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Abstract17

Estimation set size is an important determinant of genomic prediction accuracy. Plant breeding18

programs are characterized by a high degree of structuring, particularly into populations. This19

hampers establishment of large estimation sets for each population. Pooling populations increases20

estimation set size but ignores unique genetic characteristics of each. A possible solution is par-21

tial pooling with multilevel models, which allows estimating population specific marker effects22

while still leveraging information across populations. We developed a Bayesian multilevel whole-23

genome regression model and compared its performance to that of the popular BayesA model24

applied to each population separately (no pooling) and to the joined data set (complete pooling).25

As example we analyzed a wide array of traits from the nested association mapping maize pop-26

ulation. There we show that for small population sizes (e.g., < 50), partial pooling increased27

prediction accuracy over no or complete pooling for populations represented in the estimation set.28

No pooling was superior however when populations were large. In another example data set of29

interconnected biparental maize populations either partial or complete pooling were superior, de-30

pending on the trait. A simulation showed that no pooling is superior when differences in genetic31

effects among populations are large and partial pooling when they are intermediate. With small32

differences, partial and complete pooling achieved equally high accuracy. For prediction of new33

populations, partial and complete pooling had very similar accuracy in all cases. We conclude that34

partial pooling with multilevel models can maximize the potential of pooling by making optimal35

use of information in pooled estimation sets.36
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INTRODUCTION37

Genomic selection (Meuwissen et al. 2001) in animal and plant breeding rests on the accurate38

prediction of genomic breeding values (GEBV). An important determinant of prediction accuracy39

is the size of the estimation set (Daetwyler et al. 2010). In animal breeding, assembling large40

estimation sets is relatively straight forward for large dairy breeds like Holstein Friesian, where41

genomic selection is applied most successfully to date (Hayes et al. 2009). For smaller dairy cattle42

breeds and in particular for beef cattle breeds, however, assembling sufficiently large estimation43

sets within each breed is often not possible (Weber et al. 2012). Creation of multi-population esti-44

mation sets by pooling several breeds is therefore of great interest and subject of current research45

(Lund et al. 2014).46

A similar situation exists in plant breeding, which is characterized by a high degree of struc-47

turing (Albrecht et al. 2014). This structuring results from the importance of keeping distinct48

heterotic groups for maximum exploitation of heterosis (Melchinger and Gumber 1998), from the49

predominance of distinct biparental populations (Riedelsheimer et al. 2013) and the need for spe-50

cialized breeding programs targeting specific traits or environments (Windhausen et al. 2012). This51

requires that the phenotyping and genotyping resources available to a breeding program have to52

be allocated to multiple populations, which prevents the creation of sufficiently large estimation53

sets for each population. Several studies therefore investigated the merit of pooled estimation sets54

combining populations (Asoro et al. 2011; Heffner et al. 2011; Lorenz et al. 2012; Riedelsheimer55

et al. 2013; Lehermeier et al. 2014) or even heterotic groups (Technow et al. 2013; Lehermeier56

et al. 2014).57

However, pooling estimation sets is complicated by genetic differences among populations,58

such as in linkage disequilibrium, allele frequencies or relationship structure (Windhausen et al.59

2012; Weber et al. 2012; Riedelsheimer et al. 2013; Technow et al. 2014). This might be the reason60

why using pooled estimation sets failed to increase prediction accuracy in some applications in61

plant (Desta and Ortiz 2014) and animal breeding (Lund et al. 2014).62

Therefore, Brøndum et al. (2012) proposed to use separate estimation sets for each population63
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but to derive genome position specific priors from estimation results in the other population. In64

this way, unique genome properties of each population could be accounted for while still using65

information from other populations. A similar, but perhaps more formal approach is “partial pool-66

ing”, facilitated by Bayesian multilevel models (Gelman and Hill 2006; Gelman and Pardoe 2006;67

Gelman 2006a). In multilevel models, parameters (e.g., marker effects) are estimated specific for68

each population but are “shrunken” towards an overall marker effect. Both the specific and overall69

marker effects are estimated simultaneously from the data, thereby allowing that the former are70

still informed by data from the other populations. Partial pooling thus strikes a middle ground be-71

tween “no pooling” (specific marker effects estimated from data of specific population only) and72

“complete pooling” (unspecific marker effects estimated from pooled estimation set).73

Our objectives were to (i) demonstrate the use of Bayesian multilevel whole-genome regression74

models for genomic prediction and (ii) determine in which scenarios partial pooling might be75

superior over no or complete pooling of estimation sets. Our investigations were based on two76

publicly available maize breeding data sets and supported by a simulation study.77

MATERIALS AND METHODS78

Multilevel whole genome regression model The model fitted to the data was79

yij ∼ N (µij, σ
2
e) (1)

µij = β0 +
∑
k

zijkujk,

where yij was the observed phenotypic value of the ith individual from the jth population and80

µij its linear predictor. The phenotypic data yij was centered to mean zero and scaled to unit81

variance. The Normal density function, which was used as likelihood, was denoted as N with σ2
e82

denoting the residual variance component. The common intercept was β0. Finally, ukj denoted the83

additive effect of the kth biallelic single nucleotide polymorphism (SNP) marker in population j.84

The genotype of individual i from population j at marker k was represented by zijk, which was the85
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number of reference alleles, centered by twice the reference allele frequency. Which of the alleles86

was chosen as reference allele depended on the data set and is described below. Effects ukj were87

only estimated when the corresponding marker was polymorphic in population j. Otherwise it was88

set to 0 and treated as a constant.89

[Figure 1 about here.]90

The hierarchical prior distribution setup will be explained next. A graphical display is shown91

in Figure 1A. The prior of ukj was92

ujk ∼ N (uk, γ
2
k), (2)

where uk was the overall effect of the kth marker and variance parameter γ2
k quantified the devi-93

ations of the specific effects ukj from uk. Note that all else equal, the shrinkage toward uk is the94

stronger the smaller γ2
k .95

Both parameters were associated with prior distributions themselves and estimated from the96

data. For uk this was uk ∼ N (0, σ2
k). Here, the variance parameter σ2

k controls the amount of97

shrinkage towards 0. It was associated with a scaled inverse Chi-square prior with 4.001 degree of98

freedom and scale parameter S2. The prior for uk thus corresponded to the well known “BayesA”99

prior (Meuwissen et al. 2001).100

For the variance parameter γ2
k , we specified101

γk ∼ N (m, d2, 0 < a, b =∞) (3)

which is a Normal distribution prior on γk with mean parameter m and standard deviation d, left102

truncated at zero. Note that the mean of the truncated distributionN (m, d2, 0 < a, b =∞), which103

is a function of m, d and the truncation points, can be interpreted as the “typical” deviation of the104

specific marker effects ukj from uk. Higher values of this mean indicate larger deviations and vice105

verse. This parameter might therefore be used to quantify population divergence.106

An uniform prior Uni(0.001, 0.5) was used for the hyperparameters S2, m and d. The prior for107

the intercept β0 was a Normal distribution with mean 0 and a very large variance. For the residual108
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variance σ2
e we specified a uniform distribution prior over the interval [0, 1] on σe, which agrees109

with recommendations for uninformative priors on variance components (Gelman 2006b).110

Samples from the posterior distribution were drawn with Gibbs sampling, implemented in the111

JAGS Gibbs sampling environment (Plummer 2003). The total number of samples was 1000,112

drawn from a single chain with burn in of 10000 and thinning intervals of 500. These settings113

ensured convergence and an effective sample size (ESS) of > 100 for all parameters (ESS of uk114

and ujk were typically > 500).115

The ESS was calculated with the R (R Core Team 2013) package CODA (Plummer et al. 2006),116

which was also used to monitor convergence using diagnostic plots.117

Conventional whole genome regression model We used the popular Bayesian whole genome118

regression method “BayesA” (Meuwissen et al. 2001), with the modifications of Yang and Tem-119

pelman (2012) pertaining to the hyperparameter S2 (see Figure 1B for a graphical representation).120

The linear model was121

yij ∼ N (µij, σ
2
e) (4)

µij = β0 +
∑
k

zijkuk,

which is principally the same as in (1), with the difference that the population index j was dropped.122

For no pooling, the model was applied to each population in turn, for complete pooling to the joint123

data set. For σ2
e we used an improper scaled inverse Chi-square prior with -1 degrees of freedom124

and scale equal to zero. This is equivalent to a uniform prior on σe (Gelman 2006b), as was used125

for the multilevel model, but exploits conjugancy.126

The BayesA Gibbs Sampler was implemented as a C routine compatible with the R statistical127

software environment. Again we drew a total number of 1000 samples from a single chain with128

burn in of 10000 and thinning of 500.129
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Estimation, prediction and testing procedure Let Π denote the set of P populations represented130

in the estimation set and the set ofNp individuals from a population in Π as Λp, where p indexes the131

population in Π. A graphical representation is presented in Figure 2. Further, let those individuals132

from a population in Π that are not in Λp be denoted as Λp and the set of populations not in Π as133

Π. Populations in Π will be referred to as “new” populations. The estimation set thus comprised134

all individuals belonging to Λp, for p ∈ Π. The test set used for calculating prediction accuracy,135

comprised individuals in Λp from populations in Π and all individuals from populations in Π.136

The phenotypic observations of test individuals were masked in the estimation procedure. The137

separation of populations into Π and Π and of individuals within a population into Λp and Λp was138

done at random.139

Within each population, prediction accuracy was computed as the correlation between GEBVs140

and observed phenotypic values of individuals in the testing set. The within population prediction141

accuracies were subsequently averaged for populations in Π and Π. These average within popula-142

tion prediction accuracies will henceforth be denoted as rΠ and rΠ. Thus, rΠ and rΠ correspond143

to the prediction accuracy for populations represented and not represented in the estimation set,144

respectively.145

When using partial pooling, GEBVs of individuals in Λp were predicted using the posterior146

means of the marker effects estimated for the corresponding population (i.e., ujk). GEBVs of indi-147

viduals from populations in Π were predicted using the posterior means of the overall (unspecific)148

marker effects uk.149

When using complete pooling, GEBVs of all individuals in the test set were predicted from the150

posterior means of marker effects uk estimated from the joint data set with model (4).151

Finally, when using no pooling, GEBVs of individuals in Λp were predicted using the posterior152

means of the marker effects uk obtained after applying model (4) to the estimation data from the153

corresponding set Λp. The no pooling approach does not provide a direct way of predicting GEBVs154

of individuals from populations in Π. Thus, rΠ was not evaluated for the no pooling approach.155

[Figure 2 about here.]156
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Application to nested association mapping (NAM) maize populations The NAM data set was157

obtained from http://www.panzea.org. It comprised 4699 recombinant inbred lines (RILs)158

from 25 biparental crosses between a genetically diverse set of maize inbred lines and line B73159

as common parent (McMullen et al. 2009). The average population size was 188. The RILs160

were genotyped with 1106 polymorphic SNP markers covering the whole genome. The non-B73161

allele was defined as the reference allele. We confirmed that all SNP were biallelic and thereby162

that the reference allele corresponded to the same nucleotide in all 25 populations. To facilitate163

computations, we used a thinned set of 285 markers, chosen in such a way that there was one164

marker per 5 cM interval, on average. A previous study showed that a density of one marker165

per 10 cM interval is sufficient for genomic prediction in the NAM population (Guo et al. 2012).166

We analyzed the traits days to silking (DS), ear height (EH), ear length (EL), southern leaf blight167

resistance (SLB), near-infrared starch measurements (NS) and upper leaf angle (ULA), which were168

phenotyped in multi-environment field trials. The phenotypic records used for fitting the models169

were averages over the single environment phenotypes. The number of environments were 10, 11,170

8, 3, 7 and 9 for DS, EH, EL, SLB, NS and ULA, respectively. The traits chosen represent the171

major trait categories available: yield component (EL), agronomic (EH), disease resistance (SLB),172

flowering (DS), quality (NS) and morphology (ULA).173

To investigate the effect of total number of lines N , number of populations P and number of174

lines per population Np in the estimation set on prediction accuracy and the relative performance175

of the pooling approaches, the following combinations of P and Np were considered: P = 5 and176

Np = 50 and 100, P = 10 and Np = 25, 50 and 100, P = 20 and Np = 12.5, 25, and 50. For P =177

20 and Np = 12.5, we sampled 19 populations with 12 individuals and one with 22, which results178

in an average Np of 12.5. The P and Np combinations thus gave rise to N of either 250, 500 or179

1000. For each combination of trait, P and Np, 50 estimation-testing data sets were generated by180

repeating the sampling of Π and Λp as described above. Throughout, the three pooling approaches181

were applied to the same data sets. The sampling variation between different data sets thus does182

not enter the comparisons among pooling approaches.183
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Application to interconnected biparental (IB) maize populations This data set was obtained184

from the supplement of Riedelsheimer et al. (2013). It comprised 635 doubled haploid (DH) lines185

from five biparental populations with average size of 127. The populations were derived from186

crosses between four European flint inbred lines. For all DH lines 16741 SNP markers polymor-187

phic across populations were available. We replaced missing marker genotypes with twice the188

frequency of the reference allele, which was the allele with the lower frequency. When analyzing189

the data we used a thinned set of 285 markers. Because the data set did not include a map of the190

markers, the markers were chosen randomly.191

The DH lines were phenotyped in multi-environment field trials for Giberella ear rot (GER)192

severity, a fungal disease caused by Fusarium graminearum, deoxynivalenol (DON) content (ma-193

jor mycotoxin produced by the fungus), ear length (EL), kernel rows (KR) and kernels per row194

(KpR). A more detailed description of this data set can be found in Riedelsheimer et al. (2013) and195

Martin et al. (2012).196

As described above, populations were randomly split into Λp and Λp. However, because there197

were only five populations in total, we did not exclude any populations from Π. Set Π was thus198

empty and we did not evaluate rΠ.199

The sets Λp comprised 25%, 50% and 75% of the lines in each population, which corresponded200

to an average Np of 31, 63 and 95, respectively. For each trait and percentage value of estimation201

individuals, 100 estimation-testing data sets generated, each time resampling the subset of 285202

markers too.203

Application to simulated data set We conducted a simulation study to specifically investigate204

the performance of the pooling approaches under increasing levels of differences in QTL effects205

among populations. The basis for the simulation were the marker genotypes of the lines in the206

NAM populations. To simulate genetic values, we first randomly chose 20 marker loci as QTL,207

which were subsequently removed from the set of observed markers. We drew additive overall208

effects aq from a standard normal distribution. Then population specific QTL effects ajq were209
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sampled from N (aq, τ
2
q ). The variance parameter τ 2 was chosen such that the relative standard210

deviation (rSD), i.e., τq/aq, was equal to 2, 1, 0.5, 0.25 and 0.0. The greater rSD, the less similar the211

population specific QTL effects are. True genetic values were obtained by summing QTL effects212

ajq according the QTL genotypes of each individual. Finally phenotypic values were simulated by213

adding a normally distributed noise variable to the true genetic values. The variance of the noise214

variable was chosen such that the heritability across populations was equal to 0.70. The average215

within family heritability necessarily increased with decreasing rSD, and was 0.53, 0.58, 0.64, 0.68216

and 0.70 at rSD 2, 1, 0.5, 0.25 and 0.0, respectively.217

Set Π comprised P = 10 populations and sets Λp had size Np = 25. For each rSD value218

50 estimation-testing data sets were generated. The QTL positions and effects were randomly219

generated anew for each data set. Also in this case we used a thinned set of 285 markers. Because220

the true genetic values were known, rΠ and rΠ were computed as the correlation between true221

genetic values and GEBVs.222

RESULTS223

NAM maize populations Trends typically held across traits. The results presented and discussed224

therefore apply to all traits, unless otherwise mentioned.225

Increasing Np while keeping N constant (i.e., having fewer but larger populations in the esti-226

mation set) generally increased rΠ and decreased rΠ (Table 1). However, the increase in rΠ was227

much more pronounced than the decrease in rΠ.228

When increasing Np with constant P or when increasing P with constant Np, both rΠ and rΠ229

increased (Table 1). However, while in the first case, rΠ and rΠ increased in similar magnitudes,230

the increase in rΠ was much smaller than the increase in rΠ in the second case, in particular when231

Np was high. Per definition, the accuracy of no pooling is not expected to change as long as Np232

remains constant.233

For low P and high Np, e.g., P = 5 and Np = 100, no pooling achieved the highest rΠ and234

complete pooling the lowest (Table 1). For high P and low Np, e.g., P = 20 and Np = 25, partial235
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pooling achieved the highest rΠ. Here no pooling resulted in the lowest rΠ. The only exception to236

this was trait DS, where no pooling had a rΠ equal or higher to partial and complete pooling also237

for low Np.238

Partial and complete pooling achieved virtually identical prediction accuracies rΠ for new pop-239

ulations (Table 1). In general, rΠ of a particular pooling approach was considerably lower than the240

corresponding rΠ. The differences between rΠ and rΠ tended to be larger for high Np.241

TABLE 1: Average within population prediction accuracies in NAM maize populations

rΠ rΠ

P Np trait no partial complete partial complete

5 50 DS 0.41 0.34 0.26 0.19 0.19

EH 0.47 0.44 0.39 0.31 0.32

EL 0.39 0.37 0.28 0.19 0.19

NS 0.39 0.37 0.32 0.25 0.26

SLB 0.49 0.49 0.45 0.37 0.37

ULA 0.50 0.48 0.44 0.36 0.36

100 DS 0.52 0.41 0.28 0.21 0.20

EH 0.57 0.51 0.43 0.34 0.34

EL 0.49 0.46 0.35 0.23 0.23

NS 0.47 0.44 0.36 0.29 0.29

SLB 0.58 0.58 0.50 0.41 0.41

ULA 0.58 0.54 0.47 0.40 0.40

10 25 DS 0.32 0.28 0.22 0.18 0.17

EH 0.38 0.38 0.35 0.30 0.31

EL 0.31 0.31 0.25 0.21 0.21

NS 0.30 0.33 0.30 0.26 0.27

Continued on next page
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SLB 0.40 0.46 0.43 0.38 0.39

ULA 0.39 0.44 0.41 0.36 0.37

50 DS 0.42 0.35 0.26 0.22 0.22

EH 0.47 0.45 0.40 0.36 0.36

EL 0.40 0.39 0.29 0.23 0.23

NS 0.38 0.40 0.35 0.30 0.30

SLB 0.49 0.52 0.46 0.42 0.43

ULA 0.48 0.50 0.45 0.41 0.41

100 DS 0.51 0.42 0.30 0.25 0.25

EH 0.57 0.53 0.44 0.39 0.39

EL 0.48 0.46 0.33 0.27 0.27

NS 0.48 0.46 0.38 0.33 0.33

SLB 0.57 0.57 0.49 0.45 0.45

ULA 0.59 0.56 0.48 0.45 0.44

20 12.5 DS 0.23 0.23 0.21 0.17 0.17

EH 0.28 0.34 0.33 0.30 0.31

EL 0.22 0.27 0.23 0.19 0.19

NS 0.21 0.30 0.29 0.27 0.28

SLB 0.31 0.43 0.42 0.38 0.39

ULA 0.28 0.40 0.39 0.35 0.36

25 DS 0.32 0.30 0.24 0.22 0.23

EH 0.38 0.42 0.39 0.36 0.37

EL 0.31 0.34 0.28 0.22 0.22

NS 0.30 0.36 0.33 0.30 0.31

SLB 0.39 0.48 0.45 0.42 0.43
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ULA 0.38 0.46 0.44 0.42 0.42

50 DS 0.42 0.37 0.29 0.26 0.26

EH 0.48 0.49 0.42 0.40 0.40

EL 0.39 0.40 0.30 0.28 0.29

NS 0.38 0.41 0.36 0.34 0.34

SLB 0.49 0.54 0.48 0.46 0.47

ULA 0.49 0.52 0.47 0.46 0.46

Values shown are average within population prediction accuracies for test individuals, averaged
over 50 random estimation-test data splits. The standard errors were < 0.013. P gives the size
of set Π, i.e., the number of populations represented in the estimation set, column Np gives the
number of individuals from each population in Π that were used for estimation, i.e., the sizes of
sets Λp. The traits were: days to silking (DS), ear height (EH), ear length (EL), southern leaf blight
resistance (SLB), near-infrared starch measurements (NS) and upper leaf angle (ULA).

IB maize populations The prediction accuracy rΠ increased with increasing Np, for all traits and242

pooling approaches (Table 2). Averaged over traits, the increase was largest for no pooling, where243

the accuracy increased from an average of 0.35 at Np = 31 to 0.48 at Np = 95. The accuracies244

for the partial and complete pooling approaches increased from 0.39 and 0.38, respectively, at245

Np = 31 to 0.48 at Np = 95.246

At Np = 31, partial pooling had the highest rΠ for traits EL, KpR, complete pooling for traits247

DON and KR. For GER both had the same accuracy. The no pooling approach had the lowest rΠ,248

except for EL and KpR, where it had the same accuracy as complete pooling. For the highest Np249

of 95, the accuracy differences among the pooling approaches decreased. Partial pooling still had250

the highest accuracy for EL and KpR and the same as complete pooling for DON and GER. While251

never better than partial pooling, no pooling had higher prediction accuracy than complete pooling252

for EL and KpR.253

[Table 1 about here.]254
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Simulated maize populations For all pooling approaches, rΠ increased with decreasing rSD255

(Table 3). The increase for no pooling, however, was comparatively small and a result of the256

increasing within family heritability with decreasing rSD. The relative performance of the pooling257

approaches also depended on rSD. For the highest rSD value considered, no pooling had the highest258

rΠ, for the intermediate rSD value of 1.0 partial pooling. For the lower rSD values complete and259

partial pooling achieved similarly high rΠ.260

Also rΠ for both partial and complete pooling increased strongly with decreasing rSD and the261

differences to rΠ decreased (Table 3). Partial and complete pooling achieved almost identical rΠ.262

The mean of the truncated Normal distribution priorN (m, d2, 0 < a, b =∞) for parameter γk263

increased with increasing rSD. Its average values were 0.0111, 0.0153, 0.0190, 0.0269 and 0.0296264

for rSD of 0.0, 0.25, 0.5, 1.0 and 2.0, respectively.265

[Table 2 about here.]266

DISCUSSION267

Comparison of pooling approaches Partial pooling allows estimation of population specific268

marker effects while still facilitating “borrowing” of information across populations. It is therefore269

a compromise between no pooling, which models unique characteristics of each population but270

ignores shared information, and complete pooling, in which the opposite is the case.271

When population sizesNp are sufficiently large, borrowing information from other populations272

is not required for achieving high prediction accuracy of new individuals from the same population273

(rΠ). Further enlarging estimation sets by pooling with other populations might then even be detri-274

mental (Riedelsheimer et al. 2013). This explains why no pooling was the most accurate approach275

when Np was large (e.g., >= 50), particularly in the NAM population, and why it profited most276

from increases in Np. Therefore, pooling of estimation sets is most promising if Np is small due to277

budget of other constraints. We indeed observed that pooling was more accurate than no pooling278

when Np was small (e.g., < 50). The superiority of either pooling approach over no pooling also279

increased with increasing P , because information from more populations was available, which is280
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not used in no pooling. Thus, pooling is expected to most advantageous when P is relatively high281

and Np low. Whether partial or complete pooling is the better approach will then also depend on282

the similarity of the pooled populations. The greater the similarity, the relatively better complete283

pooling is expected to perform, because the ability to estimate population specific marker effects284

becomes less important. In this situation partial pooling might even be of disadvantage, because it285

requires estimation of many more effects which might lead to problems associated with noniden-286

tifiability (Gelfand and Sahu 1999). The parents of the IB populations are from the same breeding287

program (Riedelsheimer et al. 2013), whereas the non-common parents of the NAM populations288

were chosen to be maximally diverse and comprise temperate, tropical and specialty (sweet and289

popcorn) maize germplasm (McMullen et al. 2009). Accommodating for unique characteristics of290

the populations is therefore more important in NAM than in IB, which might explain why complete291

pooling was always inferior to partial pooling in the former but often equal or even superior in the292

latter and also why no pooling never achieved the highest prediction accuracy in IB, even for large293

Np.294

The relative performance of the pooling approaches was very stable across traits in the NAM295

data set, with the exception of DS. For this trait the no pooling approach was generally superior,296

even at high P and low Np. Buckler et al. (2009) found evidence for an allelic series at the QTL297

identified for DS in the NAM population. Thus, while the positions of the QTL are conserved298

across populations, their effects differ. Possible reasons are presence of multiple alleles or QTL299

by genetic background interaction. In this situation, pooling of data is not expected to have an300

advantage over no pooling. This example also shows that decisions about whether to pool data301

or not have to be made on a by trait basis and should incorporate prior knowledge about genetic302

architecture, if available.303

The dependence of the relative performance of the pooling approaches on the similarity of304

populations was also reinforced by the results from our simulation study. There we also observed305

that the mean of N (m, d2, 0 < a, b =∞), the prior distribution of γ2
k , which quantifies the devia-306

tions of specific marker effects ujk from the overall effect uk, increased with increasing simulated307
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differences among population specific QTL effects. This was expected, but demonstrates that the308

data was informative for the highlevel hyperparameters. Averaged over P and Np, this mean was309

largest for DS and ULA in NAM (results not shown). This might reflect the noted differences310

between population specifuc QTL effects for DS. Trait ULA, however, did not diverge from the311

pattern observed for the remainder of traits and there does not seem to be any strong indication of312

an allelic series as in DS (reference tba). There was also no obvious relation between the mean of313

N (m, d2, 0 < a, b =∞) and performance of the pooling approaches in IB (results not shown).314

Modeling unique characteristics of populations requires that these populations are represented315

in the estimation set. Prediction of individuals from new populations in Π therefore has to rely on316

the overall, unspecific marker effects uk, in both partial and complete pooling. It was thus expected317

that both achieved very similar prediction accuracies rΠ for new populations.318

Our results demonstrate that partial pooling is able to model unique characteristics of popu-319

lations within the estimation set without compromising on the ability of prediction of individuals320

from new populations. This is one reason why Gelman (2006a) see the the greatest potential of321

partial pooling with multilevel models in predictive applications.322

We examplified the use of multilevel models for partial pooling in the context of multiple323

populations, a scenario of high relevance for plant (Lehermeier et al. 2014) and animal (Lund324

et al. 2014) breeding. However, the concept is readily applicable in a wide array of scenarios.325

Examples are pooling data across multiple top-cross testers or environments, as is of particular326

relevance in plant breeding (Albrecht et al. 2014). Extending the models to more than two levels is327

straightforward, too, for example for pooling multiple populations from multiple heterotic groups328

or breeding programs.329

Alternative approaches to partial pooling There are alternatives to multilevel models for partial330

pooling. Brøndum et al. (2012) leveraged information across populations by using results obtained331

from one population to derive genome position specific priors for the analysis of another. For ex-332

ample, when there were two populations A and B, then A was analyzed first and result so obtained333
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used as prior information when analyzing B. One disadvantage of their approach is that because334

analyses are done sequentially, information is not shared simultaneously among populations. In335

the example above, information from A is used for B but not vise verse. To use information from336

B for A, the analyses had to be repeated in reverse order. It is also not obvious how the approach337

of Brøndum et al. (2012) can be generalized to more than two populations or to prediction of338

individuals from new populations. Another potential source of concern is that the priors derived339

from population A are too informative to allow substantial Bayesian learning, especially when340

population B is small (Gelfand and Sahu 1999; Gianola 2013).341

Lund et al. (2014) proposed to consider phenotypic observations from different populations342

as different traits and to analyze pooled data sets with multi-trait models. This would facilitate343

simultaneous sharing of information across populations through covariances. When the number of344

populations becomes large this might proof challenging, however, because of the need of estimat-345

ing large unstructured covariance matrices. The problem is exacerbated when unique covariance346

matrices are estimated for each marker, as would be necessary to accommodate for varying link-347

age phases between markers and QTL among populations (Lund et al. 2014). In this case too,348

prediction of individuals from new populations would not be possible directly.349

Schulz-Streeck et al. (2012) proposed a model that simultaneously fits main and population350

specific marker effects (usnp and upsnp in their notation). The principal difference to our approach351

is that both effects are on the same hierarchical level, such that the genetic value of an individual352

is modeled as the sum of usnp and upsnp. As a consequence, both sets of marker terms “compete”353

for the same underlying information. This might compromise the ability of prediction in new354

populations which has to be based on usnp. Prediction targeting individuals from new populations355

was not attempted by the authors, however.356

Composition of estimation set Increasing the number of individuals from a population in the357

estimation set (Np) always increased prediction accuracy for untested individuals from the same358

population (rΠ), regardless if the estimation set was further enlarged by individuals from other359
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populations (partial and complete pooling) or not (no pooling).360

However, because plant breeding programs have to operate under budget constrains, optimum361

allocation of resources is of great importance for maximizing the potential of genomic selection362

(Lorenz 2013; Riedelsheimer and Melchinger 2013). With a fixed budget for phenotying that is363

proportional to N , the number of populations P and the number of individuals per population364

Np have to be optimized under the constraint that N = P · Np. Such an optimization could be365

accomplished using basic theory about response to selection (Falconer and Mackay 1996) and366

accounting for the different prediction accuracy for populations represented and not represented367

in the estimation set (rΠ and rΠ, respectively), as exemplified by Technow et al. (2013). A key368

point hereby is that rΠ will increase with increasing Np but it will apply to fewer populations369

because of the decrease in P . This is exacerbated by the decrease in rΠ that we observed was370

associated with decreasing P . Thus, if the total number of populations is large, as is typically the371

case in plant breeding programs, having very low P is likely to be undesirable. In the context of372

plant breeding this and other studies, most recently Lehermeier et al. (2014), showed that pooling373

data across populations can at least partly compensate for low Np if populations are related and374

there is evidence for the merit of pooling very divergent germplasm too (Technow et al. 2013).375

Using pooled estimation sets therefore has the potential to allow for high P without compromising376

too much on rΠ. We showed that partial pooling with multilevel models can further enhance this377

potential by making optimal use of the information in pooled estimation sets.378

LITERATURE CITED379

Albrecht, T., H.-J. Auinger, V. Wimmer, J. Ogutu, C. Knaak, et al., 2014 Genome-based prediction380

of maize hybrid performance across genetic groups, testers, locations, and years. Theor Appl381

Genet 127: 1375–1386.382

Asoro, F. G., M. Newell, M. Beavis, M. Scott, and J.-L. Jannink, 2011 Accuracy and training383

population design for genomic selection on quantitative traits in elite North American oats.384

Plant Gen. 4: 132–144.385

19

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2014. ; https://doi.org/10.1101/012971doi: bioRxiv preprint 

https://doi.org/10.1101/012971


Brøndum, R. F., G. Su, M. S. Lund, P. J. Bowman, M. E. Goddard, et al., 2012 Genome position386

specific priors for genomic prediction. BMC genomics 13: 543.387

Buckler, E. S., J. B. Holland, P. J. Bradbury, C. B. Acharya, P. J. Brown, et al., 2009 The genetic388

architecture of maize flowering time. Science 325: 714–718.389

Daetwyler, H. D., R. Pong-Wong, B. Villanueva, and J. A. Woolliams, 2010 The impact of genetic390

architecture on genome-wide evaluation methods. Genetics 185: 1021–1031.391

Desta, Z. A. and R. Ortiz, 2014 Genomic selection: genome-wide prediction in plant improvement.392

Trends Plant Sci. 19: 592 – 601.393

Falconer, D. S. and T. F. C. Mackay, 1996 Introduction to Quantitative Genetics (4 ed.)., Chapter394

Response to selection, pp. 184–193. Addison Wesley Longman Limited, Harlow.395

Gelfand, A. E. and S. K. Sahu, 1999 Identifiability, improper priors and gibbs sampling for gener-396

alized linear models. J Am Stat Assoc 94: 247–253.397

Gelman, A., 2006a Multilevel (hierarchical) modeling: what it can and cannot do. Technomet-398

rics 48: 432 – 435.399

Gelman, A., 2006b Prior distributions for variance parameters in hierarchical models. Bayesian400

Analysis 1: 515 – 533.401

Gelman, A. and J. Hill, 2006 Data analysis using regression and multilevel/hierarchical models.402

Cambridge University Press.403

Gelman, A. and I. Pardoe, 2006 Bayesian measures of explained variance and pooling in multilevel404

(hierarchical) models. Technometrics 48: 241 – 251.405

Gianola, D., 2013 Priors in Whole-Genome Regression: The Bayesian Alphabet Returns. Genet-406

ics 194: 573–596.407

Guo, Z., D. Tucker, J. Lu, V. Kishore, and G. Gay, 2012 Evaluation of genome-wide selection408

efficiency in maize nested association mapping populations. Theor. Appl. Genet. 124: 261–409

275.410

20

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2014. ; https://doi.org/10.1101/012971doi: bioRxiv preprint 

https://doi.org/10.1101/012971


Hayes, B. J., P. J. Bowman, A. J. Chamberlain, and M. E. Goddard, 2009 Invited review: genomic411

selction in dairy cattle: progress and challenges. J. Dairy Sci. 92: 433–443.412

Heffner, E. L., J.-L. Jannink, and M. E. Sorrells, 2011 Genomic selection accuracy using multi-413

family prediction models in a wheat breeding program. Plant Gen. 4: 65–75.414

Lehermeier, C., N. Krmer, E. Bauer, C. Bauland, C. Camisan, et al., 2014 Usefulness of Mul-415

tiparental Populations of Maize (Zea mays L.) for Genome-Based Prediction. Genetics 198:416

3–16.417

Lorenz, A. J., 2013 Resource Allocation for Maximizing Prediction Accuracy and Genetic Gain418

of Genomic Selection in Plant Breeding: A Simulation Experiment. G3 3: 481–491.419

Lorenz, A. J., K. P. Smith, and J.-L. Jannink, 2012 Potential and optimization of genomic selection420

for fusarium head blight resistance in six-row barley. Crop Sci. 52: 1609–1621.421

Lund, M. S., G. Su, L. Janss, B. Guldbrandtsen, and R. F. Brøndum, 2014 Invited review: Genomic422

evaluation of cattle in a multi-breed context. Livest. Sci. 166: 101–110.423

Martin, M., B. S. Dhillon, T. Miedaner, and A. E. Melchinger, 2012 Inheritance of resis-424

tance to Gibberella ear rot and deoxynivalenol contamination in five flint maize crosses. Plant425

Breed. 131: 28–32.426

McMullen, M. D., S. Kresovich, H. S. Villeda, P. Bradbury, H. Li, et al., 2009 Genetic Properties427

of the Maize Nested Association Mapping Population. Science 325: 737–740.428

Melchinger, A. E. and R. K. Gumber, 1998 Overview of heterosis and heterotic groups in agro-429

nomic crops, pp. 29–44 in Concepts and Breeding of Heterosis in Crop Plants, edited by K. R.430

Lamkey and J. E. Staub. CSSA, Madison, WI.431

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard, 2001 Prediction of Total Genetic Value432

Using Genome-Wide Dense Marker Maps. Genetics 157: 1819–1829.433

Plummer, M., 2003 JAGS: a program for analysis of Bayesian graphical models using Gibbs434

sampling.435

21

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2014. ; https://doi.org/10.1101/012971doi: bioRxiv preprint 

https://doi.org/10.1101/012971


Plummer, M., N. Best, K. Cowles, and K. Vines, 2006 CODA: convergence diagnosis and output436

analysis for MCMC. R News 6: 7–11.437

R Core Team, 2013 R: A Language and Environment for Statistical Computing.438

Riedelsheimer, C., J. B. Endelman, M. Stange, M. E. Sorrells, J.-L. Jannink, et al., 2013 Genomic439

Predictability of Interconnected Biparental Maize Populations. Genetics 194: 493–503.440

Riedelsheimer, C. and A. E. Melchinger, 2013 Optimizing the allocation of resources for genomic441

selection in one breeding cycle. Theor Appl Genet 126: 2835–2848.442

Schulz-Streeck, T., J. Ogutu, Z. Karaman, C. Knaak, and H. Piepho, 2012 Genomic selection443

using multiple populations. Crop Sci 52: 2453–2461.444

Technow, F., A. Bürger, and A. E. Melchinger, 2013 Genomic prediction of northern corn leaf445

blight resistance in maize with combined or separated training sets for heterotic groups. G3 3:446

197–203.447

Technow, F., T. A. Schrag, W. Schipprack, E. Bauer, H. Simianer, et al., 2014 Genome properties448

and prospects of genomic prediction of hybrid performance in a breeding program of maize.449

Genetics 197: 1343–1355.450

Weber, K. L., R. M. Thallman, J. W. Keele, W. M. Snelling, G. L. Bennett, et al., 2012 Accuracy451

of genomic breeding values in multibreed beef cattle populations derived from deregressed452

breeding values and phenotypes. J. Anim. Sci. 90: 4177–4190.453

Windhausen, V. S., G. N. Atlin, J. M. Hickey, J. Crossa, J.-L. Jannink, et al., 2012 Effectiveness454

of Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and455

Environments. G3 2: 1427–1436.456

Yang, W. and R. J. Tempelman, 2012 A Bayesian Antedependence Model for Whole Genome457

Prediction. Genetics 190: 1491–1501.458

22

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2014. ; https://doi.org/10.1101/012971doi: bioRxiv preprint 

https://doi.org/10.1101/012971


List of Figures459

1 Graphical visualization of the multilevel model (A) and the conventional BayesA460

model (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24461

2 Graphical visualization of the testing strategy for evaluating prediction accuracy.462

The estimation set comprises Λ1 and Λ2 from populations P1 and P2 (set Π). The463

prediction accuracy of lines from populations represented in estimation set (rΠ)464

was computed from Λ1 and Λ2, the prediction accuracy of lines from populations465

not represented in estimation set from lines in P3 and P4 (set Π). . . . . . . . . . . 25466

23

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 19, 2014. ; https://doi.org/10.1101/012971doi: bioRxiv preprint 

https://doi.org/10.1101/012971


A B

FIGURE 1: Graphical visualization of the multilevel model (A) and the conventional BayesA
model (B).
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Line in estimation set

Line in test set

FIGURE 2: Graphical visualization of the testing strategy for evaluating prediction accuracy. The
estimation set comprises Λ1 and Λ2 from populations P1 and P2 (set Π). The prediction accuracy
of lines from populations represented in estimation set (rΠ) was computed from Λ1 and Λ2, the
prediction accuracy of lines from populations not represented in estimation set from lines in P3

and P4 (set Π).
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TABLE 2: Average within population prediction accuracies in interconnected biparental maize
populations

Np Trait Pooling

no partial complete

31 EL 0.31 0.33 0.31
DON 0.38 0.44 0.46
GER 0.38 0.43 0.43
KR 0.46 0.50 0.52
KpR 0.21 0.23 0.21

62 EL 0.40 0.41 0.39
DON 0.47 0.51 0.51
GER 0.47 0.50 0.49
KR 0.53 0.56 0.58
KpR 0.28 0.29 0.27

95 EL 0.44 0.46 0.43
DON 0.51 0.53 0.53
GER 0.51 0.53 0.53
KR 0.56 0.58 0.59
KpR 0.31 0.32 0.30

Values shown are average within population prediction accuracies for test individuals, averaged
over 100 random estimation-test data splits. Standard errors were < 0.01. Np denotes the average
number of individuals per population in the estimation set. The traits were ear length (EL), de-
oxynivalenol content (DON), Giberella ear rot severity (GER) kernel rows (KR) and kernels per
row (KpR)
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TABLE 3: Average prediction accuracies for simulated maize populations

rΠ rΠ

rSD no partial complete partial complete

0.0 0.54 0.89 0.89 0.89 0.89
0.25 0.51 0.84 0.85 0.84 0.84
0.5 0.50 0.76 0.76 0.73 0.73
1.0 0.48 0.57 0.53 0.48 0.49
2.0 0.44 0.41 0.30 0.20 0.21

Values shown are average within population prediction accuracies for test individuals, averaged
over 50 random estimation-test data splits. Standard errors were < 0.015. rSD is the relative
standard deviation of simulated population specific QTL effects.
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