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Abstract

The brain exhibits temporally complex patterns of activity with features similar to those of chaotic
systems. Theoretical studies over the last twenty years have described various computational advantages
for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific
cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We
investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse
connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-
Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations
emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic
fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and
rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the
inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation
but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations
on the time scale of the excitation. Another feature of this regime is that the population-averaged firing
rate is substantially smaller in the excitatory population than in the inhibitory population. This is not
necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational
significance of our results.

Author Summary

Cortical circuits exhibit complex temporal patterns of spiking and are exquisitely sensitive to small per-
turbations in their ongoing activity. These features are all suggestive of an underlying chaotic dynamics.
Theoretical works have indicated that a rich dynamical reservoir can endow neuronal circuits with re-
markable computational capabilities. Nevertheless, the mechanisms underlying chaos in circuits of spiking
neurons remain unknown. We combine analytical calculations and numerical simulations to investigate
this fundamental issue. Our key result is that chaotic firing rate fluctuations on the time scales of the
synaptic dynamics emerge generically from the network collective dynamics. Our results pave the way in
the study of the physiological mechanisms and computational significance of chaotic states in neuronal
networks.

Introduction

Single cell recordings [1] and electro-encephalography [2, 3] suggest the existence of chaotic dynamics
in the brain. Consistent with chaotic dynamics, in-vivo experiments have demonstrated that cortical
circuits are sensitive to weak perturbations [4,5]. Remarkably, the misplacement of even a single spike in
a cortical network has a marked effect on the timing of subsequent spikes in the network [6].

Chaotic states in extended dynamical systems can be classified as synchronous or asynchronous,
depending on the spatial patterns of the dynamics. In synchronous chaos the temporal fluctuations
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exhibit spatial correlations. If the temporal fluctuations are spatially incoherent, the chaotic state is
classified as asynchronous

EEG measures the activity of a large population of neurons. Therefore, it is probable that chaoticity
observed in EEGs reflects synchronous chaos in brain regions of rather large size. Models of local cortical
circuits exhibiting synchronous chaos have been studied in [7–12]. A computational advantage of syn-
chronous chaos in the brain is that it enables neuronal populations to respond quickly to changes in their
external inputs [7] and facilitates the access of the network to states (e.g. limit cycles or fixed points)
that encode different stimuli [3]. A large body of experimental data, however, has reported that cortical
neurons exhibit very weak correlations [13, 14] and thus are more compatible with asynchronous than
with synchronous chaos. Moreover, recent studies have demonstrated that the richness, the complexity
and the high dimension of the dynamics in systems operating in asynchronous chaos endows them with
remarkable computational capabilities [15–17]. The present paper focuses on the mechanisms underlying
the emergence of asynchronous chaos in local neuronal circuits.

Asynchronous chaos was studied in a seminal work by Sompolinsky, Crisanti and Sommers (SCS) [19],
who investigated a large network ofN neuronal-like units fully connected with random weights drawn from
a zero mean Gaussian distribution (called hereafter as the SCS model).The dynamics of the network are
those of a “rate” model [20], in which the activity of a unit, S(t), is characterized by a continuous variable
which is a non-linear function, S = ϕ(h), of the total input to the unit. In the SCS model the activity
variables take values between [-1,1] and the function ϕ(h) is sigmoidal and odd. Using Dynamical Mean-
Field Theory (DMFT) SCS showed that if the standard deviation of the weight distribution is sufficiently
large, the dynamics bifurcate from fixed point to asynchronous chaos. The SCS model in its original
form or in its discrete time version has been used in numerous studies in theoretical and computational
neuroscience [15–17,21–25].

However, the connectivity of the SCS model violates Dale’s Law, whereby in biological networks a
given neuron is either excitatory or inhibitory [26]. Also, the equation of the SCS model dynamics are
invariant under the transformation h → −h, a symmetry not fulfilled in more realistic neuronal network
models. More importantly, as this is the case frequently for rate models, the physiological meanings of
the dynamical “neuronal” variables and of the parameters are not clear in the SCS network. Should these
variables and the time constant of their dynamics - which sets the time scale of the chaotic fluctuations
- be interpreted as characterizing neurons, or synapses?

In this paper we address the following general and fundamental issues: To what extent are asyn-
chronous chaotic states generic in networks of spiking neurons? How does this depend on single neuron
properties? How do excitation and inhibition contribute to the emergence of these states? To what
extent these chaotic dynamics share similarities with those exhibited by the SCS model? We first study
these questions in one population of inhibitory neurons receiving feedforward excitation. We then address
them in networks of two populations, one inhibitory and the other excitatory, connected by a recurrent
feedback loop. A major portion of the results presented here constitutes the core of the Ph.D thesis of
one of the authors (O.H) [27].

Results

One population of inhibitory neurons: General theory

We consider N randomly connected inhibitory spiking neurons receiving an homogeneous and constant
input, I. The voltage of each neuron has nonlinear dynamics, as e.g. in the leaky integrate-and fire (LIF
model, see Materials and Methods) or in conductance-based models [20].

The connection between two neurons is Jij = JCij (i, j = 1, 2...N), with J ≤ 0, and Cij = 1 with
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probability K/N and 0 otherwise. The outgoing synapses of neuron j obey

τsyn
dSj(t)

dt
= −Sj(t) + J

∑
tsj<t

δ(t− tsj) (1)

where Sj(t) is the synaptic current at time t and τsyn the synaptic time constant. When neuron j fires a
spike (time tsj), Sj increments by J . Thus, the total input to neuron i, hi(t) = I +

∑
j JijSj(t), satisfies:

τsyn
dhi(t)

dt
= −hi(t) + I +

∑
j

∑
tsj<t

Jijδ(t− tsj) (2)

We assume K ≫ 1, hence the number of recurrent inputs per neuron is K ±O(
√
K). Scaling J and I as:

J = −J0/
√
K, I =

√
KI0, the time-averaged synaptic inputs are O(

√
K) and their spatial (quenched) and

temporal fluctuations are O(1) [28, 29]. Finite neuronal activity requires that excitation and inhibition
cancel to the leading order in K. In this balanced state, the mean and the fluctuations of the net inputs
are O(1) [28, 29]. The properties of the balanced state are well understood if the synapses are much
faster than all the typical time constants of the intrinsic neuronal dynamics [30]. Temporally irregular
asynchronous firing of spikes is a hallmark of this regime [13,28,29,31,32]. However, this stochasticity does
not always correspond to a true chaotic state [28,29,33–36]. In fact, this depends on the spike initiation
dynamics of the neurons [37]. The opposite situation, in which some of the synapses are slower than the
single neuron dynamics, remains poorly understood. This paper mostly focuses on that situation.

When the synaptic dynamics is sufficiently slow compared to the single neuron dynamics, the network
dynamics can be reduced to the set of non-linear first order differential equations:

τsyn
dhi(t)

dt
= −hi(t) + I +

∑
j

Jijrj(t) (3)

ri(t) = g(hi(t)) (4)

where ri(t) is the instantaneous firing rate of neuron i and g(h) is the neuronal input-output transfer
function [20]. These are the equations of a rate model [20, 38] in which the activity variables correspond
to the net synaptic inputs in the neurons. Equations (3)-(4) differ from those of the SCS model in
that they have a well defined interpretation in terms of spiking dynamics, the time constant has a well
defined physiological meaning, namely, the synaptic time constant, the transfer function quantifies the
spiking response of the neurons and is thus positive, the interactions satisfy Dale’s law and the neuronal
connectivity is partial.

Dynamical mean-field theory (DMFT).

We build on a DMFT [19] to investigate the dynamics, Eqs. (3)-(4), in the limit 1 ≪ K ≪ N . Applying
this approach, we rewrite the last two terms in the right hand side of Eq. (3) as a Gaussian noise whose
statistics need to be self-consistent with the dynamics. This yields a set of self-consistency conditions
which determine the statistics of the fluctuations, from which the synaptic net inputs and the firing rates
of the neurons can be calculated. This approach is described in detail in the Materials and Methods
section.

The DMFT shows that, for a given transfer function, depending on the parameters J0 and I0, the
dynamics either converge to a fixed point state or remain in an asynchronous, time-dependent state. In
the fixed point state, the net inputs to the neurons, h0

i , (i = 1...N) are constant. Their distribution
across the population is Gaussian with mean µ and variance J0

2q. The DMFT yields equations for µ, q, as
well as for the distribution of firing rates r0i (i = 1...N) (Eqs. (24)-(25) and (36)). In the time-dependent
state, hi(t) exhibit Gaussian temporal fluctuations, which are characterized by a mean, µ = [⟨h(t)⟩], and
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a population-averaged autocovariance (PAC) function, σ(τ) = [⟨h(t)h(t+ τ)⟩] − µ2 ([·] and ⟨·⟩ denote
means over the population and over time, respectively). Solving the set of self-consistent equations
which determine σ(τ) and µ (Eqs. (25), (27) and (37)-(38)) indicates that σ(τ) decreases monotonically
along the flow of the deterministic dynamics, thus suggesting that the latter are chaotic.To confirm that
this is indeed the case one has to calculate the maximum Lyapunov exponent of the dynamics (which
characterizes the sensitivity of the dynamics to initial conditions [39]) and verify that it is positive. This
can be performed analytically in the framework of DMFT [19]. However, this is beyond the scope of the
present paper. Therefore, in the specific examples analyzed below we rely on numerical simulations to
verify the chaoticity of the dynamics.

For sufficiently small J0, the fixed point state is the only solution of the dynamics. When J0 increases
beyond some critical value, Jc, the chaotic solution appears. We show in the Materials and Methods
section that Jc is given by:

Jc
2

∞∫
−∞

Dz [g′(µ+ Jc
√
qz)]

2
= 1 (5)

where q and µ are computed at the fixed point state and Dz = e−
z2

2√
2π

dz.

On the stability of the fixed point state.

The NxN matrix characterizing the stability of the fixed point is D = M√
N

− I with I the NxN identity

matrix and:

Mij = −J0

√
N

K
Cijg

′ (h0
j

)
(6)

where h0
j is the total input in neuron j at the fixed point. This is a sparse random matrix with, on average,

K non zero elements per line or column. In the limit N → ∞, these elements are uncorrelated, have

a mean −J0

√
K
N

∞∫
−∞

g′(µ + J0
√
qz)Dz and variance J2

0

∞∫
−∞

[
g′(µ+ J0

√
qz)
]2

Dz(for large N , the second

moment of the matrix elements is equal to their variance). Interestingly, Eq. (5) means that the SD of
the elements of M crosses 1 (from below) at Jc. As J0 increases, the fixed point becomes unstable when
the real part of one of the eigenvalues crosses 1. Note that that for large K, D always has a negative
eigenvalue, which is O(

√
K).

In the specific examples we investigate below, simulations show that when the chaotic state appears
the fixed point becomes unstable. This implies that for J < Jc given by Eq. (5) the real parts of all
the eigenvalues of M√

N
are smaller than 1 and that for J = Jc, the real part of one of the eigenvalues,

the eigenvalue with maximum real part, crosses 1. This suggests the more general conjecture that in the
limit 1 ≪ K ≪ N the eigenvalue with the largest real part of M/

√
N is:

λmax = J0

√√√√√ ∞∫
−∞

Dz [g′(µ+ J0
√
qz)]

2
(7)

Below we compare this formula to results from numerical diagonalization of M/
√
N .

One population of inhibitory neurons: Examples

The above considerations show that when synapses are slow, the dynamics of inhibitory networks is
completely determined by the transfer function of the neurons. Therefore, to gain insights into the way
dynamics become chaotic in such systems we proceed by investigating various spiking models that differ
in the shape of their transfer functions.
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Sigmoidal transfer functions.

Neurons in a strong noise environment can be active even if their net inputs are on average far below their
noiseless threshold, whereas when these inputs are large the activity saturates. The transfer functions of
the neurons can therefore be well approximated by a sigmoid. Specifically here we consider the dynamics
described in Eqs. (3)-(4) with a sigmoidal transfer function:

g(x) = ϕ(x) , 1

2

[
1 + erf

(
x√
2

)]
(8)

This form of the sigmoid function makes analytical calculations more tractable. Figure 1A shows that
for J0 =4, I0=1, the simulated network dynamics converge to a fixed point. This is not the case for
J0 = 6 and J0 = 15 (Fig. 1B,C). In these cases the activities of the neurons keep fluctuating at large
time. Note also that the mean level of activity is different for the three neurons. This is a consequence
of the heterogeneities in the number of inputs the neurons receive.

These differences in the network dynamics for these three values of J0 are consistent with the full
phase diagram of the DMFT in the parameter space I0 − J0. Fig. 2A depicts the results obtained by
solving numerically the self-consistent equations that define chaos onset with g(x) = ϕ(x) (Eqs. (17)-(19)
in the Supporting Information S2). In the region above the line a chaotic solution exists whereas it does
not exist below it. Simulations indicate that in the region above the line, very small perturbations from
the fixed point state drive the network toward the time dependent state. In other words, the fixed point
solution is unstable above the line: the bifurcation to the time dependent state is thus supercritical.

The instability of the fixed point on this line is also confirmed by direct diagonalization of the matrix
M/

√
N (see Eq. (6)). To this end, we solved numerically the mean field equations for different values of

J0 to obtain µ and q, randomly sampled h0
i values from the distribution defined by µ and q to generate

the random matrix matrix M/
√
N , and then computed numerically the spectrum of the matrix (for

N = 10000). Examples of the results are plotted in Fig. 3A for two values of J0, one below and one above
the critical value Jc. In both cases, the bulk of the spectrum is homogeneously distributed in the disk
of radius λmax centered at the origin. Figure 3B plots λmax computed numerically (dots) and compare
the results to our conjecture, Eq. (7) (solid line). The agreement is excellent. The instability of the fixed
point corresponds to λmax crossing 1.

To verify the chaoticity of the time dependent state predicted by the DMFT in the region above the
bifurcation line we simulated the dynamics and computed numerically the largest Lyapunov exponent,
Λ, for different values of I0 and J0 (see Materials and Methods for details). The results plotted in Fig. 2A
(red dots and inset) show that Λ crosses zero near the DMFT bifurcation line and is positive above it.
Therefore the dynamics observed in simulations are chaotic in the parameter region above this line as
predicted by the DMFT.

We solved numerically the parametric self-consistent differential equation which determined the PAC,
σ(τ), (Eqs. (25), (29) and (37)-(38)) for different values of J0 and I0. An example of the results is plotted
in Fig. 2B. It shows that numerical simulations and DMFT predictions are in very good agreement.
Moreover, simulations with increasing values of N and K indicate that the small deviations from the
DMFT predictions are due to finite N and K effects; a detailed study of these effects is reported in the
Supporting Information S1.

Figure 4A shows the bifurcation diagram of the PAC amplitude, σ0−σ∞. For J0 below the bifurcation
point (BP) the PAC amplitude is zero, which corresponds to the fixed point state (solid blue line). At the
bifurcation the fixed point loses stability (dashed blue line) and a chaotic state with a strictly positive
PAC amplitude emerges (black line).

We studied analytically the critical behavior of the dynamics at the onset of chaos. We solved
perturbatively the DMFT equations for 0 < δ = J0 − Jc ≪ 1, as outlined in the Materials and Methods
section and in the Supporting Information S2. This yields (σ(τ)− σ∞) ∝ δα/ cosh2 (τ/τdec), with α = 1
and a decorrelation time scaling like τdec ∝ δβ with β = −1/2 . Therefore at the onset of chaos, the PAC
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amplitude vanishes and the decorrelation time diverges. We show in the Materials and Methods section
that this critical behavior with exponents α = 1, β = −1/2, is in fact a general property of the model,
Eqs. (3)-(4), whenever g(h) is twice differentiable. It should be noted that in the SCS model the PAC
also vanishes linearly at chaos onset. However, the critical exponent of the decorrelation time is different
(β = −1) [19].

The inset in Fig. 4A compares the PAC amplitude obtained by numerically solving Eq. (27) (black line)
with the corresponding perturbative result (red line) for small δ. The agreement is excellent. In fact, the
perturbative calculation provides a good estimate of the PAC even if δ is as large as 0.2Jc (Fig. 4A, main
panel and Fig. 4B). More generally, the PAC can be well fitted with the function (σ0−σ∞)·cosh−2 (τ/τdec)
(Fig. 4C, inset) providing an estimate of the decorrelation time, τdec, for all values of J0. Figure 4C plots
τdec vs. σ0 − σ∞ for I0 = 1. It shows that the formula τdec ∝ 1/

√
σ0 − σ∞ we derived perturbatively

for small δ provides a good approximation of the relationship between the PAC amplitude and the
decorrelation time even far above the bifurcation.

Threshold power-law transfer function.

We next consider the dynamics of the network (Eqs. (3)-(4)) with a transfer function

g(x) = xγ ·H(x) (9)

where γ > 0 and H(x) = 1 for x > 0 and 0 otherwise. Non-leaky integrate-and-fire neurons [40] (see also
Supporting Information S3) and θ-neurons [41–44] correspond to γ = 1 and γ = 1/2, respectively. The
transfer functions of cortical neurons in-vivo can be well fitted by a power-law transfer function with an
exponent γ ≈ 2 [45,46].

Figure 5A plots the phase diagrams in the J0 − I0 parameter space by solving the DMFT equations
(see Supporting Information S4) for different values of γ > 1/2. For fixed I0, Jc varies non-monotonically
as γ decreases. This non-monotonicity is also clear in Fig. 5B. When γ → (1/2)+, Jc → 0 as Jc ∼
(−2 log (2γ − 1))

− 1
4 as we show analytically in the Supporting Information S4.For γ < 1/2, the integral

in the right hand side of Eq. (5) diverges. Equivalently, the elements of the stability matrix have infinite
variance. Therefore, the DMFT predicts a chaotic dynamics as soon as J0 > 0.

To compare these predictions with numerical simulations, we simulated different realizations of the
network (N=32000, K=400, I0 = 1) for various values of J0. For each value of J0 and γ we determined
whether the dynamics converge to a fixed point or to a time dependent state as explained in the Materials
and Methods section. This allowed us to compute the fraction of networks for which the dynamics converge
to a fixed point. The solid red line plotted in Fig. 5B corresponds to a fraction of 50% whereas the dotted
red lines correspond to fractions of 5% (upper line) and 95% (lower line). We also estimated the Lyapunov
exponent, Λ, for each values of J0 and γ. The blue line in Fig. 5B corresponds to the location where Λ
changes sign according to our estimates (see Materials and Methods for details).

For γ ' 0.6, the fraction of networks with an unstable fixed point varies sharply from 0 to 100% in
the vicinity of the bifurcation line predicted by the DMFT. Moreover, for these values of γ, the spectrum
of the matrix M/

√
N is homogeneously distributed in the disk of radius λmax centered at the origin and

the values of λmax agrees with Eq. (7). This is shown in Fig. 6A for γ = 1. Finally, simulations indicate
that the values of J0 where the largest Lyapunov Λ becomes positive in numerical simulations (blue line
in Fig. 5B) are very close to the DMFT bifurcation values.

However, as γ → (1/2)+, the discrepancies between DMFT and simulations become more pronounced.
Very close to γ = (1/2)+ there is a whole rage of values of J0 for which the DMFT predicts chaos
whereas in numerical simulations the dynamics always converge to a fixed point. This discrepancy can
be understood by observing that the integral over the Gaussian measure in Eq. (5) corresponds to a
population average over neurons. When γ → (1/2)+, the region where z is just above − µ

J0
√
q dominates

the integral; in other words, the neurons with positive close-to-threshold net inputs are those that make
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the largest contribution to the destabilization of the fixed point. On the other hand, the DMFT shows
that these neurons become extremely rare as γ → (1/2)+: in that limit µc increases sharply, thus
shifting the center of the Gaussian distribution to very large positive values. Therefore, we would need
to simulate outrageously large networks to obtain a quantitative agreement with the DMFT predictions
for the locations of the bifurcation to chaos. Similar arguments explain why when γ < 1/2 we find a
transition from fixed point to chaos in numerical simulations for J0 / 0.9 although according to the
DMFT the fixed point is always unstable since the integral in Eq. (5) diverges.

Numerical diagonalization of M√
N

shows that when γ / 0.6 (i) the eigevalues in the bulk of the spectrum

are distributed in a disk centered at the origin and that this distribution is less and less homogeneous
as γ → (1/2)+ (ii) the eigenvalue λmax governing the instability exhibit substantial deviations from
Eq. (7) especially for large J0 (Fig. 6C) (iii) λmax exhibits large sample to sample fluctuations (results
not shown). We conjecture that these features are due to large finite N and K effects and stem from the
fact that the SD of the elements of M√

N
diverges when γ → (1/2)+.

We studied the dynamics in detail for γ = 1. The DMFT predicts that Jc =
√
2 for all I0 and K (K

large). As already mentioned, the simulations agree well with this result (Fig.5B). We studied analytically
the dynamics for J0 close to this transition. To this end, we solved the self-consistent DMFT equations
in the limit δ = J0 − Jc → 0+. The perturbative calculation, explained in Supporting Information
S4, is less straightforward than in the case of a sigmoid transfer function. This stems from the fact
that at the threshold, the threshold-linear transfer function is only differentiable once. It yields that
σ − σ∞ ∼ δασs(τ/δ

β) with α = 2, β = −1/2 and the function σs(x)) has to be determined numerically.

The function σs is plotted in Fig. 7B. It can be well fitted to the function A [cosh(x/xdec)]
−1

with A=12.11
and xdec=2.84 (see Fig. 7B, inset). In particular, for small δ, the amplitude and the decorrelation time
of the PAC are related by τdec ∝ 1/(σ0 − σ∞)1/4. Note that the amplitude of the PAC vanishes more
rapidly (α = 2) than for sigmoidal transfer functions (α = 1) whereas the decorrelation time diverges
with the same critical exponent (β = −1/2) in the two cases.

Figure 7A-C compares the results of the perturbative analysis to those of the numerical integration
of the differential equation, Eq. (27). Unlike what we found for the sigmoid transfer function, δ must
be very small (δ / 0.03Jc) to achieve a good quantitative agreement. It should be noted, however,

that the quality of the fit of σ − σ∞ to A [cosh(τ/τdec)]
−1

does not deteriorate by much even far from
the bifurcation (Fig. 7C, inset; δ = 0.4), and that the relation τdec ∝ 1/ 4

√
σ0 − σ∞ holds with good

approximation even if δ is not small (Fig. 7C, main panel).
Finally, Fig. 7D compares DMFT and numerical simulations results for σ(τ) when J0 = 2. The

agreement is reasonably good but not perfect. We show in the Supporting Information S1 that the
discrepancy between the two improves as the network size increases but that finite size effects are stronger
here than in the rate model with sigmoid transfer function.

Leaky integrate-and-fire (LIF) inhibitory networks.

Our objective here is to obtain further insights into the relevance of the chaotic behavior exhibited by
rate dynamics, Eqs. (3)-(4), to understand spiking network dynamics. The dynamics of one population
of LIF spiking neurons reduces to Eqs. (3)-(4) with the transfer function

g(x) = − 1

τm
[ln(1− 1/x)]

−1 ·H(x− 1) (10)

in the limit where the synapses are much slower than the cell membrane time constant, τm. Our goal
is twofold: 1) to study the emergence of chaos in this rate LIF rate model and 2) to compare it to full
spiking dynamics and characterize the range of values of the synaptic time constant for which the two
dynamics are quantitatively or at least qualitatively similar.
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Figures 8,9 depict typical patterns of neuronal activity in simulations of the inhibitory spiking LIF
model. For strong and fast synapses (τsyn =3 ms, Figure 8A), neurons fire spikes irregularly and asyn-
chronously (Fig 8A). Figure 8B,10A show that increasing, τsyn, τsyn=100 ms, the population average
firing rate remains essentially the same (∼14.1 Hz) and the network state stays asynchronous. The
spiking patterns, however, change dramatically: with large τsyn neurons fire irregular bursts driven by
slowly decorrelating input fluctuations (Fig. 9A, blue). Figure 9B shows that reducing J0 increases the
firing rate, reduces the amplitude of the fluctuations (Fig. 9B, inset) and slows down their temporal
decorrelation. Eventually, for small enough J0, σ(τ) becomes flat and the fluctuations are negligible.

Figure 10 compares the dynamics of the rate to those of the spiking LIF networks. Panels A,B show
that for J0 = 2, I0 = 0.3 and τsyn = 100 ms, σ(τ), the distributions of the time averages of neuronal
firing rates and net inputs, ⟨ri⟩ and ⟨hi⟩, are essentially the same in the simulations of the two networks.
When reducing τsyn down to τsyn ' 15 ms, the function σ(τ/τsyn) measured in the spiking network
simulations, changes only slightly. In fact, this function is remarkably similar to what is found for the
corresponding function in the DMFT and in simulations of the LIF rate model (Fig. 11A). Fitting σ(τ)

with the function B +A [cosh(τ/τdec)]
−1

yields τdec ≈ 2.45 · τsyn.
How small can τsyn be for the two models to still behave in a quantitatively similar manner? Sim-

ulations show that this value increases with the mean activity of the network (see examples in Fig. 11)
but that for reasonable firing rates, fewer than several several tens of Hz, the fluctuations have similar
properties in the two models even for τsyn ≈ 20 ms.

We conducted extensive numerical simulations of the inhibitory LIF rate and spiking models (N =
40000, K = 800) to compute their phase diagrams in the I0 − J0 parameter space. The results for the
rate model are plotted in Fig. 12. For sufficiently small J0 the dynamics always converge to a fixed
point whereas for sufficiently large J0 the network always settles in a state in which the activity of the
neurons keeps fluctuating at large time. We show in the Supporting Information S5 that in this regime
the maximum Lyapunov exponent is strictly positive, therefore the dynamics are chaotic. Between these
two regimes, whether the dynamics converge to a fixed point or to a chaotic state depends on the specific
realization of the connectivity matrix. The fraction of networks for which the convergence is to a fixed
point depends on J0. The range of J0 where this fraction varies from 95% to 5% is notably large as shown
in Fig. 12. Additional simulation results on this issue are depicted in Supporting Information S5. The
counterpart of this behavior in the spiking network is that when J0 is small, neurons fire regular spikes
tonically whereas for sufficiently large J0 they fire highly irregular bursts. The transition between the
two regimes occurs for similar values of J0 in the rate and in the spiking networks. In both networks this
transition is driven by the neurons with low firing rates; i.e., with larger numbers of recurrent inputs.
These neurons are the first to become bursty as J0 increases (see Supporting Information S6).

In Fig. 13A we plot the bifurcation diagram of the model as obtained in the numerical solution of the
DMFT equations (black line) and as calculated in simulations of the rate model (blue dots) and of the
spiking network with τsyn = 25 ms (red ×’s) and τsyn = 7.5 ms (green ×’s). The rate model simulations
are in good agreement with DMFT for 0.8 / J0 / 2. For larger J0 the discrepancy becomes significant
and increases with J0. This is because of finite K effects that grow stronger as J0 increases as shown in
the right inset in Fig. 13A, for J0 = 3 (blue) and J0 = 4 (red). Figure 13A also shows that, as discussed
above, the amplitude of the PACs obtained in simulations of the LIF rate and spiking networks are barely
different provided the synaptic time constant is sufficiently large.

Figure 13B shows the relation between the decorrelation time, τdec and the PAC amplitude. To get
these results, simulations of the rate and the spiking networks were performed for J0 ∈ [0.8, 3.5] and τdec
was estimated by fitting the PACs with the function A · [cosh(τ/τdec)]−1

. We also solved the DMFT
equations for the same values of J0 and computed the PAC that we fitted to the same function. The
results from the simulations (rate model: blue; spiking network: black) and DMFT (red) agree fairly
well. Note that τdec decreases more slowly as σ0 − σ∞ increases than in the models with a sigmoid or
threshold-linear transfer function (compare to Figs. 4C and 7C).
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Finally, according to the DMFT the fixed point should be always unstable since for the LIF transfer
function the elements of the stability matrix always have an infinite variance or, equivalently, the integral
in Eq. (5) always diverges. This can be seen in the close-up in the left inset of Fig. 13A, indicating that
the PAC amplitude is non-zero for small J0 and that it approaches 0 very slowly as J0 decreases. By
contrast, in numerical simulations in the same range of J0, the dynamics are not chaotic for most of the
realizations of the network: they converge to a fixed point, as shown in Fig. 12. The explanation for this
difference is as for the rate model with threshold power-law transfer function with γ < 1/2 (see above).

Two asynchronous chaos mechanisms in excitatory-inhibitory recurrent net-
works

We now consider EI spiking networks with recurrent feedback interactions between the two populations.
The synaptic strengths and time constants are Jαβ

0 /
√
K and ταβ (α, β ∈ {E, I}). Assuming slow synapses,

the dynamics can be reduced to four sets of equations for the four types of synaptic inputs, hi
αβ(t)

(Materials and Methods, Eq. (17)). The DMFT yields self-consistent equations for the statistics of these
inputs. These equations can be analyzed straightforwardly for the fixed point state. In contrast to purely
inhibitory networks where the fixed point loses stability only via a bifurcation to chaos, it can now also
lose stability via a Hopf bifurcation. This depends on the synaptic time constants. When this happens
the network develops synchronous oscillations which break the balance of excitation and inhibition (the
oscillation amplitude diverges for large K).

We focus here on instabilities which lead to chaos. Their locations in the 6 dimensional parameter
space (4 synaptic strengths, 2 external inputs) of the model can be derived for a general transfer function
(Eqs. (54)-(55)). Differential equations for the PAC functions, σαβ(τ), can also be derived in the chaotic
regime. However, general analytical characterization of their solutions is particularly difficult. Leaving
such study for future work, we mostly focus below on numerical simulations. Our key result is that in
EI networks asynchronous chaos emerges in two ways, one driven by I-I interactions (II mechanism) and
the other by the EIE loop (EIE mechanism).

EI network with threshold-linear transfer function.

We first study a EI network in which all the neuronal transfer functions are threshold-linear. Figure 14
plots for different K the phase diagram of the DMFT of this model in the JIE

0 − JII
0 parameter space,

when JEE
0 =0 and IE=II=1, JEI

0 =0.8.(The phase-diagram for a non-zero of value JEE
0 , JEE

0 =1.5, is
plotted and briefly discussed in Supporting Information S7). On the lines, the dynamics bifurcate from
fixed point (below the lines) to chaos (above). As JII

0 decreases the lines go to infinity. Numerical
simulations indicate the maximum Lyapunov exponent changes sign very close to these lines (compare
red line and red dots) in good agreement with DMFT. For any finite K, the instability line exhibits a re-
entrance, crossing the JII

0 -axis at JII
0 =

√
2, where the instability occurs in a purely inhibitory network;

in this respect, the limit K → ∞ is singular. Solving the self-consistent equations for the average firing
rates, rE and rI , one finds that the two populations can have a comparable firing rate for large JII

0 when
JIE
0 is not too large. As JII

0 becomes small, the activity in the E population becomes much lower than
in the I population. In fact, for K → ∞, rE vanishes on the line JII

0 = II
IE

JEI
0 =0.8 and is zero for

JII
0 < II

IE
JEI
0 (white region in Fig. 14). In other words, in the latter case, inhibition is not balanced by

excitation in the E population.
As shown above, in the single inhibitory population case with threshold-linear transfer functions the

transition to chaos occurs at J0 =
√
2. Figure 14 shows that in the two population network the chaotic

regime extends below JII
0 =

√
2. This suggests that the EIE loop can also play the key role in the

emergence of chaos. To assess further the role of the II and of the EIE interactions in generating chaotic
activity, we simulated the network for different values of JII

0 and ταβ . Traces of the synaptic inputs are
displayed in Fig. 15 for large (panel A) and small (panel B) JII

0 . The gray traces correspond to the case
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where all time constants are equal (10 ms, reference case). Multiplying τIE by 10 (black) slows down
the fluctuations in all inputs when JII

0 is small, but when JII
0 is large this happens only for hIE . By

contrast, dividing τII by 10 (purple) has very little effect when JII
0 is small but the fluctuations of all

the inputs are substantially faster when JII
0 is large.

Figure 15 also demonstrates the effect of changing ταβ on the PAC of the net inputs to the E neurons,
hi
E(t) = IE + hi

EE(t) − hi
EI(t) (corresponding results for the I population are shown in the Supporting

Information S8). The PAC in the reference case is plotted in gray. For large JII
0 , a ten-fold increase in

τII causes the PAC width to become ten times larger and the PAC amplitude increases (Fig. 15A, blue;
see also inset). For a ten-fold decrease in τII (purple) compared to reference, the width of the PAC is
smaller but by a smaller factor whereas its amplitude is greatly reduced. By contrast, a ten-fold increase
in τIE has no noticeable effect, either on the width or on the amplitude of the PAC (black). Figure 15B
plots the PAC of the total input to the E population for small JII

0 . Here, decreasing τII by a factor of 10
(purple line) weakly affects the width as well as the amplitude of the PAC. In contrast, a ten-fold increase
of τIE (black) widens the PAC by a comparable factor (see also inset). A similar widening occurs if τEI

is increased ten-fold (see Supporting Information S8).
This phenomenology can be understood as follows. In the large JII

0 regime, the II interactions play
the key role in the generation of chaos. Therefore, the time scale of the fluctuations in the activity of
the I neurons is essentially determined by τII . Thus if the latter is 10 times larger than reference, the
I inputs to the E neurons are slowed down by the same factor. At the same time, the filtering effect of
the EI synapses becomes weaker and thus the amplitude of the PAC of the net input in the E neurons
increases. The effect of decreasing τII stems from the filtering effect of the EI synapses which is now
stronger than in the reference case. Finally, changing τIE has no noticeable effect since the fluctuations
are generated by the II interactions. By contrast, when JII

0 is small, II interactions are not sufficient to
generate chaotic fluctuations. In this regime, the EIE loop drives these fluctuations if JIE

0 is sufficiently
large. That is why the time scale of the activity fluctuations depends primarily on τIE and to a much
smaller extent on τII .

These results point to the existence of two mechanisms for chaos emergence in two population net-
works; they differ by the type of the dominant interactions (EIE or II) and therefore on the synaptic
time constants which settle the time scale of the activity fluctuations. Another difference is that in the
EIE mechanism, the E population is always significantly less active than the I population. This is not
the case in the II mechanism.

Two-population spiking LIF network.

We ran a similar analysis for LIF networks. Figures 16A,C plot the PACs of hi
E(t) for the LIF spiking and

rate models (PACs of hi
I(t) are shown in Supporting Information S9). In all panels JEE

0 = 0, JIE
0 = 3,

JEI
0 = 0.8 and τEI=3 ms. For JII

0 = 4 (Fig. 16A), increasing τII slows down the fluctuations. By contrast,
changing τIE only has a very mild effect (Supporting Information S10). This is because the fluctuations
are essentially driven by the II interactions. For τII ' 15 ms, the fluctuation statistics are quantitatively
similar in the spiking and the rate models: in both, the decorrelation time, τdec ≈ 2τII (Fig. 16A, inset).
Moreover, simulations indicate that the dynamics of the rate model are chaotic (Λ ≈ 1.7/τII). The trace
in Fig. 16B shows that with large τII ( = 40 ms) the spiking pattern is bursty. The membrane potential
between between bursts exhibit slow fluctuations because they are generated by the slow II connections.

Figure 16C plots the PACs of hi
E(t) for J

II
0 = 1. Here also, the LIF rate model operates in a chaotic

regime (Λ ≈ 120s−1). In the spiking model the PACs exhibit a slow time scale but also a fast one (the
sharp peak around τ = 0). These correspond to the slow and fast fluctuations observable in the voltage
traces in Fig. 16D. Increasing τIE while keeping τEI = τII = 3 msec has a substantial effect on the slow
component but hardly affects the fast component. When plotted vs. τ/τIE , the slow components of the
PACs all collapse onto the same curve (Fig. 16C, inset). This indicates that the EIE loop is essential
in generating the slow, but not the fast, fluctuations. Fitting this slow component with the function
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A · [cosh(τ/τdec)]−1
yields τdec ≈ 2.4τIE . Furthermore, increasing τII suppresses the fast fluctuations

and amplifies the slow ones. These two effects saturate simultaneously when τII ≈ 10 ms (Supporting
Information S11). Thus, it can be inferred that fast fluctuations are mostly generated by II interactions.
Their amplitude is suppressed as τII is increased because they become more filtered. Concomitantly,
the slow fluctuations become amplified. This is because fast fluctuations smooth the effective transfer
function of the E neurons in the low firing rate regime. Thus, their suppression increases the gain of
this transfer function. This explains the quantitative differences between the PACs in the spiking and
the rate LIF network when II synapses are fast and why these differences are lessened as τII increases
(Supporting Information S11).

In the simulations reported in Fig. 16 there is no recurrent excitation in the E population (JEE
0 = 0).

Moreover, all the excitatory synapses to the I population are slow. Both assumptions were made to
reduce the number of parameters in order to simplify the analysis. However, in cortical networks in
general, fast (AMPA) and slow (NMDA) excitation coexist (in fact AMPA synapses are required to
open the NMDA receptors). Moreover, recurrent excitation is thought to be in general substantial (see
however [47]). Results depicted in Supporting Information S12 show that the EIE loop can induce slow
rate fluctuations in our network when it combines slow and fast excitatory synapses and when substantial
recurrent excitation is present in the E population.

Discussion

Networks of neurons operating in the so-called balanced regime exhibit spiking activity with strong
temporal variability and spatial heterogeneity. Previous theoretical studies have investigated this regime
assuming that excitatory and inhibitory synapses are sufficiently fast compared to the neuronal dynamics.
The nature of the balanced state is now fairly well understood in this case. By contrast, here we focused
on networks in which some of the synapses are slow. To study the dynamics in these networks, we
reduced them to a rate dynamics that we investigated by combining Dynamical Mean-Field Theory and
simulations. Our key result is that when synaptic interactions are sufficiently strong and slow, chaotic
fluctuations on the time scales of the synaptic dynamics emerge naturally from the network collective
behavior. Moreover, the nature of the transition to chaos and the behavior in the chaotic regime are
determined only by the neuronal f − I curve and not by the details of the spike-generation mechanism.

We identified two mechanisms for the emergence of asynchronous chaos in EI neuronal networks.
One mechanism relies on II interactions whereas in the other the EIE feedback loop plays the key role.
These mechanisms hold in rate models (Eq. (3)) as well as in LIF spiking networks. By computing the
maximum Lyapunov exponent, we provided direct evidence that in rate models these states are indeed
chaotic. For LIF spiking networks, we argued that when the synapses are sufficiently slow, the observed
activity fluctuations are chaotic since their statistics are quantitatively similar to those observed in the
corresponding rate model. This similarity persists for synaptic time constants as small as the membrane
time constant. This is in agreement with [33–35] which relied on numerical integration of the LIF model
to compute the Lyapunov spectra of networks of various sizes and increasing synaptic time constants.
They found that the LIF dynamics are chaotic only if the synapses are sufficiently slow.

In these two mechanisms, the dynamics of the synaptic currents play the key role whereas dependence
on the intrinsic properties of the neurons only occurs via their nonlinear instantaneous input-output
transfer function. Since the synaptic currents are filtered versions of the neuronal spike trains, and that
the temporal fluctuations of the activity occur on the time scales of the synaptic currents, it is natural
to qualify the dynamical regime as rate chaos. Although the features of the bifurcation to chaos may
depend on the shape of the transfer function, as we have shown, the qualitative features of the chaotic
state are very general, provided that the synaptic currents are sufficiently slow. Rate chaos is therefore
a generic property of networks of spiking neurons operating in the balanced regime. We show in the
Supporting Information S3 that rate chaos occurs also in networks of non-leaky integrate-and-fire spiking
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neurons. In that case, the statistics of the fluctuations are similar to those of the model in Eq. (3) with
a threshold-linear transfer function. We also found rate chaos in biophysically more realistic network
models in which the dynamics of the neurons and of the synapses are conductance-based (results not
shown). In these cases, the dynamics of the synaptic conductances give rise to the chaotic fluctuations.

The SCS model [19] has been widely used to explore the physiological [22, 48] and computational
significance of chaos in neuronal networks. Recent works have shown that because of the richness of its
chaotic dynamics, the SCS model has remarkable learning capabilities [15–18]. Our work paves the way
for an extension of these results to networks of spiking neurons with a connectivity satisfying Dale’s law,
which are biologically more realistic than the SCS model.

Another interesting implication of our work is in the field of random matrices. Given a dense NxN
random matrix, A, with i.i.d elements with zero mean and finite standard deviation (SD), in the large
N limit, the eigenvalue of A/

√
N with the largest real part is real, and it is equal to SD [49, 50] (more

generally, the eigenvalues of A/
√
N are uniformly distributed within a disk of radius SD centered at the

origin [49, 50]). Several results regarding the spectra (bulk and outliers) of dense random matrices with
structures reflecting Dale’s law have been derived recently [51–53]. Less is known when the matrices
are sparse. A byproduct of our approach are two conjectures for the maximal eigenvalue of such sparse
random matrices, namely Eqs. (7) and (62) that we verified numerically.

Neuronal spiking statistics (e.g., firing rate, spike counts, inter-spike intervals) exhibit a very broad
range of time scales during spontaneous or sensory evoked activity in-vivo (see e.g [54,55]). Fluctuations
on time scales larger than several 100s of millisecond can be accounted for by neuromodulation which
changes the global excitability of the cortical network or changes in behavioral state. Very fast fluctuations
are naturally explained in the framework of the standard model of balance of excitation and inhibition
[28–30]. By contrast, it is unclear how to explain modulations in the intermediate temporal range of a
few 10s to several 100s of milliseconds. In fact, the standard framework of balanced networks predicts
that fluctuations on this time scale are actively suppressed because the network state is very stable. Our
work extends this framework and shows two mechanisms by which modulations in this range can occur.
In the II mechanism, inhibitory synapses must be strong and slower than 10− 20 ms. GABAA inhibition
may be too fast for this [56] (see however [57]), but GABAB [58] are sufficiently slow.In contrast, the EIE
mechanism is achieved when inhibition in fast. It requires slow recurrent excitation to inhibitory neurons,
with a time constant of a few to several tens of ms, as is typically the case for NMDA receptors (see
e.g [59–61]). Hence, the combination of GABAA and NMDA synapses can generate chaotic dynamics in
the cortex and fluctuations in activity on a time scale of several tens to a few hundreds of ms.

Materials and Methods

1 Models

1.1 Spiking networks

Two population leaky integrate-and-fire spiking network

The two population network of leaky integrate-and-fire (LIF) neurons considered in this work consists of
NE excitatory (E) and NI inhibitory neurons. The subthreshold dynamics of the membrane potential,
V α
i , of neuron i in population α (i=1,...,Nα; α, β ∈ {E, I}) obeys:

τm
dV α

i (t)

dt
= −V α

i (t) + Iα + JαE
∑
j

CαE
ij SαE

j (t)−
∑
j

JαICαI
ij SαI

j (t) (11)

where τm is the membrane time constant (we take τm = 10 msec for both populations), Cαβ
ij and Jαβ

are respectively the connectivity matrix and the strength of the connections between the (presynaptic)
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population β and (postsynaptic) population α and Iα the external feedforward input to population α.
For simplicity we take NE = NI = N . However, all the results described in the paper are also valid
when the number of neurons is different in the populations (provided both numbers are large). , The

variables Sαβ
j , which describe the synapses connecting neuron j in population β to population α, follow

the dynamics:

ταβ
dSαβ

j

dt
= −Sαβ

j +
∑
tβj

δ
(
t− tβj

)
(12)

where ταβ is the synaptic time constant and the sum is over all the spikes emitted at times tβj < t.
Equations (11,12) are supplemented by a reset condition. If at time tsp, V

α
i (tsp) = 1, the neuron

emits a spike and V α
i (t+sp) = 0. For simplicity we do not include the neuronal refractory period.

We assume that the connectivity is random with all the Cαβ
ij uncorrelated and such that Cαβ

ij = 1 with
probability K/N and 0 otherwise. Hence each neuron is connected, on average, to K neurons from its
population as well as to K neurons from the other population. When varying the connectivity K we scale
the interaction strength and the feedforward inputs according to: Jαβ = Jαβ

0 /
√
K and Iα = Iα0

√
K [29].

The network of inhibitory leaky integrate-and-fire neurons

The dynamics of the network of the one-population spiking LIF neurons considered in the first part of
the paper are:

τm
dVi(t)

dt
= −Vi(t) + I + J

∑
j

CijSj(t) (13)

supplemented with the reset condition at threshold. The elements of the connectivity matrix, Cij , are
uncorrelated and such that Cij = 1 with probability K/N and 0 otherwise. All neurons are inhibitory,
thus J < 0.

The synaptic dynamics are:

τsyn
dSj

dt
= −Sj +

∑
tj

δ (t− tj) (14)

where τsyn is the synaptic time constant of the inhibition and the sum is over all the spikes emitted at

times tj < t. The interaction strength and the feedforward inputs scale with K as: J = −J0/
√
K and

I = I0
√
K with J0 > 0.

The network of non-leaky integrate-and-fire neurons

We consider briefly this model in Supporting Information S3. The network architecture as well as the
synaptic dynamics are as above. The single neuron dynamics of non-leaky integrate-and-fire (NLIF)
neurons are similar to those of LIF neurons except for the first terms on the right-hand side of Eqs. (11,13)
which are now omitted.

1.2 Rate dynamics for spiking networks with slow synapses

If the synapses are much slower than the membrane time constant, the full dynamics of a spiking network
can be approximated by the dynamics of the synapses driven by the instantaneous firing rates of the
neurons, namely:

ταβ
dSαβ

i

dt
= −Sαβ

i + g

JβE
∑
j

CβE
ij SβE

j − JβI
∑
j

CβI
ij SβI

j + Iβ

 (15)
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where g(x) is the transfer function of the neuron (the f−I curve) [20]. In particular, for the LIF networks,

g(x) = − 1

τm log (1− 1/x)
H(x− 1) (16)

with H(x) = 1 for x > 0 and H(x) = 0 otherwise. For the NLIF networks, the transfer function is
threshold-linear: g(x) = xH(x).

Defining hαβ
i , Jαβ

∑
j C

αβ
ij Sαβ

j , the dynamics of hαβ
i are given by

ταβ
dhαβ

i

dt
= −hαβ

i +
∑
j

JαβCαβ
ij g

(
hβE
j (t)− hβI

j (t) + Iβ

)
(17)

We will denote by hβ
i the total input into neuron i in population β: hβ

i = hβE
i − hβI

i + Iβ . For networks
comprising only one population of inhibitory spiking neurons we will drop the superscript β = I and
denote this input by hi. The dynamics then yield:

τsyn
dhi

dt
= −hi + I − J

N∑
j=1

Cijg(hj) (18)

where τsyn is the inhibitory synaptic time constant.

2 Dynamical Mean-Field Theory

A Dynamical Mean-Field Theory (DMFT) can be developed to investigate the rate model, Eq. (17), for
a general transfer function under the assumption, 1 ≪ K ≪ N .

2.1 Single inhibitory population

Here we provide a full analysis of a one-population network of inhibitory neurons whose dynamics are
given in Eq. (18). We take I = I0

√
K as the external input and J = J0/

√
K as the coupling strength.

In this case, a functional integral derivation shows that these dynamics can be written as:

τsyn
dhi(t)

dt
= −hi(t) + ηi(t), i = 1, ..., N (19)

where ηi(t) is a Gaussian noise:

ηi(t) = µ+ J0
√
qzi + ξi(t) (20)

with zi, i.i.d Gaussian quenched variables with zero mean and unit standard deviation (SD), ξi(t) are
Gaussian noises with ⟨ξi(t)⟩t = 0, and ⟨ξi(t)ξj(t + τ)⟩t = Cξ(τ)δi,j where ⟨·⟩t stands for averaging over
time. Therefore, in general, the inputs to the neurons display temporal as well as quenched fluctuations.

The self-consistent equations that determine the mean, temporal correlations and quenched fluctua-
tions yield:

µ =
√
K (I0 − J0[⟨g(hi(t))⟩]) (21)

q = [⟨g(h)⟩2] (22)

Cξ(τ) = J0
2 ([⟨g(h(t))g(h(t+ τ)⟩]− q) (23)

where ⟨·⟩ and [·] stand for averaging over noise and quenched disorder, respectively. Thus the quantities
q and µ obey:

q =

∞∫
−∞

 ∞∫
−∞

g

(
µ+ J0

√
qz +

√
σ0 − J0

2qξ

)
Dξ

2

Dz (24)
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and:

1

J0

(
I0 −

µ√
K

)
=

∞∫
−∞

g (µ+
√
σ0z)Dz (25)

where σ(τ) = [⟨h(t)h(t+ τ)⟩]− µ2 is the population-averaged autocovariance (PAC) of the input to the

neurons and we define: σ0 = σ(0) and Dx = e−
x2

2√
2π

dx. In the limit K → ∞, µ must remain finite. This

implies that the population averaged firing rate, [⟨g(h)⟩] = I0/J0 does not depend on the specifics of the
transfer function of the neurons and varies linearly with I0. This is a key outcome of the balance between
the feedforward excitatory and the recurrent inhibitory inputs to the neurons.

To express Cξ(τ) in terms of σ, we note that the vector (h(t), h(t+ τ))
T
is a bivariate Gaussian, so

in fact we need to calculate E [g (µ+ x) g (µ+ y)] where (x, y)
T
has zero mean and a covariance matrix

Σxy =

(
σ0 σ
σ σ0

)
and E[·] stands for averaging over temporal noise and quenched disorder. Defining[

x
y

]
=

[ √
σ0 − |σ| 0

√
|σ|

0
√

σ0 − |σ| sign(σ) ·
√
|σ|

]
·

 ξ
θ
z


where ξ, θ and z are independent Gaussian variables with zero mean and unit variance yields

E [g (µ+ x) g (µ+ y)] = (26)

= E
[
E
[
g
(
µ+

√
σ0 − |σ|ξ +

√
|σ|z

)
|z
]
E
[
g
(
µ+

√
σ0 − |σ|θ + sign(σ) ·

√
|σ|z

)
|z
]]

=

=

∞∫
−∞

 ∞∫
−∞

g
(
µ+

√
σ0 − |σ|ξ +

√
|σ|z

)
Dξ ·

∞∫
−∞

g
(
µ+

√
σ0 − |σ|θ + sign(σ) ·

√
|σ|z

)
Dθ

Dz

A straightforward derivation shows that σ(τ) obeys:

τsyn
2 d

2σ

dτ2
= (27)

= σ − J0
2

∞∫
−∞

∞∫
−∞

∞∫
−∞

g
(
µ+

√
σ0 − |σ|ξ +

√
|σ|z

)
g
(
µ+

√
σ0 − |σ|θ + sign(σ) ·

√
|σ|z

)
DξDθDz

with initial conditions:

σ(0) = σ0 ;
dσ

dτ
(0) = 0 (28)

where the last condition results from σ(τ) = σ(−τ).
Equation (27) can be rewritten as:

τ2syn
d2σ

dτ2
= −∂V (σ;σ0)

∂σ
(29)

where the ”potential” V (σ;σ0) which depends parametrically on σ0 is:

V (σ;σ0) = (30)

= −σ2

2
+ J0

2

∞∫
−∞

∞∫
−∞

∞∫
−∞

G
(
µ+

√
σ0 − |σ|ξ +

√
|σ|z

)
G
(
µ+

√
σ0 − |σ|θ + sign(σ) ·

√
|σ|z

)
DξDθDz
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with G(x) =
∫
g(x)dx. Note that for positive σ this equation yields

V (σ;σ0) = −σ2

2
+ J0

2

∞∫
−∞

 ∞∫
−∞

G
(
µ+

√
σ0 − σξ +

√
σz
)
Dξ

2

Dz (31)

Therefore the quantity

E =
1

2

(
τsyn

dσ

dτ

)2

+ V (σ;σ0) (32)

is conserved under the dynamics, Eq. (29). Hence:

1

2

(
τsyn

dσ

dτ

)2

+ V (σ;σ0) = V (σ0;σ0) (33)

To simplify notations, we drop the parameter σ0 and denote the potential by V (σ). The first, second
and third order derivatives of the potential with respect to σ are denoted V ′(σ), V ′′(σ) and V ′′′(σ).

For illustrative purpose, we consider a sigmoid transfer function, g(x) = ϕ(x) , 1
2

[
1 + erf

(
x√
2

)]
. In

this case we have

G(x) = Φ(x) , x

2

[
1 + erf

(
x√
2

)]
+

e−
x2

2

√
2π

Using the identities:
∞∫

−∞

ϕ(a+ bz)Dz = ϕ

(
a√

1 + b2

)
and

∞∫
−∞

ϕ(a+ bz)zDz =
b√

1 + b2
e
− a2

2(1+b2)

√
2π

the potential V (σ) can be written as:

V (σ) = −σ2

2
+ J0

2

∞∫
−∞

(1 + σ0 − |σ|)Φ

(
µ+

√
|σ|z√

1 + σ0 − |σ|

)
Φ

(
µ+ sign(σ) ·

√
|σ|z√

1 + σ0 − |σ|

)
Dz

Figure 17A1−3 plots V for σ ∈ (−σ0, σ0) for J0 = 4, fixed I0 = 1 and different values of σ0. When V ′(σ0) >
0 (Fig. 17A1), the solution to Eq. (29), σ(τ), decreases monotonically from σ0 to −σ0 that it reaches
in finite time with a strictly negative velocity; this solution does not correspond to an autocovariance
function. For σ0 such that V ′(σ0) = 0 (Fig. 17A2) the solution is σ(τ) = σ0. It corresponds to a fixed
point of the dynamics, Eq. (18) in which all the inputs to the neurons are constant in time, hi(t) = h0

i ,
and h0

i has a Gaussian distribution. Finally, for σ0 such that V ′(σ0) < 0 (Fig. 17A3), there is no solution
to Eq. (33) with σ(0) = σ0.

Figure 17B1−3 plots V for J0 = 15. For small σ0, the solution Eq. (33) does not correspond to an
autocovariance function. As σ0 increases, V (σ) becomes non-monotonic in the vicinity of σ = σ0 with
local maxima and minima at σ = σmax and σ = σmin, respectively (Fig. 17B2). However, here also
the solution for σ(τ) does not correspond to an autocovariance because σ0 is the global maximum in
the range σ ∈ [−σ0, σ0]. For σ0 = σ∗

0 , such that V (σmax;σ
∗
0) = V (σ∗

0 ;σ
∗
0) (Fig. 17B3) an acceptable

solution appears, in which σ decays monotonically from σ∗
0 and converges to σmax as τ → ∞, i.e.

σmax = σ∞. This solution corresponds to a chaotic state of the network. If σ0 is further increased
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beyond σ∗
0 , V (σmax, σ0) > V (σ0) (Fig. 17B4), and the solution exhibits oscillations around σmin. For

σ0 ≈ 11.77, V ′(σ0)=0, and the solution corresponds to a fixed point (Fig. 17B5) . Finally, for σ0 larger,
V ′(σ0) is negative (Fig. 17B6) and there is no solution to Eq. (18) with σ(0) = σ0.

A bifurcation between these behaviors occurs at some critical value, Jc, such that for J0 < Jc the
self-consistent solutions of Eq. (29) are either oscillatory or constant as a function of τ , whereas for
J0 > Jc they are either oscillatory or decay monotonically. A stability analysis of these different solutions
is beyond the scope of this paper; instead, we rely on numerical simulations of the full dynamics. They
indicate that the network dynamics always reach a fixed point for sufficiently small J0. For sufficiently
large J0 the fixed point is unstable and the network settles in a state in which σ(τ) decays monotonically
with τ . Simulations also show that the maximum Lyapunov exponent in these cases is positive (see
below); i.e. the network is in a chaotic state. For values of J0 in between these two regimes, the network
displays oscillatory patterns of activity. However, for increasing network sizes, N , the range of J0 in
which oscillations are observed vanishes (not shown). Therefore for large N the bifurcation between a
fixed point and chaos occurs abruptly at some critical value Jc. A similar phenomenology occurs for
other non-linear positive monotonically increasing transfer functions.

In summary, for a fixed feedforward input, I0, there are two regimes in the large N limit:
1) for J0 < Jc: the stable state is a fixed point. The distribution of the inputs to the neurons is a

Gaussian whose mean, µ, and variance, σ are determined by the self-consistent mean-field equations:

µ =
√
K

I0 − J0

∞∫
−∞

g
(
µ+

√
σz
)
Dz

 (34)

σ = J0
2

∞∫
−∞

[
g
(
µ+

√
σz
)]2

Dz (35)

For a transfer function, g(x), which is zero when x is smaller than some threshold T (functions without
threshold correspond to T = −∞ ), the distribution of the neuronal firing rates, ri, in this state is given
by:

pm(x) =
d

dx
[Pr (ri ≤ x)] = (36)

=
1√
2πσ

e−
µ2

2σ · δ(x− T ) +
1√
2πσ

e−
(g−1(x)−µ)

2

2σ · 1

g′ (g−1(x))
·H(x− T )

2) for J0 > Jc: the stable state is chaotic. The distribution of time average inputs is Gaussian with
mean µ and variance σ∞ = J0

2q and the autocovariance of the inputs is determined by Eq. (29) which
depends on σ0. The quantities µ, σ0 and σ∞ are determined by the self-consistent equations:

σ∞ = J0
2

∞∫
−∞

 ∞∫
−∞

g
(
µ+

√
σ0 − σ∞ξ +

√
σ∞z

)
Dξ

2

Dz (37)
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and

σ0
2 − σ∞

2

2
= (38)

= J0
2

∞∫
−∞

G (µ+
√
σ0z)

2
Dz−

− J0
2

∞∫
−∞

 ∞∫
−∞

G
(
µ+

√
σ0 − σ∞ξ +

√
σ∞z

)
Dξ

2

Dz

together with Eq. (25).

2.2 Two-population networks

Self-consistent DMFT equations

A DMFT approach can also be developed to investigate the dynamics of the two population network
model, Eq. (17). To that end, the last term in Eq. (17) is written as a Gaussian random process
with mean µαβ and autocorrelation function Cαβ(τ) and derives the self-consistent equations that these
quantities satisfy. The quantity µαβ is therefore

µαβ = Jαβ
0

√
KE

[
g
(
hβ
)]

where:

hβ
i = hβE

i − hβI
i + Iβ (39)

is the net input to neuron i in population β.
The synaptic inputs hαβ

i is also a Gaussian random process. We denote its mean over time and over all

the neurons in population α by µαβ = E
[
hαβ(t)

]
and its PAC by σαβ(τ) = E

[
hαβ(t)hαβ(t+ τ)

]
−(µαβ)

2
.

Taking Iβ = Iβ0 ·
√
K we can write the mean of hβ

j as

µβ = µβE − µβI + Iβ = (40)

=
√
K
(
JαE
0 E

[
g
(
hE
)]

− JαI
0 E

[
g
(
hI
)]

+ Iβ0

)
The PAC of hβ

j then reads:

σβ(τ) , E
[
hβ(t)hβ(t+ τ)

]
−
(
µβ
)2

=

= σβE(τ) + σβI(τ)

We can now write the balance condition in the large K limit:

Iα0 + JαE
0 rE − JαI

0 rI =
µα

√
K

(41)

where

rβ = E [g (hα)] =

∞∫
−∞

g

(
µα +

√
σβ
0 z

)
e−

z2

2

√
2π

dz (42)
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is the neuronal firing rate averaged over cells in population α. Here, σβ
0 = σβ(0).

We can also express Cαβ(τ) in terms of σα(τ) as:

Cαβ(τ) = E

∑
j

Jαβ
ij g

(
hβ
j (t)

)∑
j

Jαβ
ij g

(
hβ
j (t+ τ)

) =
(
Jαβ
0

)2
C̃β
(
σβ(τ)

)
+
(
µαβ

)2
(43)

where:

C̃β(σβ) = (44)

=

∞∫
−∞

∞∫
−∞

∞∫
−∞

g

(
µβ +

√
σβ
0 − σβξ + sign(σβ)

√
|σβ |z

)
g

(
µβ +

√
σβ
0 − σβθ +

√
|σβ |z

)
DθDξDz

Let us denote by ∆αβ(τ) the autocorrelation of hαβ(t). We can express the relation between Cαβ(τ)
and ∆αβ(τ) by their Fourier transforms as ∆αβ(ω) = H(ω)H∗(ω)Cαβ(ω), where H(ω) = 1/(1 + iταβω).
Transforming back to the time domain yields:

(ταβ)
2 d2∆αβ

dτ2
= ∆αβ − Cαβ (45)

Since ∆αβ = σαβ +
(
µαβ

)2
we get:

(ταβ)
2 d2σαβ

dτ2
= σαβ −

(
Jαβ
0

)2
C̃β (46)

Thus we get a set of self-consistent equations for the four PACs σαβ . The relevant soutions have to
satisfy the four boundary conditions:

lim
τ→∞

dσαβ(τ)

dτ
= 0 (47)

In general, these dynamical equations cannot be written like those of a particle in some potential.
This makes the study of their solutions substantially more difficult than in the one population case.

Separation of time scales

A potential function can be written for the DMFT if the time scale of one type of synapses is substantially
larger than the others, which makes it possible to consider the latter as instantaneous. We carry out this
analysis below assuming τIE ≫ τEI , τEE , τII .

Setting all the synapses except those from E neurons to I neurons to be instantaneous implies that
except for σIE one has:

σαβ =
(
Jαβ
0

)2
C̃β (48)

where C̃β is defined in Eq. (44). Since τIE is now the only time scale we can take τIE = 1. Also, σEE ,
σEI , σII and the potential V are now functions of a single variable, σIE . Therefore, the differential
equation for σIE can be written as

d2σIE

dτ2
= − dV

dσIE

where

dV

dσIE
= −σIE +

(
JIE
0

)2
C̃E(σIE) (49)
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The instability of the fixed point occurs when, V ′(σIE) and V ′′(σIE), the first and the second deriva-
tives of V with respect to σIE , vanishes. Using Eq. (49) one has:

V ′′(σIE) = −1 +
(
JIE
0

)2 dC̃E

dσE
· dσE

dσIE
(50)

Since σα = σαE + σαI :

dσE

dσIE
=
(
JEE
0

)2 dC̃E

dσE
· dσE

dσIE
+
(
JEI
0

)2 dC̃I

dσI
· dσI

dσIE
(51)

and

dσI

dσIE
= 1 +

(
JII
0

)2 dC̃I

dσI
· dσI

dσIE
(52)

where

dC̃β

dσβ
=

∞∫
−∞

 ∞∫
−∞

g′
(
µβ +

√
σβ
0 − σβξ +

√
σβz

)
e−

ξ2

2

√
2π

dξ

2

e−
z2

2

√
2π

dz

From Eqs. (51)-(52) one gets:

dσE

dσIE
=

(JEI
0 )2 dC̃I

dσI(
1−

(
JEE
0

)2 dC̃E

dσE

)(
1−

(
JII
0

)2 dC̃I

dσI

)
and:

V ′′(σIE) = −1 +
(
JIE
0

)2 dC̃E

dσE

(JEI
0 )2 dC̃I

dlσI(
1−

(
JEE
0

)2 dC̃E

dσE

)(
1−

(
JII
0

)2 dC̃I

dσI

) (53)

Thus at chaos onset, together with Eq. (41), Jαβ
0 , σα and µα obey:

σα =
(
JαE
0

)2
Ĉ(µE , σE) +

(
JαI
0

)2
Ĉ(µI , σI) (54)

1 =
(
JEE
0

)2
Ĉ ′(µE , σE) +

(
JII
0

)2
Ĉ ′(µI , σI) + (55)

+
[(
JEI
0 JIE

0

)2 − (JEE
0 JII

0

)2]
Ĉ ′(µE , σE)Ĉ ′(µI , σI)

where:

Ĉ(µ, σ) =

∞∫
−∞

[
g
(
µ+

√
|σ|z

)]2 e− z2

2

√
2π

dz

Ĉ ′(µ, σ) =

∞∫
−∞

[
g′
(
µ+

√
|σ|z

)]2 e− z2

2

√
2π

dz

For instance for the threshold-linear transfer function we have

Ĉ(µ, σ) = F2(µ,
√
σ)

Ĉ ′(µ, σ) = ϕ

(
µ√
σ

)
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and
rα = F1(µ

α,
√
σα)

where Fi(a, b) are defined in equation (28).
It should be noted that if the transition to chaos occurs for the same parameters for which the fixed

point loses stability and that this is controlled by a real eigenvalue crossing zero, the location of the
transition will not depend on the synaptic time constant. If this is the case, Eq. (54) will characterize the
location of the transition to chaos in the parameter space of the network in general and not only under
the assumption of the separation of time scales under which we have established this condition.

On the stability of the fixed point

Let us denote the fixed point solution of the dynamics, Eq. (17), by : hαβ(t) = h̄αβ . Writing hαβ(t) =
h̄αβ + δhαβ with δhαβ ≪ h̄αβ , linearizing the dynamics and looking for solution of the form δh ∝ eλt)
one gets:

λτEEδh
EE = −δhEE + JEE

0 C̃EE(δhEE − δhEI) (56)

λτIEδh
IE = −δhIE + JIE

0 C̃IE(δhEE − δhEI)

λτEIδh
EI = −δhEI − JEI

0 C̃EI(δhIE − δhII)

λτIIδh
II = −δhII − JII

0 C̃II(δhIE − δhII)

where the C̃αβ (α = E, I, β = E, I) are N ×N sparse matrices with elements

C̃EE
ij = g′(h̄EE

j − h̄EI
j )CEE

ij (57)

C̃IE
ij = g′(h̄EE

j − h̄EI
j )CIE

ij

C̃EI
ij = g′(h̄IE

j − h̄II
j )CEI

ij

C̃II
ij = g′(h̄IE

j − h̄II
j )CII

ij

(Cαβ is the matrix of connectivity between populations β (presynaptic) and α). We are interested in
instability onsets at which a real eigenvalue crosses 0.

Using Eqs. (56), it is straightforward to show that such an instability happens if the synaptic strength
are such that:

det

[
I− JIE

0 JEI
0 C̃IE

(
I− JEE

0 C̃EE
)−1

C̃EI
(
I− JII

0 C̃II
)−1

]
= 0 (58)

If JEE
0 = 0, one can rewrite Eqs. (58) as:

det [I−M] = 0 (59)

with:

M = JII
0 C̃II + JIE

0 JEI
0 C̃IEC̃EI (60)

Let us assume that JII
0 is fixed and such that for small enough JIE

0 JEI
0 the fixed point is stable.

When increasing, JIE
0 JEI

0 the fixed point loses stability when the value of JIE
0 JEI

0 is the smallest for
which Eq. (59) is satisfied, that is for which the largest real eigenvalue, λmax of the matrix M crosses 1.
If this instability also corresponds to chaos onset, Eq. (54), this would imply that the condition λmax = 1
is equivalent to:

1 =
(
JII
0

)2
Ĉ ′(µI , σI) +

(
JEI
0 JIE

0

)2
Ĉ ′(µE , σE)Ĉ ′(µI , σI) (61)
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Interestingly, this condition means that the variance of the elements of the matrix
√
NM is equal to one

leading us to conjecture that more generally the eigenvalue of the latter which has the largest real part
and is given by:

λmax =

√(
JII
0

)2
Ĉ ′(µI , σI) +

(
JEI
0 JIE

0

)2
Ĉ ′(µE , σE)Ĉ ′(µI , σI) (62)

3 Numerical simulations

3.1 Integration of network dynamics and mean-field equation solutions

The integration of differential equations, Eq. (15) and Eq. (18) (Eq. (3) in main text), was performed
with a C code using the Euler method with fixed ∆t = τsyn/20 (the validity of the results was verified
using smaller values of ∆t).

Simulations of the LIF spiking networks were done using a second-order Runge-Kutta integration
scheme supplemented by interpolation of spike times as detailed in [62]. In all the spiking network
simulations the time step was ∆t = 0.1 ms.

Self-consistent mean-field equations were solved with MATLAB function fsolve, which implements a
’trust-region-dogleg’ algorithm or the Levenberg-Marquardt algorithm for non-square systems. Numerical
calculations of integrals was done with MATLAB function trapz.

3.2 Population-averaged autocovariance

The population average autocovariance (PAC) functions of neuronal quantities fi(t) (i = 1...N) were
computed as

σ(τ) = σ(k∆τ) =

=
1

N

N∑
i=1

1

Nt − |k|

Nt−1∑
n=0

fi(n∆τ)f ((n+ k)∆τ)−

[
1

N

1

Nt

N∑
i=1

Nt−1∑
n=0

fi(n∆τ)

]2
where Nt is the number of time samples for the calculation of the PAC. In all figures fi(t) = hi(t) except
in Fig. 16 where fi(t) = Iα + hαE

i (t)− hαI
i (t). All PACs of spiking networks were calculated over 163.84

sec, and averaged over 10 realizations of the connectivity. For models Eq. (15) and Eq. (18), PACs were
calculated over 2048τsyn after discarding 200τsyn of transient dynamics and averaged over 8 realizations.

3.3 Largest Lyapunov exponents

To calculate the maximal Lyapunov exponent, Λ, of the inhibitory network, Eq. (3), we simulated the
system for a sufficiently long duration (200τsyn) so that it settled on the attractor of the dynamics.

Denoting by h⃗∗ the network state at that time, we then ran two copies of the dynamics, one with initial
conditions h⃗1(t = 0) = h⃗∗ and the other with slightly perturbed initial conditions, h⃗2(t = 0) = h⃗∗+ϵ/

√
N

(||⃗h1(0) − h⃗2((0)|| = ϵ, where || · || is the l2 norm). Monitoring the difference, d⃗(t) = h⃗1(t) − h⃗2(t) we

computed T
(1)
reset = min(arg(||d⃗(t)|| = Dmax), Tmax) and D

(1)
reset = ||d⃗(T (1)

reset)||. We then reinitialized the

dynamics of the second network copy to h⃗2(T
(1)
reset) +

d⃗
(
T

(1)
reset

)
||d⃗

(
T

(1)
reset

)
||
· ϵ. We iterated the process n times and

estimate the Lyapunov exponent according to:

Λ =

∑n
i=1 ln

(
D

(i)
reset

ϵ

)
∑n

i=1 T
(i)
reset
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A similar method was used for two population networks, Eq. (15), the only difference being that the

vector h⃗ now had dimension 4N . Throughout the article we take n = 100, Tmax = 5τsyn, Dmax = 10−3

and ϵ = 10−6. The Lyapunov exponent values reported in this article are averages over 5 realizations of
the networks.

3.4 Fraction of networks with a stable fixed point in rate dynamics

Figure 10D in the main text plots the lines in the J0− I0 phase diagrams of the threshold-power law rate
model, for which 5%, 50%, 95% of randomly chosen networks have dynamics which converge to a fixed
point. To compute these lines we simulated, for each value of γ and J0, 100 realizations of the network.
For each realization, we computed the population average of the temporal variance the synaptic inputs,
ρ:

ρ =
1

N

N∑
i=1

 1

Ntot

Ntot−1∑
k=0

hi(k∆t)2 −

(
1

Ntot

Ntot−1∑
k=0

hi(k∆t)

)2


where Ntot is the total number of time steps of the simulations after discarding a transient with a duration
of 256τsyn. The fixed point was considered to be unstable if ρ > 10−9. The fraction of unstable networks,

Fu, was fitted with a logistic function: Fu(J0) = 100 [1 + exp (−(J0 − Jm)/∆J)]
−1

. The thick red line
and red dots plot the values of Jm vs. γ, and the dashed lines are the values of J0 for which Fu = 95 and
Fu = 5.
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Supporting Information Legends

Text S1. Finite size effects in inhibitory rate networks with sigmoid or threshold-linear transfer functions.
Text S2. Chaos onset in inhibitory rate models with twice differentiable transfer functions.
Text S3. Asynchronous rate chaos in non-leaky integrate-and-fire networks.
Text S4. Onset of chaos in inhibitory rate models with threshold-power-law transfer functions.
Text S5. Maximum Lyapunov exponents in the inhibitory LIF rate model.
Text S6. Firing statistics in the inhibitory LIF spiking network.
Text S7. Two-population rate model with a threshold-linear transfer function with JEE

0 > 0.
Text S8. The two mechanisms underlying asynchronous chaos in the two-population rate model with a
threshold-linear transfer function.
Text S9. The two mechanisms underlying asynchronous chaos in two-population LIF networks: Results
for inhibitory neurons.
Text S10. Two-population LIF rate and spiking models: In the II mechanism the PAC depends very
mildly on τIE .
Text S11. Two-population LIF rate and spiking models: In the EIE mechanism the slow component of
the PAC depends very mildly on τII .
Text S12. Two-population integrate-and-fire network with recurrent EE excitation, AMPA and NMDA
synapses and fast inhibition.

Figure Legends

Figure 1. Dynamics in the inhibitory population rate model with g(x) = ϕ(x). Activity of 3
neurons in simulations (N = 32,000, K = 800, τsyn = 10 ms). A: J0 = 4. B: J0 = 6. C: J0 = 15.
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Figure 2. Dynamics in the inhibitory population rate model with g(x) = ϕ(x). A: Phase
diagram. Solid line: DMFT; Dots indicate where the largest Lyapunov exponent, Λ, changes sign in
simulations (N = 32,000, K = 800, τsyn = 10 ms). Inset: Λ vs. J0. I0 = 2 (black), 4 (red), 6 (blue).
Parameters used in Fig. 1A,B abd C are marked by ×, + and �, respectively. B: σ(τ) for I0 = 1, J0 =
15. Black: DMFT. Red and blue dots: Simulations for N = 32,000, K = 800, and N = 256,000, K =
2000, respectively (results averaged over 8 network realizations).

Figure 3. Spectrum of the matrix M/
√
N for inhibitory population rate model with

g(x) = ϕ(x). The matrix was diagonalized numerically for N = 10000,K = 400, I0 = 1 and different
values of J0. A: The bulk of the spectrum for J0=6 (blue) and for J0=1.12 (red). Left: The imaginary
parts of the eigenvalues are plotted vs. their real parts for one realization of M. This indicates that the
support of the spectrum is a disk of radius λmax. Right: Histograms of Neig/R (one realization of M)
where Neig is the number of eigenvalues with a modulus between R and R+∆R (∆R = 0.0428 (top),
0.0093 (bottom)) for J0 = 6 (top) and J0 = 1.12 (bottom). The distribution of eigenvalues is uniform
throughout the spectrum support. B: The largest real part of the eigenvalues (black dots), λmax, is
compared with the conjecture, Eq. (7) (solid line). The fixed point loses stability when λmax crosses 1.
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Figure 4. DMFT for the inhibitory rate model with g(x) = ϕ(x), I0 = 1. A: The PAC
amplitude, σ0 − σ∞, is plotted against J0. At fixed point σ0 − σ∞ = 0 (blue). When J0 = Jc ≈ 4.995
(black dot, BP) the chaotic state appears. For J0 > Jc, the fixed point is unstable (dashed blue) and
the network settles in the chaotic state (σ0 − σ∞ > 0, black). Red: Perturbative solution in the limit
J0 → Jc (see Supporting Information S2). Inset: σ0 − σ∞ vanishes linearly when δ = J0 − Jc → 0+.
Black: Numerical solution of the DMFT equations. Red: Perturbative solution at the leading order,
O(δ). B: (σ − σ∞)/δ is plotted for different values of δ > 0 showing the convergence to the asymptotic
form ( Eq. (11) in the Supporting Information S2) in the limit δ → 0. C: Blue dots: Decorrelation time,
τdec vs. PAC amplitude. The PAC, σ(τ)− σ∞, was obtained by solving numerically the DMFT
equations and τdec was estimated by fitting the result to the function A/cosh2(τ/τdec). Red: In the
whole range, J0 ∈ [5, 7] considered, τdec can be well approximated by τdec = 4.97/

√
σ0 − σ∞. This

relation becomes exact in the limit σ0 − σ∞ → 0. Inset: Numerical solution of the DMFT equations for
J0 = 6.65 (blue dots) and the fit to A/cosh2(τ/τdec) (red). The fit is very good although this is far from
bifurcation.

Figure 5. Phase diagrams of inhibitory rate models with g(x) = xγH(x), K = 400. A: γ = 3
(gold), 1 (black), 0.7 (red), 0.51 (purple). B: Jc vs. γ for I0 = 1. Black: DMFT. Blue and red:
Simulations with N = 32000, K = 400. Blue: Zero-crossing of Λ. Red: The fraction of networks with
stable fixed point is 50%, 5% and 95% on the solid, bottom-dashed and top-dashed lines respectively.
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Figure 6. Spectrum of the matrix M/
√
N for inhibitory rate models with g(x) = xγH(x).

A-B: γ=1. The matrix was diagonalized numerically for N = 10000,K = 400, I0 = 1 and different
values of J0. A: The bulk of the spectrum (one realization). Left panel: Imaginary vs. real parts of the
eigenvalues for one realization of M. Blue: J0 = 2.045. Red: J0=0.307. Right panel: Histograms (100
realizations) of Neig/R where Neig is the number of eigenvalues with modulus between R and R+∆R
(∆R = 0.0479 (top), 0.0122 (bottom) ) for J0 =2.045 (top) and J0=0.307 (bottom). The eigenvalues
are almost uniformly distributed throughout the disk of radius λmax (except very close to the
boundary). B: The largest real part of the eigenvalues, λmax (one realization, black dots) is compared
with the conjecture Eq. (7) (solid line). C,D: Same as in A, B, for γ = 0.55. Blue: J0=3.01, ∆R =
0.0491 ; red: J0 = 0.75 , ∆R = 0.0246 (red). The agreement with Eq. (7) is good for J0 not too large
but the eigenvalues distribution is non-uniform. Quantitatively similar results are found for
N = 20000,K = 400 as well as N = 40000,K = 600 (not shown).
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Figure 7. DMFT for the inhibitory rate model with threshold-linear transfer function. A:
The PAC amplitude, σ0 − σ∞, is plotted against J0. At fixed point σ0 − σ∞ = 0 (blue). When
J0 = Jc =

√
2 (black dot, BP) a bifurcation occurs and the chaotic state appears. For J0 > Jc, the fixed

point is unstable (dashed blue) and the network settles in the chaotic state (σ0 − σ∞ > 0, black). Red:
Perturbative solution in the limit J0 → Jc (see Supporting Information S4). Inset:

√
σ0 − σ∞ plotted

against δ = J0 − Jc showing that σ0 − σ∞ vanishes quadratically when δ → 0+. Black: Full numerical
solution of the DMFT equations. Red: Perturbative solution at the leading order, O(δ). B: (σ− σ∞)/δ2

is plotted for different values of δ > 0 to show the convergence to the asymptotic function derived
perturbatively in the Supporting Information S4. Inset: The function (σ(τ)− σ∞)/δ2 (black) can be
well fitted to A/ cosh(x/xdec) (red dots, A = 12.11, xdec = 2.84 ). C: Decorrelation time, τdec vs. PAC
amplitude (blue). The function σ(τ)− σ∞ was obtained by integrating numerically Eq. (29) and τdec
was estimated by fitting this function to A/ cosh(τ/τdec). Red: In the whole range of J0 considered
(J0 ∈ [1.4, 1.9] the relation between τdec and σ0 − σ∞ can be well approximated by y = 5.29/ 4

√
x. Inset:

The PAC computed by solving the DMFT equations for J0 = 1.81 (blue dots) and the fit to
0.93/ cosh(τ/4.6). D: The PAC for J0 = 2 and K = 1200. Blue: Numerical integration of Eq. (29).
Red: Numerical simulations for N = 256,000.
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Figure 8. Patterns of activity in simulations of the LIF inhibitory spiking network. N =
10000, K = 800, J0 = 2, I0 = 0.3. Voltage traces of single neurons (top), spike trains of 12 neurons
(middle) and population averaged firing rates (in 50 ms time bins, bottom) are plotted. A: τsyn = 3 ms.
Neurons fire irregular spikes asynchronously. B: τsyn = 100 ms. Neurons fire bursts of action potentials
in an irregular and asynchronous manner.
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Figure 9. Dependence of the dynamics on synaptic strength in the LIF inhibitory spiking
model. Simulation results for N = 40,000, K = 800, I0 = 0.3, τsyn = 100 ms. From left to right: J0 =
2 (blue), 1.5 (red) and 1 (black). A: Examples of single neuron membrane voltages (top) and net inputs,
h, (bottom). For the three values of J0, the mean firing rate of the example neuron is 11 Hz. As J0
decreases, the temporal fluctuations in the net input become smaller whereas the temporal average
increases such that the firing rate remains nearly unchanged. B. Top: Population average firing rate
increases like 100I0/J0 as implied by the balance condition. Bottom: PAC (σ − σ∞, bottom). The dots

correspond to the fit of the PAC to (σ0 − σ∞) · [cosh (τ/τdec)]−1
which yields τdec/τsyn = 2.5 (blue), 3.0

(red), 3.8 (black) for the three values of J0.Inset in the right panel: σ0 − σ∞ vs. J0.

Figure 10. Comparison of the inputs and firing rate statistics in the inhibitory LIF spiking
and rate models (simulations and DMFT). N = 40,000, K = 800. J0 = 2, I0 = 0.3, τsyn =
100 msec. A: σ(τ/τsyn). B: Distributions of neuronal mean firing rates, ⟨ri⟩, and net inputs, ⟨hi⟩,
(inset) in the spiking network (black) and rate model (red; dots: simulations, solid line: DMFT).
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Figure 11. PACs in inhibitory LIF spiking and rate models. All the results are from numerical
simulations with N = 40,000, K = 800. A: J0 = 2, I0 = 0.3. B: J0 = 3, I0 = 0.3. C: J0 = 4, I0 = 0.6. D:
J0 = 1, I0 = 0.3. In all four panels the PACs are plotted for the spiking network with τsyn = 10 (gray),
20 (red) and 40 (green) ms. The results for the rate model are also plotted (black). The firing rates are
∼15 Hz in A and C, ∼10 Hz in B and ∼30 Hz in D, in good agreement with the prediction from the
balance condition ([⟨r⟩] = 100I0/J0 Hz). As the population firing rate increases, a larger τsyn is needed
for good agreement between the spiking and the rate model.
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Figure 12. Phase diagram of the inhibitory LIF rate model. All the results are from numerical
simulations with N = 40,000, K = 800. Black: zero-crossing of the maximum Lyapunov exponent, Λ.
The fraction of networks for which the dynamics converge to a fixed point is 50%. 5% and 95% on the
solid, top-dashed and bottom-dashed red lines respectively. Insets: I0 = 0.3. Voltage traces of a neuron
in the inhibitory LIF spiking model for J0 = 2 (top inset), 0.3 (bottom inset) and τsyn=100 ms.

Figure 13. DMFT vs. numerical simulations in the one-population LIF rate model. All
simulation results depicted here were obtained in networks with N = 40,000, K = 800, I0 = 0.3. A: The
PAC amplitude, σ0 − σ∞, vs. inhibitory coupling, J0. Black: DMFT. Blue dots: Simulations of the rate
model. Red ×’s: Simulations of the spiking network with τsyn = 25 ms. Green ×: Spiking network with
τsyn = 7.5 ms. Right inset: The difference between PAC amplitudes obtained in simulations (∆σsim) and
DMFT (∆σth) plotted against K (in log scale) for J0 = 3 (blue) and J0 = 4(red). Left inset: Closeup
(J0 ∈ [0.2 0.5]) of the numerical solution of the DMFT equations. B: PACs were fitted as explained in the
text to estimate τdec. The estimated decorrelation time, τdec, is plotted vs. the amplitude of the PAC for
the rate (blue), spiking (black) networks and DMFT (red). Inset: The PAC in the rate model for J0 = 2
(black dots: simulation; red line: fit).
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Figure 14. The phase diagram of the two-population rate model with threshold-linear
transfer function. JEE

0 =0, JEI
0 =0.8. The bifurcation lines predicted by the DMFT are plotted in

the JIE
0 − JII

0 parameter space for K = 400 (red), 103 (blue), 104 (black), and K → ∞ (green). Red
dots: Zero-crossing of the largest Lyapunov exponent (average over 5 network realizations) in numerical
simulations for K = 400. Color code: Ratio of the population average firing rate of the two populations
(I/E) in log scale (right).White region: The activity of the E population is very small for finite K and
goes to zero in the limit K → ∞. The boundary to the right of that region is given by:
JII
0 = JEI

0
II
IE

=0.8.

Figure 15. The two mechanisms for asynchronous chaos in the two-population rate model
with threshold-linear transfer function. Simulations were performed for NE = NI = 8000, K =
400, IE = II = 1, JEE

0 = 0, JEI
0 = 0.8. A: II mechanism for JII

0 = 6, JIE
0 = 10. Left panels: Examples

of traces of excitatory (hIE) and inhibitory inputs (hEI , hII) into one neuron. Right: PAC of the net
inputs to the E neurons. Gray: τIE = τEI = τII = 10 ms; Black: τIE = 100 ms, τEI = τII = 10 ms;
Blue: τII = 100 ms, τIE = τEI = 10 ms; Purple: τII = 1 ms, τEI = τIE = 10 ms. Inset: All PACs
plotted vs. τ/τII . B: EIE mechanism for JII

0 = 1, JIE
0 = 15. Other parameters are as in A. Inset: All

PACs plotted vs. τ/τIE .
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Figure 16. The two mechanisms for asynchronous chaos in two-population LIF spiking
and rate networks. Simulations were performed with NE = NI = 16000, K = 400,IE = 0.2, II =
0.1, JEE

0 = 0, JEI
0 = 0.8, JIE

0 = 3. A: II mechanism. PACs of the net inputs in E neurons are plotted
for JII

0 = 4, τIE = 100 ms, τEI = 3 ms and τII = 3, (red), 10 (black), 40 (blue) and 100 ms (purple).
Solid line: Spiking model. Dots: Rate model. Inset: All PACs (spiking network) are plotted vs. τ/τII .
B: Voltage of one E neuron for parameters as in A, purple. C: EIE mechanism. PACs of the net inputs
in E neurons are plotted for JII

0 = 1, τEI = τII = 3 ms and τIE = 100, (green), 200 (red) and 400 ms
(black). Solid line: Spiking model. Dots: Rate model. Inset: All PACs (spiking network) are plotted vs.
τ/τIE . D: Voltage of one E neuron in the spiking network with parameters as in C, green.
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Figure 17. Dynamical Mean-Field Theory for the one-population inhibitory rate model
with g(x) = ϕ(x). The potential, V (σ, σ0) is plotted for different values of σ0 as a function of σ. A1−3:
J0 = 4 < Jc (=4.995). B1−5: J0 = 15 > Jc.
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