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Abstract 

Almost all of mammalian genes have mRNA variants due to alternative promoters, alternative 

splice sites, and alternative cleavage and polyadenylation sites. In most cases, change in 

transcript due to choosing alternative cleavage and polyadenylation sites does not lead to change 

in protein sequence, while selection of alternative promoters and alternative splice sites would 

alter protein sequence. Nevertheless, all these alternations would give rise to different RNA 

isoforms. Selection of alternative RNA isoforms has been found to be associated with change in 

condition. For example, many studies have revealed that alternative cleavage and 

polyadenylation (poly(A)) are correlated to proliferation, differentiation, and cellular 

transformation. Thus, unlike gene expression in microarray, change in usage of splice sites or 

poly(A) sites associated with conditions does not involve differential expression and hence 

cannot be detected by differential analysis methods but can be done by association methods. 

Traditional association methods such as Pearson chi-square test and Fisher Exact test are single 

test methods and do not work on the RNA count data derived from replicate libraries. For this 

reason, we here developed a large-scale association method, called ranking analysis of chi-

squares (RAX2). Simulations demonstrated that RAX2 worked well for finding association of 

changes in usage of poly(A) sites with condition change. We applied our RAX2 to our primary 

T-cell transcriptomic data of over 9899 tags scattered in 3812 genes and found that 1610 (16.3%) 

tags were associated in transcription with immune stimulation at FDR < 0.05 and most of these 

tags associated with stimulation also had differential expression. Analysis of two and three tags 

within genes revealed that under immune stimulation, short RNA isoforms were significantly 

preferably used. Like cell proliferation and division, short RNA isoforms are highly prioritized to 

be used for cell growth.    
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Recently, alternative splicing and alternative cleavage and polyadenylation (ACP) have been 

revealed to be not only a universal posttranscription processing step in eukaryotic gene 

expression but also a versatile mechanism for posttranscriptional regulation of genes (Colgan and 

Manley 1997; Shepard et al. 2011; Zhao et al. 1999). After transcription, a pre-mRNA is capped 

at 5’ end, spliced, and cleaved in the 3'-untranslated region (3'UTR) to yield a new open end that 

allows to add a polyadenylation (poly(A)) tail(Shen et al. 2011; Zhao et al. 1999). A poly(A) tail 

at 3'end may protect the mRNA from unregulated degradation, trigger export of the mRNA to 

cytoplasm, and assist recognition by translation machinery(Danckwardt et al. 2008; Shen et al. 

2011; Zhao et al. 1999). A poly(A) signal at which the pre-mRNA is cleaved and referred to as 

poly(A) site is recognized and activated by a balk of protein factors called polyadenylation 

factors(Hunt et al. 2008; Shen et al. 2011; Shi et al. 2009; Zhao et al. 1999). Alternative splice 

and poly(A) sites significantly increase complexity of transcriptomes and proteomes because 

they lead to multiple isoforms or variants of a mRNA. Using next generation sequencing (NGS) 

techniques, it has been observed that over 50% of the transcriptome in the mammalian genome 

have alternative cleavage and polyadenylation (Ji et al. 2009; Lee et al. 2007; Meyers et al. 2004; 

Shen et al. 2008; Tian et al. 2007; Wu et al. 2011). As alternative splice and poly(A) sites can 

uncover variation of transcription at subgene level, more and more investigators attempted to 

find transcription variation associated with tissue types or cell states and explore etiologic 

mechanism of disease of interest in transcription variation (Flavell et al. 2008; Ji et al. 2009; 

MacDonald and McMahon 2011; Mayr and Bartel 2009; Sandberg et al. 2008; Wang et al. 2008; 
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Winter et al. 2007; Yu et al. 2006). But almost all these studies are based on differential analysis. 

This may be because the current large-scale statistical methods such as DESeq(Anders and 

Huber 2010), baySeq(Hardcastle and Kelly 2010), edgeR exact test (Robinson et al. 2009; 

Robinson and Smyth 2008), edgeR GLM (McCarthy et al. 2012), DEXSeq (Anders et al. 2012), 

Cuffdiff (Trapnell et al. 2013; Trapnell et al. 2010), DiffSplice(Hu et al. 2012), SplicingCompass 

(Aschoff et al. 2013) are differential analysis methods. Of these methods, the former fours are 

used to identify differential transcription between conditions and the latter fours are used to find 

differential splicing between cconditions. However, unlike differential expression of genes 

between conditions, splice switch of alternative splice sites or usage switch of alternative 

poly(A) sites occurs on the same transcript unit (Fig.1). So to use the differential analysis 

methods to identify usage and splicing switches from site to site on the RNA unit is not a good 

way. While association analysis approaches are useful to address this kind of problem, to our 

best knowledge, no existing large-scale association analysis methodologies have been proposed. 

The traditional association methods such as chi-square test and Fisher exact test are single-test 

methods and works on the count data without replicates, they hence could not directly be applied 

to high-throughput transcriptomic data derived from replicate libraries. This is why we need to 

develop a large-scale chi-square statistical method for identifying tissue-associated or condition-

associated isoform transcriptions. This method is named ranking analysis of chi-squares (RAX2). 

RAX2, which extends traditional chi-square test to replicated and high-dimensionality 

transcriptomic data, is based on comparison between a set of ranked chi-square statistics for 

association effects and a set of ranked null chi-square values across a set of given thresholds and 

estimation of a false discovery rate (FDR) profile. 
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Results 

Models  

For the convenience, our discussion about RAX2 is based on alternative cleavage and 

polyadenylation (ACP) sites within genes.  ACP can occur concomitantly with or independently 

of alternative splicing (Fig.2).  ACP independent of alternative splicing, that is, all cleavage and 

polyadenylation (poly(A)) sites are in the terminal exon of the transcription unit, results in a 

transcription unit with a tandem untranslated region (tandem UTR).  Both alternative splicing of 

terminal exons and tandem UTR usage are visible for directed 3' end sequencing methodologies.  

Since either process has the potential to alter 3' UTR identity, we do not differentiate between 

them in this analysis.  For a given transcription unit, transcript variants derived from the first 

poly(A) site (poly(A) site 1) are assumed to have a transcript length from the  transcriptional start 

position to poly(A) site 1. Similarly, transcript variants with poly(A) sites 2 and 3 are also 

assumed to be derived from the transcriptional start position to poly(A) sites 2 and 3, 

respectively.  Therefore, within such a transcription unit, the transcript isoforms are one-to-one 

corresponding to poly(A) sites. For the sake of convenience, we refer to the transcript variant at 

poly(A)  site 1 as tag1. Similarly, the transcript variants at poly(A)  sites 2 and 3 are also defined 

as tags 2 and 3, respectively (Fig.3).  In general, within gene g, gZ alternative poly(A)  sites 

correspondingly have gZ alternative tags. For example, gene AARS2 on chromosome 6 has 4 

poly(A) sites( gZ =4) and hence its mRNA transcription unit (called gene) has 4 isoforms (see 

columns gene name and position(pos) in Supplemental Table S1). Table S1 lists such count data 

of reads of tags within genes where columns 1-7 list information of tags or poly(A) sites within 

genes: tagid, geneid, name, DNA strand, position on transcription unit, and annotation; columns 
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8-10 list count data of cells in normal state and stimulation. The data were normalized so that 

they look decimal. Here we let gzjvn be count of tag z ( 2,...,1 ≥= gZz ) within gene g (g = 1, 2,… 

G)  in cell state j in replicate v (v =1,…, r ). Our concern here is if change in count of a tag z at a 

special poly(A)  site within a gene of interest is associated with change in condition (cell state) in 

the context of a discontinuous process.  For the convenience, we focus on two states: a treatment 

state (TS) and a normal state (NS). We set j=1 for NS and j=2 for TS.  To find if the transcription 

variation of an individual tag is associated with a change in cell state, we need to compare count 

of tag z to that of all the other tags (denoted by z
) ) within gene g. Therefore, a tag or poly(A)  site 

has two states: z and z
) . We set i=1 for z and i=2 for z

) . Thus count gzjvn in the raw data table can 

be converted into two-by-two table count gzijvn  where gzijvn  is count of reads of tag z within gene 

g in tag state i in condition j in replicate v (v =1, 2, ..., r) and there are rZ g  two-by-two table 

datasets ( vgzn 11 , vgzn 12 , vgzn 21 , vgzn 22 ) for gene g. Since our interest is in regards to tag z (or 

poly(A) site z) within gene g instead of gene g itself, totally we have ∑ =
= G

g gZS
1

 tags or poly(A)  

sites in all genes of study. To implement ranking analysis of all tags, we combine subscripts g 

and z into s where s =1, …, S. Thus, each tag s has two states (s and s
) ). We still set i=1 for tag 

state s and i=2 for tag state s
) . The two-by-two table dataset is then rewritten as ( vsn 11 , vsn 12 , vsn 21 ,

vsn 22 ).   

Since sample sizes for each two-by-two table are small, the observed values consist of two 

components: the association effect and random noise. Thus a model for each observed value in 

such a two-by-two table is  

                                sijvsijsijv enn +=                                                                                               (1) 

where is count of reads of tag s due to association effect between state i of poly(A)  site s and nsij
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cell state j and sijve is count of reads due to a special noise  between state i of poly(A)  site s and 

cell state j in replicate observation v. Since sijvn follows Poisson distribution (Anders and Huber 

2010; Robinson and Smyth 2008) or negative binomial distribution (Anders and Huber 2010; 

McCarthy et al. 2012; Robinson and Smyth 2008) or binomial distribution(Baggerly et al. 2003), 

sijve may also follow negative binomial or binomial distribution. But we do not concern 

distribution of sijve because we do not need to separate it from sijvn . Let sjif  and sijvf  be 

frequencies of counts nsij and esijv , respectively. As  is count of reads of tag s in state i and in 

cell state j, sijssij fnn =  and sijvssijv fne =  where sn is total count of reads of tag s within g across 

two cell states and two tag states over all replicate libraries. Thus, model (1) may be rewritten as 

                             sijvssijssijv fnfnn += .                                                                                         (2) 

 

Chi-square statistics  

For poly(A) site s, the count of reads due to association effect sijn between site state i and cell 

state j is estimated by  

                    

sijsijsijssijs

r

v
sijv

s
sijs

r

v
sijvsij enfnfnf

r

n
fnn

r
n +=+=+== ∑∑

== 11

1
                                   (3) 

where sijf is the frequency  of association effect sijn between state i of tag s and cell state j and 

sijvf , frequency of a special noise in replicate observation v.  For poly(A) site s,  is expected 

as 

                              )()()( sijsijsij eEnEnE += .                                                                                (4) 

nsij

n sij
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(See Supplemental Note S1 for detail). Thus, Pearson chi-square statistics for mean count sijn  

that is estimate of association effect sijn  is 

                              )()( 22 enn ss += χχ                                                                                           (5) 

 (See Supplemental Note S2 for derivation). From Equation 5, we can see that )()( 22 nn ss χχ ≠

unless the mean of noises is zero ( 0=e ), meaning that the Pearson chi-square for sijn is not an 

unbiased estimate of the chi-square statistic for sijn . For this reason, we cannot use )(2 nsχ as 

standard chi-square statistic, that is, p-value for )(2 nsχ  obtained from a standard chi-square 

distribution has a big bias. In addition, )()( 22 en ss χχ = if, for a tag s, there is no association effect 

sijn between tag states and cell states, say, sijsij en = .   

 

Null chi-squares 

Similarly to using within-group variance to estimate null variance, we also employ within-group 

chi-square to estimate null chi-square. To this end, we need to construct another contingent table 

in which we have site states s and s
)  within gene g, and r replicates  in cell state j. Set i=1 for s 

and i=2 for s
) . A set of two-by-two tables (see Supplemental Note S3) is constructed with pairs of 

replicates and states of tag s in cell state j.  Thus the null chi-square is easily estimated by )(2 esχ  

(see Supplemental Note S3 for derivation).  

  

Ranking analysis of chi-squares  

Since )(2 nsχ does not have one-to-one correspondence to )(2 esχ , to compare them, we need to 

separately rank tags by amounts of )(2 nsχ  and )(2 esχ  from the smallest to the largest.  Let )(2
* nsχ
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and )(2
* esχ be two Pearson chi-square values at position s* in the ranking space(*), the chi-square 

values are smallest at s*=1 and largest at s*= S*.  Then we can compare )(2
* nsχ to )(2

* esχ  at 

position s* in a one-to-one fashion.  Given threshold , expression change of tag s* is declared to 

be associated with change in cell state if and only if 

                                               Δ>− )()( 2
*

2
* en ss χχ .                                                                       (6) 

FDR estimation  

In large-scale statistical analysis, we do not need to concern about so-called type 1 error but we 

must consider how to control false discovery rate (FDR) because in, for example, 10000 

hypotheses to be tested, at least 500 hypotheses would commit type I error if α=0.05 is chosen as 

significance level(Tusher et al. 2001). Obviously 500 hypotheses rejected by chance are not 

acceptable. This is why we here want to control FDR rather than type I error. A reasonable 

control of FDR involves a reliable estimation of FDR. Given threshold Δ, the number (NΔ) of 

tags whose expression changes are declared to be uniquely associated with change in cell state 

may consist of the number of truly positive tags, TΔ, and number of falsely positive tags, FΔ:  

                                    ΔΔΔ += FTN .                                                                                           (7) 

Therefore, FDR is expected as )/( ΔΔΔ = NFEFDR at threshold ∆. As FΔ is unknown in 

experimental data sets, FDR must be estimated.  

 The existing methods for estimation of FDR are not suitable to our current chi-square 

statistics because, as seen above, chi-square statistics are remarkably biased against standard chi-

square statistics such that p-values obtained from standard chi-square distribution are also biased. 

For this reason, we here propose a novel method. The principle of the method is shown in Figure 

Δ
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4. As seen in Figure 4, observed chi-square )(2
* nsχ more and more deviates from expected chi-

square  )(2
* esχ  as chi-square value increases.  

Given threshold Δ, we find that Δ>−= )()( 22 end aaa χχ at as =*  is smallest among all s*. 

We define as and a as Δa . All =Δ*sd  Δ>− )()( 2
*

2
* en ss χχ would be larger than or equal to

where ,1,* += ΔΔ aas .., S, that is, all Δ≥ as* would be declared as positive tags.  So, the number 

of positives declared by Equation 6 is obtained by: 

                                         1+−= ΔΔ aSN   .                                                                               (8) 

Likewise, for threshold Δ, at Δ= bt* , we also find that Δ>−=
ΔΔΔ

)()( 22 eed abb χχ is smallest 

among all t*.  All Δ>−
Δ

)()( 22
* ee at χχ would be larger than or equal to

Δbd . In addition, within the 

ranking space of )(2
* etχ , null tag at jbt += Δ*  has smaller chance to be chosen as a false positive 

than at kbt += Δ*  where j< Δ−= bSk ,,1L  and the ranking space of )(2
* etχ varies with sample 

size. In other words, the probability that a null tag at position t* is chosen as false positive is 

determined by replicate number r, chi-square space, tag space S*, null chi-square values, and t*. 

The logic relationship is that position t*in the ranking space is positively related to the 

probability that the null tag at position t*is chosen as a false positive tag   and null chi-square 

value is also positively related to the probability that the null chi-square is chosen as false 

positive chi-square. As position t* is fixed in a given tag space, the ratio ( */* St ) would not fit 

to changeable false positive probability from practical data; while )(2
* etχ  is variable and 

dependent on a practical dataset, )(2
* etχ at some nearby positions may not vary or very 

approximate, so ratio ( )(/)( 2
*

2
* ee St χχ ) is also not appropriately used as the false positive 

probability. To obtain an accurate false positive probability we need to combine them. A good 

da dΔ dΔ
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and simple combination way is geometric mean: ( )( )*/*)(/)( 2
*

2
* Stee St χχ  

( )[ ] 5.02
*

2
* *)(/*)( Sete St χχ= . Additionally, in single hypothesis test p-value of statistic is 

negatively related to sample size, similarly, the probability is also negatively related to sample 

size because sample size increment would let space of )(2
* etχ decrease. On the other hand, 

)(2
* eSχ is positively related to the probability. We therefore replace 0.5 with ( ))(/2 2

* erx Sχ= . 

Thus, probability that tag at position *t  is chosen as a false positive tag is given by  

                                                   
x

S

t
t Se

te
etp ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

*)(

)(
))(|(

2
*

*2
*2

*
*

χ
χχ .                                                   (9) 

Number of false positives in ΔN findings is estimated by 

                                             ∑
Δ=

Δ =
*

*

2
*

* ))(|(
S

bt
t etpF χ .                                                                  (10) 

When 0→x , 1))(|( 2
*

* →etp tχ such that 1+−→ ΔΔ bSF . This is an extreme case in which FDR 

is very conservatively estimated (see Supplemental Fig.S1A1, A2, and A3). In general, larger 

sample sizes would have a smaller )(2 eSχ , leading to a larger x value that causes a small

))(|( 2
*

* etp tχ . This is agreeable with the fact that larger sample sizes would have a smaller FDR.  

With ΔF , FDR for ΔN findings declared by chi-square tests at threshold Δ  is estimated as 

                                       
Δ

Δ
Δ =

N

F
FDR  .                                                                                 (11) 

 

Simulation evaluation of RAX2  

We use the following steps to generate the null data of S tags with r  replicates based on the real 

data in a group: 
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Step1: Calculate variance and mean of each cell in two-by-two tables over r replicates. 

Step2: Choose randomly one of four variances and one of four means. 

Step 3: Generate a set of two-by-two random null count data ( sijvη ) with r  replicates using 

negative binomial pseudorandom generator in R with the mean as mu and the variance as 

dispersion (size).  

Step 4: Repeat steps 1-3 until s = S. 

We then adopted uniform and normal pseudorandom generators to generate count data 

with association effects:  

                                                     
s

sjsi
sijsij N

NN
U=τ                                                                   (12)                     

where siN and sjN are normal variables with σ =50 and mean =100 (these values are arbitrary 

because associate effect does not depend on individual values) , ∑ ∑=
+= 2

1

2

i j sjsis NNN , and 

sjsisij UUU = where siU and sjU are uniform variables, 10 ≤< siU and 10 ≤< sjU , i=1 and 2, j=1 

and 2, s =1, …, S.  The association effect sijn is randomly assigned to 10%, 20%, and 30% of null 

tags (the null data above).  Using these simulated datasets, we compared the estimated FDR 

given by a statistical method to its true FDR across a set of given thresholds ( )(2
* eU Sχ=Δ , 

10 ≤≤ U ).  

 Supplemental Figure S1 summarizes these results in the simulated scenarios where 10% 

(A1 and B1), 20%, (A2 and B2), and 30% (A3 and B3) of tags have association effects on 

transcription with cell states and 6=r , 0=x  and ( ))(/2 2
* erx Sχ= . With 0=x  (Fig.S1A1-3), 

FDR was significantly overestimated in all three given scenarios such that many tags with true 

association effects would be missed at FDR <0.05 level. In contrast, with ( ))(/2 2
* erx Sχ= (Fig. 
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S1B1-3), the estimated FDR curve is slightly higher than the true one in each of these three 

scenarios, finding tags with a true association effect at a given threshold with higher power.  

Supplemental Figures S1C1-3 are obtained with ( ))(/2 2
* erx Sχ= from the simulated data with

3=r  and 10%, 20% and 30% of tags having association effect, respectively. The fact that these 

FDR curves are very similar to those in Supplemental Figure S1B1, B2, and B3 indicates that our 

estimate of FDR with ( ))(/2 2
* erx Sχ= is absolutely conservative but close to its true value across 

a set of given thresholds in these scenarios.   

 

Comparison with Pearson chi-square, Fisher exact test and Cochran Mantel Haenszel 

(CMH) chi-square test approaches 

In order to show strong advantages of our methods, we applied Fisher exact test, Pearson chi-

square test and Cochran Mantel Haenszel (CMH) chi-square test approaches to the simulated 

data and used Benjamini-Hochberg (BH) multiple-testing procedure(Benjamini and Hochberg 

1995; Benjamini and Yekutieli 2001) and q-value (Dabney and Storey 2006; Storey and 

Tibshirani 2003) to estimate FDR.  Since the Fisher exact test and Pearson chi-square methods 

do not work on the replicated data, we utilized mean counts over r replicate libraries to construct 

two-by-two table for each tag. These association test methods were performed in R packages 

(fisher.test, chsq.test and CMH.test), the BH procedure was conducted in R package p.adjust 

with method = BH.  Package qvalue was downloaded from Bioconductor and its qvalue.gui() 

was used to calculate q-values.  The p-values were obtained from application of these three 

approaches to our simulated data of 15391 tags with 3 replicates among which 10% of tags were 

given with association effect values. The three sets of 15391 p-values for Fisher exact tests, 

Pearson chi-square tests and CMH chi-square tests were listed in Supplemental Table S2 and 
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adjusted by HB-procedure and q-value method. Supplemental Figure S2 displays the results of 

plotting estimated against true FDR values across all cutoff points. One can find from Figure S2 

that FDRs are completely overestimated by BH-procedure and q-value approach. The same case 

was also found in the simulated data with 5 replicates (data not shown). As indicated above, 

Pearson chi-square based on mean counts over replicates is not unbiased and the p-value for such 

chi-square obtained from a standard chi-square distribution is greatly biased against its true value 

(See Supplemental Table S2). So BH and qvalue procedures are not available to adjust such 

biased p-value profiles.    

 

RAX2 analysis of the primary T-cell data 

We then assessed the performance of RAX2 on 3p-seq datasets derived from resting and 

stimulated primary human CD4+ T cells (Supplemental Table S1, see Data Collection). After 

normalizing and filtering, our dataset contained 16247 tags scattered in 10160 transcription units 

or genes.  We omitted transcription units with a single tag and the remaindered 9899 tags 

scattered in 3812 genes were available for RAX2 analysis. We used classical chi-square 

distribution to calculate p-value for each tag chosen and applied the BH- procedure to adjust α-

values. By comparing the ordered p-values to the ordered adjusted alpha values, as expected in 

Supplemental Figures S2, 747 tags were found to be associated with cell states at FDR<0.05 (see 

Supplemental Table S4). We performed RAX2 on our primary T-cell transcriptomic data. The 

estimated null chi-square value falls in a range of 0 to 6.7 (Fig. 5A). The treatment chi-square 

falls in interval between 0 and 363, which is larger than that in the estimated null chi-square 

distribution.  The observed linear dots are deviated from the expected linear dots when the null 

chi-square is larger than 2.5 (Fig. 5B).  
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 The results obtained by application of RAX2 to our real transcriptomic data sets are 

illustrated in Supplemental Tables S3-S5. At FDR < 0.05, 1610 (16.3%) tags were found to be 

associated in transcription with antigen receptor stimulation (Supplemental Table S3). Among 

1610 tags, 1228 tags have fold change >1.5, meaning that most of tags found by RAX2 also 

displayed differential expression between rest and stimulation. We chose genes with two tags 

identified at FDR<0.05 (see Supplemental Table S6), and plotted logarithms of the ratio of 

transcription relative frequencies of proximal tag in stimulation to those in normal condition 

against those of distal tags and observed four patterns of transcription variation: forward and 

backward “switch” changes; positively and negatively accordant changes (Fig. 6A) where 

forward switch is defined when high expression is switched from proximal site to distal site and 

backward switch when high expression is switched from distal site back to proximal site. We call 

it positively accordant change when expression of two tags is highly raised by stimulation or 

negatively accordant change when both come down due to stimulation. In our data, genes with 

forward switch were less than genes with backward switch (148 vs 186) and positively accordant 

genes were many more than negatively accordant genes (186 vs 85) (Fig.6B). This means that 

stimulation significantly promoted transcription of tags. Proximal tags positively associated with 

stimulation are more than distal tags positively associated with stimulation (372 vs 334) (Fig. 

6C). This result indicates that proximal poly(A) sites were preferably used under stimulation. 

This is consistent with the previous studies (Wang et al. 2008; Winter et al. 2007; Yu et al. 

2006). Sandberg et al (Sandberg et al. 2008) found that tandem UTR length is highly 

negatively correlated to proliferation ratio. That is, proliferative cells more use proximal 

poly(A) sites. Mayr and Bartel (Mayr and Bartel 2009)also observed that cancer cells 

preferably used short 3’UTR while tissue cells more used long 3UTR because cancer cells 
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have high proliferation ratio but tissue cells are highly differentiated. CD3/CD28 co-

stimulation trigged a series of physiological activations and expansion (growth) of T-cells. 

Rapid growth and proliferation of cells require a large number of mRNAs, short mRNA 

isoforms can more easily meet this requirement than long isoforms, and so short mRNA 

isoforms are preferably produced.  Figure 7 displays examples for forward and backward 

switches, positively and negatively accordant changes. Figure 7A is backward switch between 

two tags within gene PHF6 (PHD finger protein 6) potentially playing role in transcription 

regulation. Stimulation made high transcription level switched from distal poly(A) site backward 

to proximal poly(A) site. In gene SRP68 (Signal Recognition Particle of 68kDa, a 

ribonucleoprotein complex), the transcription pattern of two tags (Fig.7B) is completely inverse 

with that in gene PHF6, called forward switch. Figures 7C and D show negatively and positively 

accordant transcription of proximal and distal tags in genes ARL4C (ADP-Ribosylation Factor-

Like 4C) and IL24 (interleukin 24). Stimulation triggered high transcription of two tags in gene 

IL24 but strongly suppressed transcription of proximal and distal tags in gene ARL4C.  

In our result, 162 genes were found to have three poly(A) sites whose usage were 

associated with stimulation (Supplemental Table S8). Figure S3 displays three scatter plots of 

these genes with proximal tags versus middle tags (Supplemental Fig.3SA1), proximal tags 

versus distal tags (Supplemental Fig.3SA2) and middle tags versus distal tags(Supplemental 

Fig.3SA3). In plot of proximal versus middle tags (Supplemental Fig.3SA1), accordantly 

changed tags were many more than switched tags (47 vs 9 in Supplemental Fig.3SB1). Among 

accordantly changed tags, proximal and middle tags positively responding to stimulation are 

more than those negatively responding to stimulation (Supplemental Fig.3SC1). This result 

suggests that stimulation indeed raised transcription of tags but did not significantly trigger 
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transcription switch between proximal and middle poly(A) sites. However, Supplemental Figures 

S3A2 and Supplemental Fig.3SA3 definitely show that stimulation remarkably increased 

transcription switch from distal poly(A) sites back to middle poly(A) site (Supplemental 

Fig.3SB2) or back to proximal poly(A) sites (Supplemental Fig.3SB3) while positively and 

negatively accordant transcriptions between proximal and distal poly(A) sites and between 

middle and distal poly(A) sites became very weak. In genes with proximal and middle poly(A) 

sites, positive tags were more than negative tags but in genes with distal poly(A) sites, negative 

tags were more than positive tags(Supplemental Fig.3SC2-3). These results strongly indicate 

that, as seen in genes with two tags, in genes with three tags, CD3/28cosimulation resulted in 

more usage of shorter tags.    

 

Discussion 

Transcriptional profile via next generation sequencing technologies has underscored the 

complexity of transcript isoform variation in mammalian cells.  The extent of this variation, 

whether the identity and function of a protein product (e.g. alternative splicing) or the visibility 

of the gene product is altered due to the posttranscriptional regulatory machinery (e.g. ACP), has 

been broadly appreciated.   It is of great interest to leverage newer technologies to globally 

assess the impact of these processes on human disease, particularly since several individual 

examples in which dysregulation of either process contributes to human disease exist 

(Danckwardt et al. 2008). 

 The identification of relative expression changes of individual mRNA isoforms derived 

from a single transcript unit can in theory be performed by considering each of these isoforms 

from the transcript unit as a single entity and applying statistical approaches DESeq(Anders and 
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Huber 2010), baySeq(Hardcastle and Kelly 2010), edgeR exact test (Robinson et al. 2009; 

Robinson and Smyth 2008), edgeR GLM (McCarthy et al. 2012), DEXSeq (Anders et al. 2012), 

Cuffdiff (Trapnell et al. 2013; Trapnell et al. 2010), DiffSplice(Hu et al. 2012), and 

SplicingCompass (Aschoff et al. 2013) to determine whether a given isoform is differentially 

expressed between two different cell states.  However, these approaches do not directly assess 

whether isoforms within genes are associated with the conditions in transcription.  Valid 

statistical approaches for doing so are Pearson chi-square test and Fisher exact test, but these 

methodologies cannot currently use information of variation in replicate libraries. As seen in 

Supplemental Appendix B, the Pearson chi-square of mean count over all given replicates is 

biased because mean noise cannot be excluded.  Although Cochran Mantel Haenszel (CMH) chi-

square test approach can be applied to repeat two-by-two table data or stratified count data and 

indeed its power is significantly higher than Pearson chi-square tests and Fisher Exact tests (see 

Supplemental Table 2) but our simulation studies show that its estimated FDR profile is still 

much higher than true FDR profile (see Supplemental Table 2 and Fig. S2). 

 Therefore, we need to develop a novel chi-square test methodology.  Within the context 

of NGS datasets where individual transcript units have a potential to be characterized by the 

production of multiple mRNA isoforms, it is not clear what the relationship is between 

replication and the p-values of chi-square statistics.  To avoid this puzzle issue, non-parametric 

approach is preferably chosen. This approach requires that an observed Pearson chi-square 

profile be compared to the null Pearson chi-square profile given a threshold. Since null chi-

square profile does not exist, it must be estimated. In our methodology, we adopt a manner 

similar to estimation of null variance from replicate within-cell data to estimate the null chi-

square profile.  To choose appropriate threshold, we need to estimate FDR cutoff within which 
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the findings declared by comparison between observed and null chi-square profiles are believed 

to be reliable.  

 While there are several alternative approaches for estimation of FDR, for example, the 

Benjamini-Hochberg procedure (Benjamini and Hochberg 1995; Benjamini and Yekutieli 2001), 

the Benjamini-Liu procedure (Benjamini and Liu 1999), and the Pounds–Cheng procedure 

(Pounds and Cheng 2006), Tan-Xu multi-procedures (Tan and Xu 2014), these FDR estimators 

are based on p-value profile and are not suitable to our non-parametric method.  The 

permutation-based estimator developed by Tusher et al. (Tusher et al. 2001) has been shown both 

in theory and in simulation to be handicapped by bias in small sample sizes (Tan et al. 2006; Tan 

et al. 2008).  Storey and Tibshriani (Storey and Tibshirani 2003) proposed a q-value as a new 

FDR estimator. Similarly, the q-value approach is also based on p-values (Dabney and Storey 

2006; Storey and Tibshirani 2003).  The other ranking analysis methods (Tan 2011; Tan et al. 

2006; Tan et al. 2008) are designed to be applicable to continues data sets or cannot otherwise be 

used to this context.  To accurately estimate FDR for the chi-square findings, we here proposed a 

novel approach. Our approach is based on a simple principle: given a threshold, tags were 

declared to be associated with conditions by comparing treatment ranking chi-square profile to 

null ranking chi-square profile and number of false tags associated with conditions was 

determined by comparing null chi-square at low ranking position to that at higher ranking 

position. For a given threshold ∆, a tag at kbt += Δ
* in a linear space of the null chi-squares has 

growth of probability to be declared as a false positive with increment of k.  As seen in Figure 4, 

if a treated chi-square distribution falls into the null chi-square distribution, then we cannot find 

Δa  value except for Δa  = 1 across a set of given thresholds, and hence we also cannot find Δb  

value except for Δb  = S. Thus, 0=ΔN , ΔF = 0, and FDR cannot be defined in such a case. 
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Supplemental Figure S1 shows that estimated FDR is larger than its true FDR when threshold is 

small but it tends to be very close to its true value as threshold increases. This property 

guarantees that estimation of FDR is conservative and reliable at any threshold level. 

 

Materials and Methods 

Cell Lines and Stimulation 

Human primary CD4 T cells were obtained from buffy coats derived from the Gulf Coast 

Regional Blood Bank via the EasySep Negative Selection Kit (Stem Cell Technologies) as per 

manufacturer’s instructions.  Purity (>90%) was assessed via flow cytometry for CD3 and CD4 

(UCHT1 and RPA-T4, respectively).  Cells were maintained in RPMI (ATCC) with 10% fetal 

bovine serum supplemented with 10mM HEPES pH 7.4, non-essential amino acids, 2mM L-

glutamate, 50 μM Beta-mercaptoethanol, 100 units/mL penicillin and 100 μg/mL streptomycin 

(all from Gibco/Life Technologies).  T-cells were stimulated with plate-bound antibodies (1 

μg/mL anti-CD3 (OKT3 – eBiosciences), 5 μg/mL anti-CD28 (CD28.2 – BD Pharmingen).   

Activation of T-lymphocytes was verified via flow cytometric detection of CD69 expression 

(FN-50) 16 hours after stimulation, and cells were harvested at 48 hours.  

 

High-throughput sequencing library generation 

Total RNA was harvested from resting and stimulated cells with Trizol reagent (Life 

Technologies) as per manufacturer instructions.  Polyadenylated RNA was isolated with the 

Poly(A)-Purist MAG (Ambion/Life Technologies) kit as per manufacturer instructions.  High-

throughput sequencing libraries were generated essentially as described (Shepard et al. 2011), 
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with the exception that “barcoded” linkers were used to facilitate multiplexing.  Libraries were 

sequenced via 50 bp paired-end sequencing on an Illumina GAIIx.   

Library processing and mapping   

Paired end reads were mapped to the mm9 build of the mouse genome using the paired-end 

mapping module of bwa 0.5.9 (Li and Durbin 2009), default alignment stringency, and requiring 

that each read be mapped in a proper pair. To rescue reads crossing splicing junctions, non-

mapping reads were remapped to the UCSC KnownGene reference and projected back to the 

mm9.  Individual reads were condensed to tags based on their 3' coordinate using a sliding 

window of 20 nucleotides, using the frequency-weighted median 3' coordinate as the tag 

identifier.  Tags were then filtered for false priming using a progressive filtering strategy 

assessing adenosine and guanine composition in the five, ten, and fifteen bases followed the tag-

mapping site.  Tags were assigned to individual transcription units based on UCSC KnownGene 

annotations. For each transcription unit, the aggregate tags mapping to the unit were ranked 

based on frequency.  Tags were extracted from highest to lowest frequency until the extracted 

tags represented greater than 90% of the aggregate frequency for the gene.  The remaining tags 

were discarded.  Libraries were normalized using a negative binomial model within the DEseq 

package (Anders and Huber 2010).  For “gene” analysis, the summed frequency of all tags 

mapping to each transcription unit was considered as a single entity.     

 

RAX2 Packages and statistical analysis  

The methods described in this paper, including estimations of null chi-square distribution and 

FDR, are implemented in software package RAX2. RAX2 is written in R.  The current version of 

RAX2 is designed to analyze count data in two distinct states and the results are output in MS 
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DOS csv format. Performance of RAX2 and the other statistical analysis process are given in 

Supplemental Note S4. RAX2 package can be found in Supplemental Materials.  
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Figure 1.  Demonstration for association of usage of alternative splice and poly(A) sites 

with conditions: splicing switch and Usage switch of poly(A) sites due to change in 

condition 

Under normal condition, the gene transcription product is isoform 1 due to splicing event 

between exon a and b, but in stress or stimulation, for example, the gene product is isoform 2 by 

switching splicing from exon b to exon c . This is called splicing switch. Likewise, under normal 

condition, cells use distal poly(A) site and the transcription produces mRNA isoform I but when 

cells are stressed or stimulated, poly(A) site usage switches from distal site to proximal site and 

produces isoform II. This is called poly(A) site usage switch. 

 

Figure 2. Transcription unit structures and different 3' UTR isoforms 

A majority of mammalian transcription units are characterized by alternative cleavage and 

polyadenylation (ACP).  The majority of these contain multiple cleavage and polyadenylation 

sites in their terminal exon (top), impacting untranslated region identity without changing the 

coding sequence.  Transcription units may also be characterized by mutually exclusive terminal 

exon structure (middle) or composite terminal exon structure (bottom).  In the latter two cases, 

ACP is coupled to mRNA splicing, and both the coding sequence and the untranslated region are 

impacted. Black box: exon, white box: untranslated region(UTR), red flag: poly(A) site and -//-: 

intron. 

Figure 3. A model for multiple poly(A) sites or tags within genes 

mRNA of Hsp70.3  is a typical model for multiple poly(A) sites (green boxes) and microRNA 

sites (red boxes).  It has a common start point (promoter   ), four poly(A) sites (PA1, PA2, PA3 

and PA4) in 3’UTR coding for several mRNA isoforms that are different in their 3'end. 
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Alternative polyadenylation changes the length of the 3'UTR and it also can change microRNA 

binding sites in 3'UTR. While microRNAs tend to repress translation and promote degradation of 

the mRNAs they bind to. Since transcription products are one-to-one corresponding to poly(A) 

sites, we define the transcription products as tags.  

 

Figure 4:  A demonstration plot of ranked treated chi-square versus null chi-square   

The expected linear plot (red line) is given by null hypotheses that the treated chi-square is equal 

to null chi-square at each chi-square point. The observed linear plot is given by ranked observed 

treated chi-squares versus ranked estimated null chi-squares. Given a threshold ∆, all treated chi-

squares with as dd ≥ are declared to be significant or interested where Δ≥−= )()( 22 end aaa χχ  

and s =a+1,…, G. All chi-squares with bt dd ≥  are defined as potential false positives with 

probability given in Equation 12 where Δ≥−= )()( 22 eed abb χχ r

 and t=b+1,…, G.  

 

 

Figure 5. Scatter and linear plots of treated versus estimated null chi-squares   

A: Scatter plot of treated chi-squares against estimated null chi-squares derived from primary 

experimental data. Over 80% of treated chi-squares fall in the null chi-square distribution.  B: 

Linear plot of ranked treated chi-squares against ranked estimated null chi-squares. The observed 

linear dots (blue line) were significantly deviated from the expected linear dots (red line) across 

the estimated null chi-square distribution.  

 

Figure 6: Two-way scatter plot for four association patterns of transcription of two tags 

within genes between two cell states 
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A two-way scatter plot displays distributions of scatter dots in four phases: Phase II for forward 

switch, phase V for backward switch, phase I for positive accordance and phase III for negative 

accordance. A: Plot of proximal tags versus distal tags where coordinates x and y are differences 

between ratios of counts of tags in stimulation and those in rest state. The ratio = sum of 

transcription counts of a tag over all replicates in a cell state / sum of transcription counts of this 

tag over all replicates and all cell states. B: Numbers of genes with four transcription patterns of 

proximal and distal tags. C: Numbers of genes with proximal tags positively and negatively 

responses to stimulation and numbers of genes with distal tags positively and negatively 

response to stimulation  

 

Figure 7:  Examples for association patterns of transcriptional representation of two tags 

within genes between two cell states.  Gene products shown here contain two tags defined by 

usage of distal and proximal poly(A) sites. Association between relative expression of two tags 

within genes and the cell states, detected by RAX2, shows backward switch (A), forward switch 

(B), negative accordant changes (C) and positive accordant (D). y- axis corresponds to ratio of 

count sum of a tag over all replicate libraries in a cell state (0 h or 48 h poststimulation)  to the 

sum of the tag over all replicate libraries across all cell states. 
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