is independent of all the other particles.
The probability of binding P/ is then simply

; 1
P = ——, (6)
1+ ek

and the quantities (N) and O/ are calculated as above.
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Models of protein-DNA binding energy

Mononucleotide model. The mononucleotide model assumes independent contributions
to the total protein-DNA interaction energy from each nucleotide in the binding site:

-0 j
E,=¢"+ ZEZ”_H._I- (7)

Here, E; is the total energy of binding at position ¢ on a DNA segment (we suppress the
species label for brevity), L is the binding site length, oy, = {A,C, T, G} is the nucleotide
at position k within the DNA segment, €/ is the energy contribution from the base « at
position j, and €° is a sequence-independent offset which subsumes the chemical potential.
We constrain the e/, parameters at each position j so that Y e/ = 0, ensuring that the
set of fitted parameters is non-degenerate [14]. With these constraints, the mononucleotide
model has 3L + 1 independent parameters.

Dinucleotide model. The dinucleotide model includes both mono- and dinucleotide energy

contributions:
L L-1
=0 § J E J
EZ =& + 60éz'-~-j—1 + 8Cti-~-j—104i+j' (8)
j=1 j=1

Here, 5{1 5 represents the dinucleotide contribution from dinucleotide a3 at position j, j+1;
all other symbols are as in Eq. 7. The mononucleotide parameters are constrained as before,
and the dinucleotide parameters are constrained so that ) 5zyﬁ =0and ) s 5% = 0 for all
j. Thus the dinucleotide model has 3%(L — 1) + 3L + 1 = 12L — 8 independent parameters.
k-mer model. Another extension of the mononucleotide model adds energy contributions
of longer DNA words, irrespective of where these words occur within the binding site. In
this model, the binding energy is given by

L N 4™
_ 0 E J E E i
Ei =< + €a¢+j—1 + mal._angal...ana (9)
j=1

n=2 ai...apn

where N is the maximum length of DNA words (2 or 3 in our fits), a;...c,, is a DNA word
of length n, m! is the number of times that word appears within the binding site, and

Qaj...0n

€ay..an, 1S the energy contribution associated with that word. The energies are constrained

by
D oo, =0, i=1.n. (10)

With N = 3, there are 3% + 3% = 36 independent k-mer parameters in addition to 3L + 1
mononucleotide parameters.

Position-independent (PI) model. We have also constructed a model where contribution
of a given DNA word is independent of its position within the binding footprint:

qn

N
EZ' = 50 + Z Z mial_“angalu.an (11>

n=1 ai...an
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All symbols are as in Eq. 9, and the energy parameters are constrained by Eq. 10. We use
N =2 and N = 3 with this model.

Alternative motif models. These models are designed to account for protein binding in
two distinct sequence-dependent modes. The binding energy for one of the modes is given by
the mononucleotide model (Eq. 7). In the two-motif model, the other mode is also described
by the mononucleotide model, and both models are fit simultaneously. In the secondary
motif model, one of the mononucleotide motifs is fit first and then held fixed (except for
the €° term), while the parameters of the “secondary” mononucleotide model are allowed to
vary. Finally, in the “mononucleotide + PI” model the alternative binding mode is described
by the PI model (Eq. 11), which is fit simultaneously with the mononucleotide model.

PBM location bias

A known source of bias in PBM experiments is the increasing difficulty for the proteins to
bind at positions closer to the glass slide [19]. We account for this effect by introducing a bias
“energy”, modeled as a quadratic function of the absolute position on the DNA segment:

EP = aji + bji. (12)

Here, ¢ is the position along the DNA probe, and a; and b, are fitting parameters. The bias
energy can be added to any of the protein-DNA energy models described above, separately
for each species j.

Fitting procedure

To fit a protein-DNA interaction model to the binding data, we perform 80 separate regres-
sions and select the set of binding parameters (the “motif”) for which the linear correlation
r between the predicted number of particles (N) (Eq. 5) for each DNA probe and the target
data (MITOMI or PBM fluorescence ratios) is the highest. Each regression starts with a
randomly generated motif. At each subsequent step, the motif from the previous step is
modified by adding a random value Ae, drawn from a normal distribution of unit variance,
to a single randomly chosen parameter.

When one of the parameters (except €V) is modified, some of the other parameters have
to be changed as well in order to satisfy the constraints. For example, in the mononucleotide
model, if 5% — 5?4 + Ae, 5]{'C7G,T} — si'c,G’T} — Ae/3 is used in order to offset the shift. In
the dinucleotide model, mononucleotide parameters are treated as above, and dinucleotide
parameters are modified as follows: if €/,, — &, + A, € ay = €L o, — Ag/3 for all
dinucleotides that have A at either first or second position, and €/, ,, — €/, .. + Ae/9 for all
other dinucleotides. In general, for words of length n we have:

n+m
gl — &l + A€< D

]...0p Q1...0¢, Sn_m ?

(13)

where m is the number of letters in common between «; ..., and the word whose energy
was shifted by Ae (j is omitted for position-independent parameters).
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After modifying the fitting parameters, the new r is evaluated. If it is better than the
previous one, the new motif is accepted, and the algorithm proceeds to the next regression
step. If the new r is not an improvement, another trial step is made. If no improvement is
found after 200 trial steps, the modification that decreased the correlation least is accepted,
and the algorithm proceeds to the next regression step [20]. We call this trial procedure
Try2Step; see SI Materials and Methods for the pseudocode. After T" = 400 regression
steps have been made, r of the current step is compared to r obtained T steps ago. If this
difference is less than 0.003, the current regression ends and its best r and the corresponding
final motif are recorded. The motif that achieved the best linear correlation ., among 80
separate regression runs is reported as the final prediction.

Motif Correlation
We find correlations between motifs produced by energy models of arbitrary complexity.
First, we convert each energy parameter to probabilities:

e}
e Eal...an

Zﬁl P Z,Bn e 631.4.611
Here, P! . is the probability of the word a; ..., at position ¢ (i is omitted for position-

independent parameters). The information content R’ is then given by the difference between
the maximum possible and the observed entropy [21]:

R =1log,Q+ Y - Ph 4 log,Ph g, (15)
B1 Bn

where € is the alphabet size (e.g., 4 for mono- and 16 for dinucleotides). Finally, the “height”

of each word is defined as
Mo .an = B Fa; s
similarly to letter heights in standard PWM logos [21].
We compare two motifs with the same number of energy parameters using word heights.
We allow one motif to be offset from the other by up to 4 bases in either direction. We
also create a reverse complement of the other motif, testing 18 alignments in total. For
each aligment, a linear correlation between the two sets of word heights is computed; the
best alignment is that with the maximum correlation. Note that when the two motifs are
offset from one another, only the subset of word heights that corresponds to the aligned part
is taken into account. Figure S1 shows a histogram of motif correlations among randomly
generated mononucleotide models with I = 10. To generate energy parameters for random
motifs, we start with all parameters set to zero. Then for each letter a at each position 7 we
draw a number from a normal distribution with zero mean and standard deviation 2. We
add this number to the current £/, and enforce the constraints using Eq. 13. In the end, we
compute word heights via Eq. 16. Using this histogram, we approximate the p-value for a
mononucleotide motif correlation of r as the fraction of correlations > r. The p-values for

dinucleotide motifs are obtained similarly.

(16)
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IntervalLogo

We have devised a novel way of displaying parameter confidence intervals in sequence logos,
called IntervalLLogo. We define the confidence interval for each energy parameter as the range
of values of that parameter within which the correlation r > 0.98r,. when the parameter
is changed and all the other parameters are held fixed, except to satisfy the constraints.
We will demonstrate our procedure using the mononucleotide model; more complex models
are treated in a similar manner. Let us say that 0, {€5}szq are the values of the energy
parameters at the confidence boundary. Here, ¢!, is the parameter modified explicitly, and
{eh}s2a are the other parameters offset to satisfy the constraint (Eq. 13). Given these
energies, the probability of each letter at both confidence boundaries is defined by Eq. 14,
the information content by Eq. 15, and the word heights A%PP¢ and hlov°r by Eq. 16. By
construction, we enforce hUPPHE > hi > ploveri where hY is given by Eq. 16 with best-fit
parameters. Note that due to non-linear relationship between energy parameters and word
heights it is possible to have h%PPé and hloVeré associated with either end of the confidence
interval for the energy parameter in question. Occasionally, hUPPe"* > hi and hloveri > pi
where hPP"" is now associated with the high-energy boundary for the energy parameter, and
hloweri is associated with the low-energy boundary. In this case, we simply set hloveri = pi .
Likewise, if hloveri < hi and hIPPeri < Rl we set hWPP = Rt .

In the IntervalLogo, the height of each letter is given by A’ ; the letters are sorted by their
heights "™ at the lower confidence boundary, so that letters with smaller !, and small
errors occasionally appear on top of the letters with larger h, but also larger uncertainties.
To show confidence boundaries in the logo, we draw the letter with light, medium, and dark
colors (Fig. 1; the choice of the overall color is arbitrary). The light color, representing the
larger word height, is painted from the top of the letter down a distance u!, = min(h2PPer —
hi hi) (so that if h2PPeri — pi > R - the light color is painted over the whole letter). The
dark color, representing the smaller word height, is painted from the bottom of the letter
up a distance I, = hi — hl°v°i_ If there is no overlap, the medium color appears between
the light and dark regions (Fig. 1A). Otherwise, the light and dark colors are striped in the
region of overlap, and the medium color is not visible (Fig. 1B).

Mononucleotide logos for higher-order models

We can represent higher-order motifs using a conventional mononucleotide sequence logo.
To accomplish that, we predict the probability PZY of finding base « at position ¢ within the
binding site, for all possible sites of length L. For mononucleotide motifs, P? = P! from
Eq. 14; for higher-order motifs a recursive calculation is carried out.

Specifically, we need to compute

D O
pi = o , (17)
T e
where s is a set of all sequences of length L, and s,, is the subset of these sequences with
the nucleotide av at position 7. In order to compute P! recursively, we first define Bgi the

RNeTR)
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product of all Boltzmann weights due to substrings of the word «; . .. a; covering position k,
where i <k < j. BE s given by

az o HHe al yn1 0(+n—k—1)0(j+1—n— l) (18)

n=1 [=1

We now introduce the forward partition function

al a; § al 1.0 1 aZ 10050 (19>

Q—1
where j —i = N —2, and the initial condition is that Z/ HJ 1 B, o, fori < N. Note
that with k = j and j —7 = N — 2, Eq. 18 reduces to B&i...aj = Hivzl e e i1 The

backward partition function is given by

al o § a1+1 Qi1 az NP ER R (20>

Aj+1

where j —i = N —2, B! = HTILI e_gf)‘i“‘“wnfl, and the initial condition is that Z; , =

Q. .o

H]L:L—N—‘rQ Bl o fori>L—N+1

We then compute the full partition function from Z/ or Z":

Z= ) - Z aL—Z > Doy (21)

QL —N+2 QN -1

Finally, the marginalized probability is

Z Z ngcl SO — 1Bz¥1 SOG4 N — 1Z;i+1-~-ai+N71 if 4 < N’
Q1.0 —1 OG- 0G4 N —1
. -1 f ; . .
P; = Z Z Z ZOéz N+1---CG— 1B(Z)fifNJfl---aivLNflZ(’;i+1---0¢i+N71 it N S t S L—-N + 1’
O N1+ Q-1 Qi1+ QG N1
—1 ) . .
Z Z Z az N0 1B;i—N+1~~~aLZgéi+1~~~aL if L-N+1<yq,
\ Q- N41---Qj—1 Qj41...Q],
(22)
where the Zg;mw and Z;_ . terms are set to 1 whenever i > j. Specifically, Zglao =1if
i=land Z;  , = 11fz—L1nEq 22.

Results

Overview of the modeling procedure. We have developed an algorithm, BindSter, which
predicts TF-DNA binding energetics using a biophysical approach (Fig. 2). The algorithm
assigns a binding energy E; to every site ¢...7 + L — 1 of length L on both DNA strands.
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The energy is computed using a hierarchy of models of increasing complexity (Materials and
Methods). The most basic of these, the mononucleotide model, assumes that the contribution
of each DNA bp to the total binding energy is independent of the other bps (Eq. 7).

The mononucleotide model can be extended by either including energies of dinucleotides
(adjacent base pairs; Eq. 8), or k-mers of maximum length N that can occur anywhere within
the binding site (Eq. 9). The dinucleotide model is designed to capture sequence specificity
of DNA bending, which plays a major role in protein-DNA recognition [22-24] and which is
typically described at the level of base-stacking energies [25]. The k-mer model is capable of
accounting for sequence-specific experimental biases [19], as well as capturing true sequence
preferences for longer motifs. We have also studied a position-independent (PI) model in
which protein-DNA energetics is described purely through k-mer contributions (Eq. 11).

We assume thermodynamic equilibrium between proteins and DNA probes. Under this
assumption, we compute the average total number of proteins bound to each DNA probe
using efficient transfer matrix-like algorithms (Materials and Methods) [13, 14]. Unlike
previous approaches [15, 17] which assume low protein concentrations, our algorithm sums
over all configurations of DNA-bound proteins allowed by steric exclusion. Furthermore,
several species of DNA-binding factors can compete for positions on the DNA probe; this
faculty allows us to fit two models of protein-DNA interactions simultaneously in order to
detect alternative binding modes.

BindSter regressions start from a set of random points in the parameter space, so that the
fits are not biased by initial conditions. Input data comes in the form of the ratio of Cy5 to
BODIPY fluorescense intensity for MITOMI [10], and Alexa488 to Cy3 for PBM [12, 26, 27]
(Fig. 2B). Each regression attempts to maximize a linear correlation coefficient r between
measured fluorescense ratios and predicted protein occupancy (Fig. 2C,D). Parameter opti-
mization is carried out using a simple derivative-free algorithm which we call Try2Step [20]
(Materials and Methods). Briefly, the algorithm tries out modifications of the current pa-
rameter set and accepts the first one that increases r; if no such modifications are found after
200 steps, the parameter set that decreased r the least is accepted. This offers a possibility of
surmounting barriers on the landscape defined by the dependence of  on model parameters,
although most accepted steps do lead to improvements (Fig. 2C). The regression is stopped
once improvements to r become too small to matter. After 80 independent regressions, the
model which yields the highest r is retained as the final prediction (Fig. 2D). Each prediction
consists of a set of final model parameters, typically shown as a sequence logo, and of the
protein occupancy profile for each DNA probe.

Sensitivity of prediction quality to model parameter values. Each BindSter run
yields a set of model parameters that fit the data best. However, focusing only on best-fit
models overlooks the fact that fit quality may be insensitive to the exact values of some of the
fitting parameters. If the dependence of r on a given parameter is weak, different algorithms
may yield apparently different motifs that would in fact have equivalent predictive power. To
address this issue, we have developed a graphical representation of parameter uncertainties,
called an IntervalLogo (see Materials and Methods for details). In IntervalLogos, letter
heights correspond to predictions based on the best-fit model, as in regular logos. In addition
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however, color intensities and patterns are used to display the confidence interval associated
with each letter (Fig. 1). The intervals are based on varying model parameters one at a
time, until r drops to 0.98 of its optimal value found in the best-model fit.

The mononucleotide model and comparison with previous work. We have fit the
mononucleotide model to 28 S. cerevisiae TFs with MITOMI data [10] (Fig. 3A, Table S1).
Our results can be compared with previous fits of a PWM-like model to the same data, which
employed MatrixREDUCE [10]. When the same length of the binding motif is used (L = 8),
our results are very similar to MatrixREDUCE predictions (p=0.31, red circles in Fig. 3A).
However, we find that prediction quality improves when motifs are longer (compare crosses
(L = 10) and circles (L = 8) in Fig. 3A), and therefore use L = 10 in all subsequent fits.
Despite comparable overall predictive power, MatrixREDUCE and BindSter sometimes yield
significantly different motifs (Table S1, Fig. 3C), indicating that (a) parameter uncertainty
may be significant at some positions; (b) more than one model of binding specificity may
explain the same data equally well.

Note that in all MITOMI fits we have used only the 52-bp variable region from each DNA
probe; refitting the L = 10 mononucleotide model with the entire 70-bp probe sequence
results in a modest improvement compared to the result shown in Fig. 3A (violet crosses):
the average change in correlation coefficients p is 0.013, with p = 1.2e —4. The average motif
correlation is 0.86, with motifs produced by poorly-fitting models being more variable.
Steric exclusion. One advantage of BindSter is its rigorous treatment of steric exclusion,
which makes our algorithm applicable to arbitrary protein concentrations (at low concentra-
tions, multiple proteins bound to the same DNA probe are rare and steric exclusion is not
important). The additional computational effort is modest since we use an efficient recursive
algorithm to calculate DNA probe occupancies (Materials and Methods). In order to inves-
tigate the extent to which neglecting steric exclusion affects the quality of predictions, we
have compared the mononucleotide model to a simple model without steric exclusion, which
treats each binding position as independent of all the other positions on the DNA probe (Ma-
terials and Methods). We find that rigorous treatment of steric exclusion has minimal effect
on the predictive power of the model (Fig. S2). Both the correlation coefficients (Fig. S2A)
and the motifs (Fig. S2B) are very similar, although there are occasionally minor differences
in probe occupancy profiles. For example, Rox1 profiles are somewhat different with and
without steric exclusion (Fig. S2C), probably due to the preference for T/C at position 2 in
the latter fit (Fig. S2B). It appears that in MITOMI experiments the protein concentrations
are sufficiently low, making steric exclusion a minor factor.

Higher-order models of protein-DINA energetics. The mononucleotide model may
not fully capture the complexity of amino acid — DNA base pair interactions at the protein
binding interface [28], including the role of DNA shape in protein recognition [24]. To
determine whether energetic contributions of longer motifs improve predictive performance,
we have tested several extensions of the basic mononucleotide model (Fig. 3B, Fig. S3,
Table S1, Table S2; see Materials and Methods for model definitions). The extended models
yielding the best improvements are the N = 3 k-mer model (where N is the maximum word
length) and the dinucleotide model (top two panels in Fig. 3B; Table S1). Interestingly, the
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N = 2 k-mer model has significantly less predictive power (Fig. S3, top panel).

Either N = 2 or N = 3 position-independent model fit simultaneously with the mononu-
cleotide one does not substantially improve performance (Fig. S3, two middle panels). Thus
there is scant evidence in MITOMI data for nearly non-specific binding driven by preferences
for short sequence motifs, regardless of their position within the binding site. Finally, whereas
fitting two mononucleotide models simultaneously is beneficial (two-motif model in Fig. 3B,
bottom panel; Table S2), fitting one mononucleotide parameter set first and then fitting
the other one on the residual signal is not (secondary motif model in Fig. S3, bottom panel;
Table S2). Since the parameter spaces for these two models are equivalent, the issue lies with
convergence: simultaneous fits achieve better optimization than sequential ones, probably
because of greater flexibility afforded by a higher-dimensional optimization in the former
case. Correspondingly, secondary motifs are often less specific and have little predictive
power by themselves (cf. 7,0ne values for the secondary model motifs in Table S2). In con-
trast, motif, fits in the two-motif model are more predictive and the logos are often related to
motif; and mononucleotide model fits (Table S2). The differences between motif; and motif,
predictions may sometimes be interpreted as alternative binding modes. For example, in the
case of Gend motify is close to the symmetric AP-1 site sequence (TGA(C/G)TCA) which
corresponds to homodimeric binding [29]; motify, on the other hand, may reflect monomeric
binding to the TCA half-site (note however that C at position 7 has a large uncertainty
associated with it).

Interestingly, motif specificity (as seen in the heights of logo letters) does not necessarily
confer predictive power [19]. For example, the mononucleotide model prediction for the
TF Cup9 is significantly more specific than the MatrixREDUCE one (compare two left
panels in Fig. 3C), but their linear correlation coefficients are fairly similar (r = 0.56 and
r = 0.49, respectively). The dinucleotide model, which provides a substantial improvement
(r = 0.73), yields a motif that appears less specific still, although there are several prominent
dinucleotide contributions (Fig. 3C, two right panels). Note that the the dinucleotide model’s
projected logo in Fig. 3C is constructed using the full dinucleotide parameter set, as described
in Materials and Methods.

In general, it is challenging to associate improvements in performance of higher-order
models with a particular physical mechanism. For example, in the case of Cup9 the k-mer
and dinucleotide models yield very similar correlation coefficients (0.71 and 0.73, respectively;
Table S1), yet their physical underpinnings are completely different. The dinucleotide model
is designed to capture DNA bp stacking energies, whereas the k-mer model assigns energies
to short words with lengths of 2 and 3 nucleotides independently of their position within
the binding site, reflecting global preferences for these short motifs. Nonetheless, in the
scatter plot of predicted vs. observed DNA probe occupancies (Fig. S4A), predictions of
both models co-localize for high-occupancy probes, and are more accurate compared with
the mononucleotide model. Furthermore, predictions of both higher-order models correlate
equally well with the mononucleotide model and again co-localize for high-occupancy probes
(Fig. S4B). A direct comparison of k-mer and dinucleotide models reveals that they predict
very similar distributions of probe occupancies (r = 0.90; Fig. S4C). Thus the same signal
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is captured using two distinct higher-order models, which extend the mononucleotide model
in different ways.

The above observations lead us to conclude that modifying basic mononucleotide ener-
getics is more beneficial than introducing additional binding species. Indeed, according to
our fits there is relatively little evidence that TFs switch between binding modes and in ad-
dition to the primary bind an alternative motif which could be characterized by either word
counts (position-independent models) or another mononucleotide parameter set (two-motif
and secondary motif models). The most successful approach of this type, the two-motif fit,
typically yields primary and secondary motifs that are clearly related (Table S2).
Cross-validation of BindSter fits. For every TF, the MITOMI dataset provides ap-
proximately 3700 DNA probe occupancy measurements; the full dataset is divided into two
complete replicates and an incomplete replicate which contains a subset of probes from the
complete one [10]. Thus the number of free parameters in all our models (Materials and
Methods) is significantly less than the total number of available measurements. Nonetheless,
we have cross-validated our mononucleotide fits by comparing the models trained on first
and second complete replicates with each other, and with the model trained on all available
data (Fig. S5, Table S3, Table S4). Models trained on single replicates produce distribu-
tions of probe occupancies that are highly correlated with the full model (Fig. S5A) and
have similar predictive power against the data (Table S3). The fitted model parameters also
tend to be similar, as measured by motif correlation coefficients against the mononucleotide
model trained on the entire dataset (Fig. S5B, Table S4). As a rule, predictions with high
correlation coefficients against the data tend to yield nearly identical motifs (see e.g. Rox1
and Skol examples in Fig. S5C); motifs vary more for lower-quality predictions (see e.g. the
Cadl example in Fig. S5C).

It is also possible that higher-order models fit the data better simply because they have
more fitting parameters. However, there is no clear connection between the number of
additional parameters and model performance. For example, the best-performing models in
Fig. 3B and Fig. S3 are the dinucleotide model (112 independent parameters compared with
31 for the mononucleotide model) and the k-mer model (67 independent parameters with
N = 3). Despite many more parameters in the dinucleotide model, its performance is quite
similar to that of the k-mer model, as discussed above.

The comparison between the k-mer and mononucleotide + PI models is particularly
instructive. These two models are parameterized nearly identically, but k-mer models greatly
outperform their PI couterparts. The physical mechanisms of protein-DNA interactions
described by the two models are very different. In the mononucleotide + PI model, TF's
bind in two distinct modes (Materials and Methods). In the k-mer model, there is a single
binding mode whose sequence preferences are described by a combination of position-specific
mononucleotide parameters and position-independent contributions from longer words. Thus
merely adding parameters will not significantly improve predictive performance unless the
underlying physical model captures essential aspects of protein-DNA energetics.

Since the dinucleotide model has the most fitting parameters, we have also cross-validated
it directly (Table S3, Table S4). As with the mononucleotide model, predictions of DNA
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probe occupancies are largely consistent across the two models trained on separate replicates,
with slight loss of predictive power which becomes more pronounced if the correlation coeffi-
cients from all models (replicate 1, replicate 2, and full) are low overall (Table S3). However,
dinucleotide motifs fitted on replicates are much more variable than their mononucleotide
counterparts (Table S4). For example, Ace2 models fit on separate replicates have the same
predictive power as the full model. Nonetheless, the corresponding motifs are only correlated
with the full model motif at r = 0.51 (p < 107%) and r = 0.68 (p < 107°%). For Met31, the
dinucleotide motif fit on replicate 1 is correlated with the full motif at r = 0.85 (p < 1079),
whereas the replicate 2 fit yields r = 0.37 (p = 2.3 x 107°). Interestingly, both motifs predict
DNA probe occupancies equally well (r = 0.82 and 0.80, respectively), and comparably to
the full model prediction (r = 0.85). Overall, these observations underscore the fact that
multiple models, and especialy multiple higher-order models, can fit MITOMI data equally
well.

Comparison of PBM and MITOMI-based predictions. Predictions of protein-DNA
binding specificity should not depend on the experimental platform being used to measure
protein-DNA interactions. In order to compare the robustness of BindSter predictions across
MITOMI and PBM platforms, we have carried out mononucleotide, dinucleotide, and k-mer
fits for 12 TF's for which both PBM and MITOMI measurements are available (Table S5). We
have also compared our results with previously published BEEML-PBM PWM-like fits [16,
17].

One essential difference between BindSter MITOMI and PBM fits is the use of location
bias in the latter. The location bias in our model is a quadratic energy contribution with
two free parameters per DNA-binding species (Eq. 12). It is designed to make binding sites
closer to the glass slide less favorable, due to their lower accessibility for TFs [19]. Indeed,
although the coefficients of the quadratic function are not constrained in any way in our
fits, for most TFs they fit to values that impose energetic penalties on the proximity of
the protein to the glass slide (Fig. S6A). Including location bias into PBM fits leads to
sizable improvements in prediction quality for mononucleotide and k-mer models (Fig. S6B).
In contrast, including location bias into MITOMI fits leads to p = 0.013, several times
smaller than the improvements observed with PBM data. Although including location bias
increases predictive power of PBM fits, mononucleotide models fit with and without it tend
to yield similar motifs (Fig. S6C; average motif correlation for the 5 TFs in the upper panel
of Fig. S6B is 0.92).

On average, our mononucleotide predictions outperform those from the BEEML-PBM
algorithm (Fig. 4A, Table S5). As with MITOMI data, k-mer and dinucleotide models
provide statistically significant improvements compared to mononucleotide fits. Consistency
between PBM and MITOMI-based motifs (as measured by motif correlations) improves
with overall prediction quality on PBM data; in several cases higher-order models recover
motifs that, when projected, are closer to the MITOMI-based mononucleotide motifs than
mononucleotide models inferred from PBM data (Fig. 4B). We also note that BEEML-PBM
motifs have the highest average correlation with BindSter MITOMI motifs on this dataset.
For example, the core GACACA Cup9 motif seen in both BEEML-PBM and MITOMI-based
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mononucleotide fits is only recovered at the dinucleotide or k-mer level with BindSter PBM
fits (Fig. 4C, Table S5). This may be due to substanial k-mer bias present in PBM data [19],
which may also be accounted for indirectly in the dinucleotide model.

Predictive power of MITOMI-trained models on PBM data is modest overall, although
it does improve if location bias is included (Table S6). As a rule, PBM-based fits yield lower
correlation coefficients and partial or less specific motifs. For example, for Basl neither
BEEML-PBM nor BindSter fits recover the highly predictive motif (r = 0.83) inferred from
MITOMI data, and even the high-quality prediction of the canonical Cbfl motif with PBM-
based mono- and dinucleotide models has less information content than the corresponding
MITOMI result (Fig. 4C, Table S5). Note however that with MITOMI data the symmetric
CACGTG motif is replaced with GACGTG, perhaps as a sign of an alternative binding
mode; PBM fits on the other hand yield the expected symmetric motif. Interestingly, the
Cbfl motif becomes significantly more specific when the potential k-mer bias is taken into
account (Table S5).

Discussion

We have developed a biophysical algorithm, BindSter, for predicting protein-DNA binding
energetics from high-throughput in wvitro measurements of total protein occupancies on a
set of DNA probes. We have focused on MITOMI, a technique that uses a microfluidic
device to measure binding interactions at thermodynamic equilibrium [9, 10]. The MITOMI
binding data is thus well-suited for computational modeling based on equilibrium statistical
mechanics, although the MITOMI approach is less high-throughput than PBMs [12, 26, 27,
30].

Our computational framework differs from previously published biophysical models of
protein-DNA interactions [15-17] in two important aspects: (a) It employs a rigorous pro-
cedure in which all sterically allowed configurations of TFs bound to DNA probes are taken
into account; (b) It is designed to accommodate a variety of protein-DNA interaction energy
models. Thus, in contrast to previous work, BindSter is able to provide a quantitative treat-
ment of overlapping binding sites and multiple DNA-binding species (as may occur if the
TF switches between dimeric and monomeric binding, or employs distinct binding interfaces
to interact with different classes of sites). The built-in flexibility with respect to describ-
ing protein-DNA energetics has allowed us to explore a hierarchy of models of increasing
complexity.

The most basic mononucleotide model, in which each nucleotide in the binding site
contributes independently to the total protein-DNA binding energy, has predictive power
on MITOMI data comparable to that of MatrixREDUCE [10]. However, many BindSter
motifs look substantially different (Table S1). Some of this discrepancy may be attributed
to the fact that the models are insensitive to the values of a subset of fitting parameters.
Such parameters could therefore change within a sizable range with little consequences for
the quality of the fit. To account for this possibility, we have developed a novel way of
graphically displaying the uncertainty of model parameters, called Intervallogos.
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IntervalLogos are constructed as regular logos, but with color intensities and patterns
of the letters used to indicate the confidence interval associated with each parameter as
it is varied independently (Materials and Methods; Fig. 1). However, visual inspection of
mononucleotide and MatrixREDUCE motifs in Table S1 shows that even after accounting
for parameter uncertainty the motifs remain related but distinct in many cases. Thus there
is degeneracy among motifs that can explain MITOMI data equally well; moreover, there
is no clear correlation between the specificity of a given motif and its predictive power.
Finally, the role of steric exclusion is negligible in MITOMI experiments, probably due to
low protein concentrations which make multiply bound proteins and competition for the
same DNA sequence unlikely (Fig. S2).

Among seven extensions of the mononucleotide model that we have tested, the dinu-
cleotide and k-mer models result in most significant improvements to prediction quality
(Fig. 3B, Fig. S3). Both of these models extend the mononucleotide description of protein-
DNA energetics by including contributions of longer words. In contrast, models that test for
the presence of alternative binding motifs fair less well, indicating that TFs in our dataset
tend to have a single predominant binding mode. The most successful model of this type,
in which two mononucleotide motifs are fit simultaneously to the data, does result in a
reasonable improvement (Fig. 3B); some of the fitted model pairs can be interpreted as ev-
idence of dimeric vs. monomeric binding, or affinity for different classes of sequence motifs
(Table S2). However, in general it is challenging to associate an observed improvement in
model performance with a particular physical mechanism of protein-DNA interactions. For
example, k-mer and dinucleotide models tend to produce correlated predictions for high-
occupancy DNA probes despite the fact that they are supposed to describe distinct aspects
of protein-DNA energetics and/or experimental biases (Fig. S4).

Finally, we find that fits on PBM data typically yield substantially different motifs,
depsite the fact that their predictive quality is as good or better than previously published
BEEML-PBM results [16, 17] (Fig. 4, Table S5). Motif correlations between MITOMI and
PBM-fit models are modest overall, although they do improve with the quality of the PBM fit
(Fig. 4B). Correspondingly, the ability of MITOMI-trained data to predict the distribution
of probe occupancies (fluorescent intensities) observed in PBM experiments also tend to be
modest (Table S6). One potential explanation is limited applicability of thermodynamic
models to the analysis of PBMs. Another possibility is experimental biases other than the
k-mer bias and the location bias that were explicitly taken into account in BindSter modeling.
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Figure 1: Illustration of color assignments in IntervalLogos. All symbols are defined
in Materials and Methods.
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Figure 2: Overview of BindSter, a biophysical algorithm for predicting protein-
DNA binding specificity from high-throughput data. (A) MITOMI or PBM data is
used as input to a series of Try2Step regressions employed to optimize model parameters.
The fitted model (here, the Ace2 mononucleotide model) can be displayed as a sequence
logo (e.g., an Intervallogo; see Materials and Methods for details) and used to compute a
TF occupancy profile for each DNA probe. (B) Histogram of the Cy5 to BODIPY ratio,
which quantifies the level of TF binding, from the Ace2 MITOMI assay [10]. (C) Multiple
regressions on the Ace2 MITOMI data. Each regression attempts to maximize the linear
correlation coefficient between probe fluorescense ratios and the average number of particles
bound to each probe (see Materials and Methods). The regression leading to the highest
correlation is plotted in dark blue. (D) Predicted average number of particles vs. observed
fluorescence ratios for each probe from the Ace2 MITOMI assay. The predictions are made
using the mononucleotide model.
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Figure 3: Protein-DINA interaction motifs obtained from MITOMI data. (A) Com-
parison of MatrixREDUCE [15] linear correlation coefficients [10] with those from BindSter.
BindSter fits were done using a mononucleotide model with L = 8 (as in MatrixREDUCE)
or L = 10. The difference between BindSter and MatrixREDUCE linear correlation coeffi-
cients averaged over all TFs is denoted by p; p-values for the two distributions of correlation
coefficients are computed using the Wilcoxon signed-rank test. (B) Histogram of changes in
correlation coefficients between extended (k-mer, dinucleotide, and two-motif) and mononu-
cleotide models. The difference between extended and mononucleotide model correlation
coefficients averaged over all TFs is denoted by p; p-values are computed as in (A). (C) Mo-
tif predictions for Cup9. Counter-clockwise from top left: Fordyce et al. mononucleotide
logo, BindSter mononucleotide Intervallogo, BindSter dinucleotide IntervallLogo, the pro-
jected logo based on the dinucleotide model (Materials and Methods). See Table S1 for all
other TFs and the k-mer model. 921
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Figure 4: Protein-DNA interaction motifs obtained from PBM data. (A) Com-
parison of linear correlation coefficients predicted using the mononucleotide model with
BEEML-PBM [16, 17], dinucleotide, and k-mer models. All models are fit on PBM data.
The average difference between linear correlation coefficients in each comparison is denoted
by p; p-values for the two distributions of correlation coefficients are computed using the
Wilcoxon signed-rank test. (B) Motif correlations between the mononucleotide BindSter
model fit on MITOMI data and three BindSter models (mononucleotide, k-mer, and dinu-
cleotide) as well as the BEEML-PBM model fit on PBM data. Dinucleotide and k-mer motifs
are projected onto the mononucleotide parameter set for this comparison (see Materials and
Methods). All motif correlations are sorted by the linear correlation coefficient obtained by
fitting the mononucleotide BindSter model to PBM data; i indicates the average correlation
coefficient for each model. Subscripts on TF names denote the source of the PBM data (see
Table S5 for details). (C) Representative logos for MITOMI mononucleotide, BEEML-PBM,
PBM mononucleotide, and PBM dinucleotide fits (see Table S5 for complete results). The
dinucleotide model is represented by its projected logo.
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