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Abstract

Geographic patterns of genetic variation within modern populations,
produced by complex histories of migration, can be difficult to infer and
visually summarize. A general consequence of geographically limited dis-
persal is that samples from nearby locations tend to be more closely related
than samples from distant locations, and so genetic covariance often reca-
pitulates geographic proximity. We use genome-wide polymorphism data
to build “geogenetic maps”, which, when applied to stationary populations,
produces a map of the geographic positions of the populations, but with
distances distorted to reflect historical rates of gene flow. In the underly-
ing model, allele frequency covariance is a decreasing function of geogenetic
distance, and nonlocal gene flow such as admixture can be identified as
anomalously strong covariance over long distances. This admixture is ex-
plicitly co-estimated and depicted as arrows, from the source of admixture
to the recipient, on the geogenetic map. We demonstrate the utility of this
method on a circum-Tibetan sampling of the greenish warbler (Phylloscopus
trochiloides), in which we find evidence for gene flow between the adjacent,
terminal populations of the ring species. We also analyze a global sampling
of human populations, for which we largely recover the geography of the
sampling, with support for significant histories of admixture in many sam-
ples. This new tool for understanding and visualizing patterns of population
structure is implemented in a Bayesian framework in the program SpaceMix.
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Author Summary

In this paper, we introduce a statistical method for inferring, for a set of sequenced
samples, a map in which the distances between population locations reflect genetic,
rather than geographic, proximity. Two populations that are sampled at distant
locations but that are genetically similar (perhaps one was recently founded by
a colonization event from the other) may have inferred locations that are nearby,
while two populations that are sampled close together, but that are genetically
dissimilar (e.g., are separated by a barrier), may have inferred locations that are
farther apart. The result is a “geogenetic” map in which the distances between
populations are effective distances, indicative of the way that populations perceive
the distances between themselves: the “organism’s-eye view” of the world. Added
to this, “admixture” can be thought of as the outcome of unusually long-distance
gene flow; it results in relatedness between populations that is anomalously high
given the distance that separates them. We depict the effect of admixture using
arrows, from a source of admixture to its target, on the inferred map. The inferred
geogenetic map is an intuitive and information-rich visual summary of patterns of
population structure.

Introduction

There are many different methods to learn how population structure and demo-
graphic processes have left their mark on patterns of genetic variation within and
between populations. Model-based approaches focus on developing a detailed view
of the migrational history of a small number of populations, often assuming one or
a small number of large, randomly mating populations (i.e. little or no geographic
structure). There has been considerable recent progress in this area, using a vari-
ety of summaries such as the allele frequency spectrum [Gutenkunst et al., 2009,
Bhaskar et al., 2014, Excoffier et al., 2013], or approximations to the coalescent
applied to sequence data [Paul et al., 2011, Li and Durbin, 2011].

Other approaches are designed only to visualize patterns of genetic relatedness and
population structure, without using a particular population genetic model. Such
methods can deal with many populations or individuals as the unit of analysis.
Examples of this second set of methods include clustering methods [Pritchard et al.,
2000, Alexander et al., 2009, Lawson et al., 2012] and reduced dimensionality
representations of the data, such as Principal Components Analysis (PCA; e.g.
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[Luca et al., 1994, Patterson et al., 2006, Price et al., 2006]).

A third set of methods that describe relatedness between populations by con-
structing a “population phylogeny” was pioneered by Cavalli-Sforza and Edwards
[1967], as were methods to test whether a tree is a good model of population history
[Cavalli-Sforza and Piazza, 1975] (see [Felsenstein, 1982] for a review). Tree-based
approaches are appealing because trees are easy to visualize and explain, but the
underlying assumptions (unstructured populations that split at discrete points in
time) rarely hold true.

Recently, there has been a resurgence of interest in these tree-based methods.
Some use population trees as a null model to test and quantify the signal of ad-
mixture between samples Reich et al. [2009]. Others, such as TreeMix [Pickrell
and Pritchard, 2012] and MixMapper [Lipson et al., 2013], visualize population re-
lationships using a directed acyclic graph; for instance, TreeMix connects branches
in a population tree with additional edges to explain excess covariance between
groups of populations.

There has also been renewed interest in methods for dimensionality reduction for
the visualization of patterns of genetic variation [Patterson et al., 2006], especially
PCA (also pioneered by Cavalli-Sforza [Menozzi et al., 1978]). Examining such low-
dimensional visual summaries has become an indispensible step in the analysis of
modern genomic datasets of thousands of loci typed in tens or hundreds of samples.
Generally, these visualizations are constructed by plotting the first few eigenvectors
of the covariance matrix of normalized allele frequencies against each other.

Both PCA and tree-based methods are valuable as genetic inference and visual-
ization tools, but both also suffer from serious limitations. Because gene flow is
frequently pervasive, patterns of relatedness between samples may often be only
poorly represented by a tree-based model. PCA is more flexible, as it assumes no
explicit model of population-genetic processes, simply describing the axes of great-
est variance in the average coalescent times between pairs of samples [McVean,
2009]. This allows PCA to describe more geographically continuous relationships:
PCA applied to human populations within continents often shows a close corre-
spondence to geographic locations [e.g. Novembre et al., 2008, Wang et al., 2012].
However, the interpretation of PCA is more difficult, as the results can be strongly
affected by the size and design of sampling, and the linearity and orthogonality
requirements of the PC axes can lead to counterintuitive results [Novembre and
Stephens, 2008, Francois et al., 2010].
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What is desired, then, is a method for inferring and visualizing patterns of pop-
ulation differentiation that can recapitulate complex, non-hierarchical structures,
while also admitting simple and intuitive interpretation. Since gene flow and pop-
ulation movements are often constrained by geography, it is natural to base such a
method in a geographic framework. There is a rich history of population genetics
theory for populations distributed in continuous space [Malécot, 1975, Nagylaki,
1978, Felsenstein, 1975, Barton et al., 2002], as well as exciting new developments
in the field [e.g. Petkova et al., 2014]. The pattern of increasing genetic differentia-
tion with geographic distance was termed “Isolation by Distance” by Wright [1943],
and is ubiquitous in natural populations [Meirmans, 2012]. Descriptive models of
such patterns rely only on the weak assumption that an individual’s mating op-
portunities are spatially limited by dispersal; a large set of models, ranging from
equilibrium migration-drift models to non-equilibrium models, such as recent spa-
tial expansions of populations, give rise to the empirical pattern of isolation by
distance.

In this paper, we present a statistical framework for studying the spatial distribu-
tion of genetic variation and genetic admixture based on a flexible parameterization
of the relationship between genetic and geographic distances. Within this frame-
work, the pattern of genetic relatedness between the samples is represented by a
map, in which inferred distances between samples are proportional to their genetic
differentiation, and long distance relatedness (in excess of that predicted by the
map) is modeled as genetic admixture. These ‘geogenetic’ maps are simple, intu-
itive, low-dimensional summaries of population structure, and provide a natural
framework for the inference and visualization of spatial patterns of genetic varia-
tion and the signature of genetic admixture. The implementation of this method,
SpaceMix, is available at https://github.com/gbradburd/SpaceMix.

Results

Data The genetic data we model consist of allele counts at L unlinked, bi-allelic
single nucleotide polymorphisms (SNPs), sampled across K populations. After
arbitrarily choosing an allele to count at each locus, denote the number of counted
alleles at locus ` in population k as Ck,`, and the total number of alleles observed as

Sk,`. The sample frequency at locus ` in population k is f̂k,` = Ck,`/Sk,`. Although
we will refer to “populations”, each could consist of a single individual (Sk,` = 2 for
a diploid). We will depict results as coordinates on a map; however, the method
does not require user-specified sampling locations.
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We first compute standardized sample allele frequencies at locus ` in population
k, by

X̂k,` = (f̂k,` − f̄`)/
√
f̄`(1− f̄`), (1)

where f̂k,` is the sample allele frequency at locus ` in population k, and f̄` is the
average of the K sample allele frequencies, weighted by mean population size. This
normalization is widely used [e.g. Nicholson et al., 2002, Patterson et al., 2006];
mean-centering makes the result invariant to choice of which allele to count at each
locus, and dividing by

√
f̄`(1− f̄`) makes each locus have roughly unit variance

in some sense.

We work with the empirical covariance matrix of these standardized sample allele
frequencies, calculated across loci, namely, Ω̂ = (1/L)X̂X̂T . Using the sample
mean to mean-center X̂ has implications on their covariance structure, discussed
in the Methods (“The standardized sample covariance”). For clarity, here we
proceed as if f̄` were instead an unobserved, global mean allele frequency at locus
`.

Spatial Covariance Model We wish to model the distribution of alleles among
populations as the result of a spatial process, in which migration moves genes lo-
cally on an unobserved landsape. Migration homogenizes those differences between
populations that arise through genetic drift; populations with higher levels of his-
torical or ongoing migration share more of their demographic history, and so have
more strongly correlated allele frequencies.

We assume that the standardized sample frequencies are generated independently
at each locus by a spatial process, and so have mean zero and a covariance matrix
determined by the pairwise geographic distances between samples. To build the
geogenetic map, we arbitrarily choose a simple and flexible parametric form for
the covariance matrix in which covariance between allele frequencies decays expo-
nentially with a power of their distance [Diggle et al., 1998, Wasser et al., 2004,
Bradburd et al., 2013]: the covariance between standardized population allele fre-
quencies (i.e. X̂ values) between populations i and j is assumed to be, for i 6= j,

F (Di,j) =
1

α0

exp (− (α1Di,j)
α2) , (2)

where Di,j is the geogenetic distance between populations i and j, α0 controls the
within-population variance (or the covariance when distance between points is 0,
known as a “sill” in the geospatial literature), α1 controls the rate of the decay of
covariance per unit pairwise distance, and α2 determines the shape of that decay.
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Within population variance may vary across samples due to either noise from a fi-
nite sample size or demographic history unique to that sample (e.g., bottlenecks or
endogamy). To accommodate this heterogeneity we introduce population-specific
variance terms, resulting in the covariance matrix for standardized sample frequen-
cies

Ωi,j = F (Di,j) + δi,j
( 1

S̄i
+ ηi

)
, (3)

where δi,j = 1 if i = j and is 0 otherwise, ηk is a nonnegative sample-specific
variance term (nugget) to account for variance specific to population k that is not
accounted for by the spatial model, and S̄k is the mean sample size across all loci
in population k, so that 1/S̄k accounts for the variance introduced by sampling
within the population.

The distribution of the sample covariance matrix Ω̂ is not known in general, but
the central limit theorem implies that if the number of loci is large, it will be close
to Wishart. Therefore, we assume that Ω̂ is Wishart distributed with degrees of
freedom equal to the number of loci (L) used and mean equal to the parametric
form Ω given in equation (3). We denote this by

P (Ω̂ | Ω) =W
(
LΩ̂ | Ω, L

)
. (4)

Note that if the standardized sample frequencies are Gaussian, then the sample
covariance matrix is a sufficient statistic, so that calculating the likelihood of Ω̂
is the same as calculating the likelihood of the data up to a constant. Handily, it
also means that once the sample covariance matrix has been calculated, all other
computations do not scale with the number of loci, making the method scalable
to genome size datasets.

Location Inference Non-equilibrium processes like long distance admixture,
colonization, or population expansion events will distort the relationship between
covariance and distance across the range, as will barriers to dispersal on the land-
scape. To accommodate these heterogeneous processes we infer the locations of
populations on a map that reflects genetic, rather than geographic, proximity. To
generate this map, we treat populations’ locations (i.e. coordinates in the geoge-
netic map) as parameters that we estimate with a Bayesian inference procedure
(described in the Methods). These location parameters for each population are
denoted by G, and determine the matrix of pairwise geogenetic distances between
populations, D(G), which together with the parameters ~α and η determine the
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parametric covariance matrix Ω (given by equation (3)). We acknowledge this
dependence by writing Ω(~α,D(G), η).

The prior distributions on the parameters that control the shape and scale of
the decay of covariance with distance (~α and η) are given in the Methods. The
priors on the geogenetic locations, G, are independent across populations; because
the observed locations naturally inform the prior for populations locations, we
use a very weak prior on population k’s location parameter (Gk) that is centered
around the observed location. This prior on geogenetic locations also encourages
the resulting inferred geogenetic map to be anchored in the observed locations and
to represent (informally) the minimum distortion to geographic space necessary to
satisfy the constraints placed by genetic similarities of populations. In practice, we
also compare results to those produced using random locations as the “observed”
locations, and can change the variance on the spatial priors to ascertain the effect
of the prior on inference.

We then write the posterior probability of the parameters as

P
(
G, ~α, η | Ω̂, L

)
∝ P

(
Ω̂ | Ω(~α,D(G), η)

)
P (~α)P (G)P (η), (5)

where P () denotes the various priors, and the constant of proportionality is the
normalization constant.

We then use a Markov chain Monte Carlo algorithm to estimate the posterior
distribution on the parameters as described in more detail in the Methods.

Illustrated with Simulations. We first apply the method to several scenarios
simulated using the coalescent simulator ms [Hudson, 2002]. Each scenario is
simulated using a stepping stone model in which populations are arranged on
a grid with symmetric migration to nearest neighbors (eight neigbors, including
diagonals) with 10 haploid individuals sampled from every other population at
10,000 unlinked loci (for details on all simulations, see Methods and Appendix).
The basic scenario is shown in Figure 1a, which is then embellished in various ways.
In the SpaceMix analysis of each simulated dataset, we treat population locations
as unknown parameters to be estimated as part of the model, and center the
priors on each population’s location at a random point. The resulting geogenetic
maps are produced from the parameters having maximum posterior probability.
Since overall translation, rotation, and scale are nuisance parameters, we present
inferred locations after a Procrustes transformation (best-fit rotation, translation,
and dilation) to match the coordinates used to simulate the data.
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(a) homogeneous scenario
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(b) barrier scenario
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(c) expansion scenario

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

(d) geogenetic map of 1a
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(e) geogenetic map of 1b
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(f) geogenetic map of 1c

Figure 1: Simulation scenarios and and their corresponding geogenetic maps es-
timated with SpaceMix. The smaller circles in the simulation scenarios represent
unsampled populations. a) configuration of simulated populations on a simple lat-
tice with spatially homogeneous migration rates; b) a lattice with a barrier along
the center line of longitude, across which migration rates are reduced by a factor
of 5; c) a lattice with recent expansion on the eastern margin; d) the maximum
a posteriori (MAP) estimate from the posterior distribution of population loca-
tions under the scenario in 1a; e) MAP estimate of population locations under the
scenario in 1b; f) MAP estimate of population locations under the scenario in 1c;
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The lattice scenarios, illustrated in Figures 1 and 2, are: homogeneous migration
rates across the grid; a longitudinal barrier across the center of the grid; a series of
recent expansion events; and an admixture event between opposite corners of the
lattice. In the simple lattice scenario with homogeneous migration rates (Figures
1a and 1d), SpaceMix recovers the lattice structure used to simulate the data (i.e.,
populations correctly choose their nearest neighbors). After adding a longitudinal
barrier to dispersal across which migration rates are reduced by a factor of 5
(Figure 1b), the two halves of the map are pushed farther away from one another,
reflecting the decreased gene flow between them.

In the expansion scenario, in which all populations in the last five columns of
the grid have expanded simultaneously in the immediate past from the nearest
population in their row (Figure 1c), the daughter populations of the expansion
event cluster with their parent populations, reflecting the higher relatedness (per
unit of geographic separation) between them. In all scenarios, populations at the
corners of the lattice are pulled in somewhat because these have the least amount
of data informing their relative placements. In Figure S1, we show the relationship
between genetic covariance, geographic distance, and inferred geogenetic distance
for these simulations.

We next simulated a long-distance admixture event on the same grid, by sam-
pling half of the alleles of each individual in the northeast corner population from
the southwest corner population (Figure 2a). We then ran a SpaceMix analy-
sis in which the locations of these populations were estimated (Figure 2b). The
admixture creates excess covariance over anomalously long distances, which is
clearly difficult to accommodate with a two-dimensional geogenetic map. Figure
2b shows the torturous lengths to which the method goes to fit a good geogenetic
map: the admixed population 30 is between population 1, the source of its admix-
ture, and populations 24, 25, and 29, the nearest neighbors to the location of its
non-admixed portion. However, this warping of space is difficult to interpret, and
would be even more so in empirical data for which a researcher does not know the
true demographic history.

Inference of Spatial Admixture

To incorporate recent admixture, we allow each allele sampled in population k to
have a probability wk (0 ≤ wk ≤ 0.5) of being sampled from location G∗k, which
we refer to as population k’s source of admixture, and a probability 1 − wk of
being sampled from location Gk. With no nugget, each allele would be sampled
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(a) simulated lattice with admixture
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(b) geogenetic map without admixture in-
ference
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(c) geogenetic map with admixture infer-
ence

Figure 2: Simulation scenarios and SpaceMix inference. a) a lattice with recent
admixture event between population 1 in the southwest corner and population 30
in the northeast corner, so that population 30 is drawing half of its ancestry from
population 1; b) the estimate of population locations under this scenario; c) the
estimate of population locations and their sources of admixture under this scenario.
The 95% credible interval on w30 is 0.36 - 0.40. In panel (c), the width and opacity
of the admixture arrows are drawn proportional the admixture proportions.
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independently, but the nugget introduces correlations between the alleles sampled
in each population.

With this addition, the parametric covariance matrix before given by (3) becomes a
function of all the pairwise spatial covariances between the locations of populations
i and j and the points from which they draw admixture (illustrated in Figure 3);
now, we model the covariance between X̂k,` and X̂k,`, for each `, as

Ω∗i,j = (1− wi)(1− wj)F (Di , j )

+ wi(1− wj)F (Di∗, j )

+ wj(1− wi)F (Di , j∗)

+ wiwjF (Di∗, j∗)

+ δi,j(ηi + 1/S̄i)

(6)

where D is the 2k × 2k matrix of pairwise distances between all inferred locations
and sources of admixture, and for readability, we denote, e.g., F (D(Gi, G

∗
j)),

as F (Di , j∗). The spatial covariance, F (D), is as given in equation (2), and we
reintroduce the nugget, ηk, and the sample size effect, 1/S̄k, for each population
as above in Eqn. (3).

We proceed in our inference procedure as before, but now with the locations of the
sources of admixture and the admixture proportions to infer. The likelihood of
the sample covariance matrix is exactly as before in (4), except with Ω replaced by
Ω∗. The posterior probability of these parameters can be expressed as a function
of this parametric admixed covariance, Ω∗,

P (G,G∗, w, ~α, η | Ω̂, L) ∝ P (Ω̂ | Ω∗)P (~α)P (G)P (G∗)P (w)P (η) (7)

as specified by the parameters w, G∗, ~α, and η, and the inferred locations, G. We
place a weak spatial prior on the sources of admixture, G∗ around the centroid of
the observed locations. The admixture proportions, w, are capped at 0.5, to ensure
identifiability, and are heavily weighted towards small values to be conservative
with respect to admixture inference. These priors are detailed in Table 2.

The models described above may be used in various combinations. In the simplest
model, populations do not choose their own locations, nor are they allowed to draw
admixture; the only parameters to be estimated are those of the spatial covariance
function given in equation (2), and the population-specific variance terms (ηi). In
the most complex model, population locations, the locations of their sources of
admixture, and the proportions of admixture are all estimated jointly in addition
to the parameters of the spatial covariance function and the population specific
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i⇤

j⇤

wi wj

i

j

Fi,j

Fi⇤,j

Fi,j⇤

Fi⇤,j⇤

Figure 3: An illustration of the form of the admixed covariance given in Equation
(6). Populations i and j are drawing admixture in proportions wi and wj from their
respective sources of admixture, i∗ and j∗, and all pairwise spatial covariances (the
F ’s) are shown. In this cartoon example, population j is drawing more admixture
from its source j∗ than i is from its source i∗ (i.e., wj > wi).

variances. Users may wish to employ the more constrained models (e.g., fixing the
locations or admixture proportions for some or all samples) in a model selection
framework to test specific hypotheses.

Allowing admixture gives sensible results for the scenario of Figure 2a: in the
resulting map, the only population that draws substantial admixture is the one
that is actually admixed, and it draws admixture (95% CI: 0.36 - 0.40) from the
correct location (Figure 2c).

A more subtle simulated admixture scenario, with admixture proportion of 10%
across a geographic barrier, is shown Figure 4a. The resulting SpaceMix map
(Figure 4b), separates the east and west sides of the grid to accommodate the effect
of the barrier, and the admixed population (population 23) chooses admixture from
very close to its true source (population 13), and in close to the correct amount
(w̄(23) = 0.05; 95% CI = 0.02− 0.08).

Another difficult scenario is shown in Figure 4c, where 40% admixture has occurred
between two populations immediately adjacent to each other on either side of a
barrier. Here, the admixed population 18 is correctly identified as admixed, but
it explains its intermediate genetic relationships by taking a location close to its
true admixture source (population 13), and drawing admixture (95% CI: 0.04 -
0.14) from a location on the far margin of the half of the grid on its own side of
the barrier. Because there is no sampled intervening population between admixed
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population 18 and its source of admixture 13, there is nothing to stop 18 from
explaining its higher covariance with 13 via its chosen location G(18) rather than
via that of its source of admixture G∗(18). In each of these scenarios, the estimated
admixture proportion is less than that used to simulate the data. This is due to
the stringent prior we place against admixture. We discuss these examples further
in the Methods.
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(a) ‘inland’ admixture
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(b) ‘inland’ geogenetic map
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(c) ‘neighbor’ admixture
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(d) ‘neighbor’ geogenetic map

Figure 4: Simulation scenarios and inferred population maps for two different ad-
mixture scenarios: a) lattice with a barrier and an admixture event (10%) across
the barrier to an ‘inland’ population; b) the inferred population map for the sce-
nario in (a), where the admixed population 23 is the only population drawing
non-negligible admixture (95% CI: 0.02-0.08) ; c) lattice with a barrier and an
admixture event (40%) across the barrier to a ‘neighbor’ population on the border
of the barrier; (d) the inferred population map for the scenario in (c), where the
admixed population 18 is the only population drawing non-negligible admixture
(95% CI: 0.04 - 0.14).
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Empirical Applications

To demonstrate the applications of this novel method, we analyzed population
genomic data from two systems: the greenish warbler ring species complex, and
a global sampling of contemporary human populations. Maps showing our sam-
pling in these two systems are given in Figure 5, and information on the specific
samples included is given in the Supplementary Materials, Tables S1 and S2. For
all analyses presented below, we used random ‘observed’ locations as the priors on
population locations. The geogenetic maps shown here were maximum a posteri-
ori estimates (over all parameters). For clarity and ease of interpretation, we then
present a full Procrustes superimposition of the inferred population locations (G)
and their sources of admixture (G∗), using the observed latitude and longitude of
the samples/individuals to give a reference position and orientation.

Greenish Warblers

The greenish warbler (Phylloscopus trochiloides) species complex is broadly dis-
tributed around the Tibetan plateau, and exhibits gradients around the ring in
a range of phenotypes including song, as well as in allele frequencies [Ticehurst,
1938, Irwin et al., 2001, 2005]. At the northern end of the ring in central Siberia,
where the eastern and western arms of population expansion meet, there are dis-
continuities in call and morphology, as well as reproductive isolation and a genetic
discontinuity [Irwin et al., 2001, 2008]. It is proposed that the species complex
represents a ring species, in which selection and/or drift, acting in the populations
as they spread northward on either side of the Tibetan plateau, have led to the
evolution of reproductive isolation between the terminal forms.

The question of whether it fits the most strict definition of a ring species focuses
on whether gene flow along the margins of the plateau has truly been continu-
ous throughout the history of the expansion or if, alternatively, discontinuities in
migration around the species complex’s range have facilitated periods of differ-
entiation in genotype or phenotype without gene flow [Mayr, 1942, 1970, Coyne,
2004] (see Wake and Schneider [1998] for discussion). Alcaide et al. [2014] have
suggested that the greenish warbler species complex constitutes a ‘broken’ ring
species, in which historical discontinuities in gene flow have facilitated the evolu-
tion of reproductive isolation between adjacent forms.

To investigate this question, we applied SpaceMix to the dataset from Alcaide et al.
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(a) Warbler subspecies distribution map
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Figure 5: Sampling maps of both empirical systems analyzed. (a) greenish warbler
subspecies distributions of all 22 sampled populations (breeding grounds), consist-
ing of 95 individuals and colored by subspecies; (b) sampling map for human
dataset, consisting of 1,490 individuals from 95 population samples.
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(a) Warbler geogenetic map, no admix-
ture
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(b) Warbler geogenetic map, with ad-
mixture

Figure 6: Inferred population maps with population labels colored as in Figure
5a: a) the map inferred with no admixture inference; b) the map inferred with
admixture inference.

[2014], consisting of 95 individuals sampled at 22 distinct locations and sequenced
at 2,334 SNPs, of which 2,247 were bi-allelic and retained for SpaceMix runs. The
libraries were prepared using a genotype-by-sequencing protocol and were run on
an Illumina HiSeq 2000 with a paired-end sequencing protocol [Alcaide et al.,
2014].

We first ran SpaceMix on the population dataset, with no admixture. The resulting
inferred map (Figure 6a) largely recapitulates the geography of the sampled pop-
ulations around the ring. The Turkish population (TU, Phylloscopus trochiloides
ssp. nitidus) clusters with the populations in the subspecies ludlowi, due to its
recent expansion, but also chooses a relatively high nugget parameter (see Figure
S5a), reflecting the population history it does not share with its ludlowi neighbors.
In the North, where the twin waves of expansion around the Tibetan Plateau are
hypothesized to meet, the inferred geogenetic distance between populations from
opposite sides of the ring was much greater than their observed geographic separa-
tion, reflecting the reproductive isolation between these adjacent forms (see Figure
S2).

We then ran the method allowing admixture (Figure 6b). The only population
sample with appreciable admixture is the Stolby sample (ST; w = 0.19, 95%
credible interval: 0.146-0.238). This sample is known to be composed of an equal
mixture of eastern plumbeitarsus and western viridanus individuals [Alcaide et al.,
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(b) Close-up of non-nitidus samples

Figure 7: Inferred maps for warbler individuals, colored by subspecies in an anal-
ysis with admixture inference. a) map inferred with admixture; b) close-up of all
non-nitidus samples in the admixture map.

2014]. Multiple runs agreed well on the level of admixture of the Stolby sample (see
Figure S3). What does vary across runs is whether the Stolby sample chooses to
locate itself by the viridanus cluster and draw admixture from near the plumbeitar-
sus cluster or vise versa; however, this is to be expected given the 50/50 nature
of the sample’s makeup (Figure S3). The somewhat intermediate position of the
Stolby sample, and its non-50/50 admixture proportion, likely partially reflect the
influence of the priors (Figure S3).

We repeated these analyses (with and without admixture) on an individual level
(Figure 7). No individual drew appreciable admixture (see Figure S11 for admix-
ture proportions), and so we discuss the results with admixture (those without ad-
mixture are nearly identical, see Figure S8). As with the analysis on multi-sample
populations, the results approximately mirror the geography of the individuals.

There are, however, a number of obvious departures in the individual geogenetic
map from the population map. The most obvious is that the location of a pair
of nitidus samples (in purple) is very far from the rest of the samples. These
individuals appear to be fairly close relatives: in the population-level analysis of
Figure S5a, this increase in shared ancestry was accounted for by a large nugget
for the nitidus population; but in the individual-level analysis, they cannot share
a nugget parameter, and must therefore choose a location close to each other and
far from the rest of the samples. The same phenomenon seems to be at work in
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determining the locations of a pair of individuals, one identified as P. t. ludlowi
(Lud-MN3), one as P. t. trochiloides (Tro-LN11), as they also show an unusually
low pairwise sequence divergence (see Figure S13).

The split between viridanus and plumbeitarsus individuals (blue and red, respec-
tively), in the north at the contact zone of the two waves of expansion, is clearer
now than in the population-based analysis, as individuals from the Stolby popula-
tion have moved to near their respective clusters. Despite the fact that viridanus
and plumbeitarsus individuals have moved away from each other in our geogenetic
map, they are still closer to each other than we would expect if all gene flow be-
tween the two was mediated by the southern populations, in which case we would
expect the populations to form a line, with viridanus at one end and plumbeitar-
sus at the other. This horseshoe, with viridanus and plumbeitarsus at its tips, is
steady within and among runs of the MCMC and choice of position priors (see
Figures S9a-S9c).

Is this biologically meaningful? A similar horseshoe shape appears when a prin-
cipal components (PC) analysis is conducted and individuals are plotted on the
first two PCs [see Figure S7 and Alcaide et al., 2014]. However, as discussed by
Novembre and Stephens [2008], such patterns in PC analysis can arise for some-
what unintuitive reasons. If populations are simulated under a one dimensional
stepping stone model, then plotting individuals on the first two PCs results in
a horseshoe (e.g. see Figure S19b) not because of gene flow connecting the tips,
but rather because of the orthogonality requirement of PCs (see Novembre and
Stephens [2008] for more discussion). In contrast, when SpaceMix is applied to
one dimensional stepping stone data, the placement of samples is consistent with
a line (see Figures S19c, S19d). The proximity of viridanus and plumbeitarsus
in geogenetic space may be due to gene flow between the tips of the horseshoe
north of the Tibetan Plateau. This conclusion is in agreement with that of Al-
caide et al. [2014], who observed evidence of hybridization between viridanus and
plumbeitarsus using assignment methods.

The SpaceMix map also diverges from the observed map in the distribution of
individuals from the subspecies ludlowi (in green). These samples were taken
from seven sampling locations along the southwest margin of the Tibetan Plateau,
but, in the SpaceMix analysis, they partition into two main clusters, one near
the trochiloides cluster, and one near the viridanus cluster. This break between
samples from the same subspecies, which is concordant with the findings of Alcaide
et al. [2014], makes the ludlowi cluster unusual compared to the estimated spatial
distributions of the other subspecies (see Figure S12), and suggests a break in
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historic or current gene flow.

Human Populations

Human population structure is a complex product of the forces of migration and
drift acting on both local and global scales, patterned by geography [Novembre
et al., 2008, Ralph and Coop, 2013], time [Skoglund et al., 2012, 2014], admixture
[Hellenthal et al., 2014], landscape and environment [Beall et al., 2010, Bigham
et al., 2010, Bradburd et al., 2013], and shaped by culture [Reich et al., 2009,
Atzmon et al., 2010, Moorjani et al., 2011]. To visualize the patterns these pro-
cesses have induced, we create a geogenetic map for a worldwide sample of modern
human populations. In doing so we fully acknowledge that human history at these
geographic scales has many aspects that are not well captured by isolation dis-
tance or simple admixture models. To simplify the discussion of our results, we
talk about samples’ locations and those of their sources of admixture, but of course
both reflect the compounding of drift and gene flow over many historical processes.
We therefore urge caution in the interpretation our results, and view them as a
simplistic but rich visualization of patterns of population structure in humans.

We used a random subset of 10,000 SNPs from the SNP dataset of Hellenthal et al.
[2014], which is comprised of 1,490 individuals from 95 population samples (see
Figure 5b for map of sampling), as well as the latitude and longitude attributed
to each sample. We ran two sets of SpaceMix analyses: in the first, we estimated
population sample locations, and in the second, we also allowed admixture. We
note that few of the putative admixture events that we report have escaped the
notice of previous investigators, which is unsurprising given the depth of recent at-
tention on human admixture studies, particularly on the subset of HGDP samples
[see Rosenberg et al., 2002, Li et al., 2008, Loh et al., 2013, Patterson et al., 2012,
Hellenthal et al., 2014, for various global analyses]. However, what is novel here is
the ability to visualize these admixture events in a geographic context, and that
these admixture signals stand out against a null model of isolation by distance
(rather than tree-based models).

When population samples choose only their own locations, the map roughly re-
capitulates the geography of the samples (Figure 8a), a result that holds nicely
when we zoom in on the more heavily sampled area of Eurasia (Figure 8b). We see
that samples both in the Americas and in Oceania cluster close to the East Asian
samples, but that the two clusters are on opposite sides. The proximity of these
groups to the East Asians represents the fact that both groups share an ancestral
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population in the relatively recent past with East Eurasian populations, but the
two expansions occurred independently. As in our simulations (Figure 1f) popu-
lation expansions/bottlenecks have distorted the relationship between geographic
and geogenetic distance. In the SpaceMix analysis of the human genetic data, the
scale of inferred inter-population sample distance within Africa is much greater
than that between any other group (see Figure S15), and the slope of the relation-
ship between observed and estimated geographic distances between populations on
each continent decays with distance from Africa. This pattern is consistent with a
history of human colonization events characterized by serial bottlenecks [Harpend-
ing and Rogers, 2000, Prugnolle et al., 2005, Ramachandran et al., 2005] following
an out-of-Africa expansion, and subsequent expansions into Western Eurasia, East
Asia, the Americas, and Oceania [but see Pickrell and Reich, 2014, for a discussion
of other models].

To investigate possible patterns of admixture further, we ran a SpaceMix analysis
with admixture (results shown in Figures 9 and 10). The biggest change between
the geogenetic map of human populations inferred with admixture and that with-
out is the positioning of African samples with respect to the rest of the world.
The relatively large geogenetic distances between these groups reflects the fact
that Eurasian, North African, Oceanian, and American populations all share rela-
tively large amounts of drift (population history) not shared with the Sub-Saharan
African samples. The inclusion of admixture allows samples that fall intermediate
between Sub-Saharan Africa and North Africa and the Middle East to move closer
to one or the other, which, in turn, allows each of those major clusters to move
relatively farther apart. The Ethiopian and Ethiopian Jewish samples move to
be closer to the Sub-Saharan samples than the of the North African samples, but
draw substantial amounts of admixture (∼ 40%) from close to where the Egyptian
sample has positioned itself in the the Middle East cluster, as do the Sandawe
[Hodgson et al., 2014, Pickrell et al., 2012]. The SanKhomani draw admixture
from near Syria, which may reflect multiple distinct geographic sources of admix-
ture as discussed by [Hellenthal et al., 2014] and [Pickrell et al., 2014]. Interestingly
the Bantu South African sample, though it moves to join the other Bantu sam-
ples, draws admixture from close to the San populations. This is consistent with
previous signals of the expansion of Bantu-speaking peoples into southern Africa
[Pickrell et al., 2012, Schlebusch et al., 2012, Pickrell et al., 2014, Hellenthal et al.,
2014].

The majority of North African samples (Egyptian, Tunisian, Morocan, Mozabite)
move to join the Middle Eastern samples (positioning in rough accord with their
sampling location along North Africa), and draw admixture from near the Ethiopian
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Figure 8: Map of human samples, inferred without admixture. (a) complete map;
(b) close-up of Eurasian samples.
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Figure 9: Map of human samples, inferred with admixture. (a) complete map; (b)
close-up of Eurasian samples
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Figure 10: Mean admixture proportions (and 95% CIs) for each population sample.

samples. All of the Middle Eastern samples draw admixture from close to the loca-
tion chosen by the Ethiopian samples and where most of the North African samples
draw admixture from, representing the complex history of North African–Middle
Eastern gene flow [Henn et al., 2012, Hellenthal et al., 2014].

A number of other population samples draw admixture from Africa. The Sindhi,
Makrani, and Brahui draw admixture from close to the location of the Bantu
samples [Hellenthal et al., 2014], and the Balochi and Kalash draw admixture from
some distance away from African population samples. Of the European samples,
the Spanish and the East and West Sicilian samples all draw small amounts of
admixture from close to the Ethiopian samples, presumably reflecting a North
African ancestry component [Moorjani et al., 2011, Botigu et al., 2013].

The other dominant signal of admixture is between East and West Eurasia [a signal
documented by many authors: Rosenberg et al., 2002, Li et al., 2008, Xu and Jin,
2008, Hellenthal et al., 2014]. The majority of samples maintain their relative
positions within each of these groups; however, several of the populations that
chose locations intermediate between eastern and western Eurasia (in the SpaceMix
analysis without admixture) now move towards one side and draw admixture from
the other. The Uzbekistani and Hazara samples move to be closer to the East Asian
samples, while drawing a substantial admixture proportion from close to where
the Georgian and Armenian samples have located themselves, while conversely
the Uygur sample moves to be close to the Burusho, Kalash, and Pathan samples.
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The Tu sample (with a geogenetic location in East Asia) draws a small amount of
ancestry from close to where the Uygur have positioned themselves. The Chuvash
move close to Russian and Lithuanian samples, drawing admixture from close to
the Yakut; the Turkish sample also draws a smaller amount of admixture from
there. There are several other East-West connections: the Russian and Adygei
samples have admixture from a location “north” of the East Asian samples, and
the Cambodia sample draws admixture from close to the Eygptian sample [Pickrell
and Pritchard, 2012, Hellenthal et al., 2014].

There are also a number of samples that draw admixture from locations that
are not immediately interpretable. For example, the Hadza and Bantu Kenyan
samples draw admixture from somewhat close to India, and the Xibo and Yakut
from close to “northwest” of Europe. The Pathan samples draw admixture from a
location far from any other samples’ locations, but close to where the India samples
also draws admixture from. The Myanmar and the Burusho samples both draw
admixture far from the locations estimated for other samples as well.

There are a number of possible explanations for these results. As we only allow a
single admixture arrow for each sample, populations with multiple, geographically
distinct sources of admixture may be choosing admixture locations that average
over those sources. This may be the case for the Hadza and Bantu Keynan sam-
ples [Hellenthal et al., 2014]. A second possibility is that the relatively harsh prior
on admixture proportion forces samples to choose lower proportions of admixture
from locations that overshoot their true sources; this may explain the Xibo and
Yakut admixture locations. A final explanation is that good proxies for the sources
of admixture may not be included in our sampling, either because of of the lim-
ited geographic sampling of current day populations, or because of old admixture
events from populations that are no longer extant. The admixture into the Indian
and Pathan samples (whose admixture source also clusters with the Indian Jew
samples in some MCMC runs) may be an example of this; Reich et al. [2009] and
Moorjani et al. [2013] have hypothesized that many populations from the Indian
subcontinent may be descended from an admixture event involving an ancestral
Southern Indian population not well represented by our samples.

In Figures S17 and S18, we show the results of other independent MCMC analyses
on these data. The broad-scale patterns and results discussed above are consistent
across these runs. However, as is to be expected, there is significant heterogeneity
in the exact layout of sample and admixture locations. For example, there is some
play, among MCMC runs, in the internal orientation of the African locations with
respect to Eurasia. Samples that draw a significant amount of admixture, such
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as the central Asian populations (Uygur, Hazara and Uzbekistani), switch their
location with that of their source of admixture (as was also seen across MCMC
runs in the warbler data analysis). Similarly the Ethiopian and Ethiopian Jew
samples choose locations, in some MCMC runs, close to the other North African
samples, and draw admixture from near the Sub-Saharan samples (as do the other
North African samples).

Discussion

In this paper we have presented a statistical framework for modeling the geogra-
phy of population structure from genomic sequencing data. We have demonstrated
that the method, SpaceMix, is able to accurately present patterns of population
structure in a variety of simulated scenarios, which included the effects of spa-
tially heterogeneous migration, population expansion, and population admixture.
In empirical applications of SpaceMix, we have largely recovered previously esti-
mated population relationships in a circum-Tibetan sample of greenish warblers
and in a global sample of human populations, while also providing a novel way to
depict these relationships. The geogenetic maps SpaceMix generates serve as sim-
ple, intuitive, and information-rich summaries of patterns of population structure.
SpaceMix combines the advantages of other methods for inferring and illustrating
patterns of population structure, using model-based inference to infer population
relationships (like TreeMix [Pickrell and Pritchard, 2012], and MixMapper [Lipson
et al., 2013]), and producing powerful visualizations of genetic structure on a map
(like PCA [Patterson et al., 2006] and SPA [Yang et al., 2014]).

The patterns of genetic variation observed in modern populations are the prod-
uct of a complex history of demographic processes. We choose to model those
patterns as the outcome of a spatial process with geographically determined mi-
gration, and we have included statistical elements to accommodate deviations from
spatial expectations. However, the true history of a sample of real individuals is
vastly more complex than any low-dimensional summary, and, as with any sum-
mary of population genetic data, SpaceMix results should be interpreted with this
in mind. Furthermore, our “admixture” events are shorthands for demographic
relationships that occurred over possibly substantial lengths of time and regions of
the globe; approximating this by a single point in space is certainly an oversimpli-
fication. Aspects of population history that are better described as a population
phylogeny may be difficult to interpret using SpaceMix, and may be better suited
to visualization with hierarchical clustering-based methods [Pritchard et al., 2000]
or TreeMix/MixMapper-like methods [Pickrell and Pritchard, 2012, Lipson et al.,
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2013]. There is obviously no one best approach to studying and visualizing pop-
ulation structure; investigators should employ a range of appropriate methods to
identify those that provide useful insight.

SpaceMix offers much of the flexibility of PCA – like PCA, it is well suited to
describing population structure in a continuous fashion - but it also has a number
of advantages over PCA. When isolation by distance holds, the first (one or) two
PCs often correspond to some simple rotation of latitude and longitude; however,
these first two PCs explain a relatively small part of the total variance of the
data. Due to the linearity of PCs, many higher order PCs have to correspond to
higher order functions of positional information under isolation by distance, and
are therefore needed to explain the bulk of the variance [Novembre and Stephens,
2008]. These higher order PCs can be hard to interpret in empirical data (see
discussion in the warbler section). The recently introduced SPA approach [Yang
et al., 2012], since it assumes allele frequencies are monotonically increasing in a
given direction, may also suffer from this problem (although we note that PCA
and SPA both have significant speed advantages over SpaceMix).

In comparison, if isolation by distance holds then (nearly) all of the variance will
be captured by SpaceMix in the inferred geogenetic positions (to the extent to
which the parametric form of the covariance is flexible enough to capture the
empirical decay of covariance with distance). The application of SpaceMix to
humans nicely illustrates the utility of our approach: the first two PCs of this
dataset resemble a boomerang (Figure S16), with its arms corresponding to the
Africa/Non-Africa split and the spread of populations across Eurasia. In contrast,
while the SpaceMix geogenetic map is dominated by the genetic drift induced by
migration out of Africa, it also captures much more detail than is contained in the
first two PCs (e.g., Figure 9b). This comparison is also nicely illustrated by the
example in Figure S19.

An advantage of PCA is that it can explain more complex patterns of population
structure by allowing up to K different axes. Although SpaceMix can easily be
extended to more than two dimensions, simply by allowing Gi to describe the
location of a sample in d dimensions, the interpretation and visualization of these
higher dimensions would prove difficult, and so for the moment we stick with two
dimensions. On the other hand, SpaceMix can describe in two dimensions patterns
that PCA, due to the constraints of linearity, would need more to describe.

Another strong advantage of SpaceMix over current methods is the introduction of
admixture arrows. Although PCA can be interpreted in light of simple admixture
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events [McVean, 2009], and Yang et al. [2012, 2014] can locate the recent, spatially
admixed ancestry of out of sample individuals, neither approach explicitly models
admixture between multiple geographically distant locations, as SpaceMix does.
Assignment methods are designed to deal with many admixed samples [Pritchard
et al., 2000], but they have no null spatial model for testing admixture. We feel
that an isolation by distance null model is often more appropriate for testing for
admixture, especially when there is geographically dense sampling. SpaceMix of-
fers a useful tool to understand and visualize spatial patterns of genetic relatedness
when many samples are admixed.

As currently implemented, SpaceMix allows each population to have only a single
source of admixture, but some modern populations draw substantial proportions of
their ancestry from more than two geographically distant regions. In such cases the
inferred source of admixture may fall between the true locations of the parental
populations. Although it is statistically and computationally feasible to allow
each population to choose more than one source of admixture, we were concerned
about both the identifiability and the interpretability of such a model, and have
not implemented it. However, there may be empirical datasets in which such a
modeling scheme is required to effectively map patterns of population structure.
In addition, we have assumed that only single populations are admixed, when in
fact it is likely that particular admixture events may affect multiple samples.

One concern is that the multiple admixed samples (from a single admixture event)
may simply choose to cluster close to each other, and not need to draw admixture
from elsewhere due to the fact that their frequencies are well described by their
proximity to other admixed populations. Along these lines, it is noticeable that
many of our European samples draw little admixture from elsewhere [also noted by
Hellenthal et al., 2014, using a different approach], despite evidence of substantial
admixture [Lazaridis et al., 2014]. This may reflect the fact that all of the European
samples are affected by the admixture events, and are relatively over-represented
in our sample. However, this may also simply reflect the fact that the admixture
is ancient, and the ancient individuals used as proxy sources of these events are
not well represented by our extant sampling. Reassuringly, we see multiple cases
where similarly admixed populations (Central Asians, Middle Eastern, and North
African) populations are separately identified as admixed. This suggests that
geogenetic clustering (in lieu of drawing admixture) of populations that share
similar histories of admixture is not a huge concern (at least in some cases). The
method could in theory be modified to allow geogenetically proximal populations
to draw from the same admixture event; however, this may be difficult to make
fully automated.
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In this paper we have focused on the covariance among alleles at the same lo-
cus, but linkage disequilibrium (LD; covariance of alleles among loci) holds rich
information about the timing and source of admixture events [e.g. Chakraborty
and Weiss, 1988, Moorjani et al., 2013, Hellenthal et al., 2014, Gravel, 2012] as
well as information about isolation by distance [Ralph and Coop, 2013]. Just as
population graph approaches have been extended to incorporate information from
LD [Loh et al., 2013], a spatial covariance approach could be informed by LD. A
null model inspired by models of LD under isolation by distance models [De and
Durrett, 2007, Barton et al., 2013] could be fitted, allowing the covariance among
alleles to decay with their geographic distance and the recombination distance be-
tween the loci. In such a framework, sources and time-scales of admixture could be
identified through unusually long-distance LD between geographically separated
populations.

The landscape of allele frequencies on which the location of populations that were
the source of population’s admixture are estimated is entirely informed by the
placement of other modern samples, even though the admixture events may have
occurred many generations ago. This immediately leads to the caveat that, in-
stead of “location of the parental population,” we should refer to the “location
of the closest descendants of the parental population.” The increased sequencing
of ancient DNA [see Pickrell and Reich, 2014, for a recent review] promises an
interesting way forward on that front, and it will also be exciting to learn where
ancient individuals fall on modern maps, as well as how the inclusion of ancient
individuals changes the configuration of those maps [Skoglund et al., 2014]. The
inclusion of ancient DNA samples in the analyzed sample offers a way to get better
representation of the ancestral populations from which the ancestors of modern
samples received their admixture. However, it is also possible to model genetic
drift as a spatiotemporal process, in which covariance in allele frequencies decays
with distance in both space and in time. We are currently exploring using ancient
DNA samples as ‘fossil calibrations’ on allele frequency landscapes at points in the
past, so that modern day samples may draw admixture from coordinates estimated
in spacetime.
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Methods

Here we describe in more detail the algorithm we use to estimate the posterior dis-
tribution defined by (7) of the population locations, G, their sources of admixture,
G∗, their admixture proportions, w, their independent drift parameters, η, and the
parameters of the model of isolation by distance, ~α. First, we give the exact form
of the covariance matrix we use, and then describe the Markov chain Monte Carlo
algorithm that samples parameter values from the posterior distribution.

The standardized sample covariance

As motivation, consider several randomly mating (Wright-Fisher) populations that
all split from an ancestral population in which a neutral allele is present at fre-
quency ε`, and then subsequently exchange migrants. Since the allele is neutral,
the mean change in its frequency in each population after t generations is zero, and
if t is much smaller than the population size (so the frequencies remain close to
ε`), the variance is proportional to

√
ε`(1− ε`). Conveniently, additional variance

introduced by binomial sampling of alleles is also proportional to
√
ε`(1− ε`). It

would then be natural to consider the covariance matrix of

Xk,` =
f̂k,` − ε`√
ε`(1− ε`)

, (8)

since these standardized allele frequencies would be independent if the loci are
unlinked, and would have mean zero and variance independent of the sample sizes
or allele frequencies. The central limit theorem would then imply that in the
limit of a large number of loci, the sample covariance matrix XTX is Wishart
with degrees of freedom equal to the number of loci and mean determined by the
pattern of migration.

Although the conditions are not strictly met, these theoretical considerations in-
dicate that such a normalization may be a reasonable thing to do, even after
substituting the empirical mean allele frequency f̄` in place of ε`, which is what
we do to define X̂k,` in equation (1). Recall that the sample allele frequency at

locus ` in population k is given by f̂k,` = Ck,`/Sk,`, where Ck,` is the number of
(arbitrarily chosen) counted alleles, and Sk,` is the total number of sampled alleles.
As sample size may vary across loci, we first calculate S̄k, the mean sample size
in population k, as S̄k = 1

L

∑L
`=1 Sk,`. We then compute the global mean allele
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frequency at locus ` as

f̄` =
1∑
K Sk,`

∑
K

f̂k,`Sk,`. (9)

If sample size were constant across all loci in each population, this would be
equivalent to defining the variance-normalized sample frequencies

Ŷk,` =
f̂k,`√

f̄`(1− f̄`)
(10)

and writing X̂` = TY` where T is the mean centering matrix whose elements are
given by

Tij = δi,j −
S̄j
K∑
k=1

S̄j

, (11)

where δi,j = 1 if i = j and is 0 otherwise. If the covariance matrix of Y is Ω∗,

then the covariance matrix of X̂` would be T TΩ∗T . Since allowing T to vary by
locus would be computationally infeasible, we make one final assumption, that
the covariance matrix of the standardized frequencies X̂` at each locus is given
by T TΩ∗T . This makes it inadvisable to include loci for which there are large
differences in sample sizes across populations. This mean centering acts to to
reduce the covariance among populations in X̂` compared to f̂`, and can induce
negative covariance between more unrelated populations (as, across loci, they are
often on opposite sides of the mean).

Additionally, the covariance matrix of the standardized frequencies has rank K−1
rather than K, and so the corresponding Wishart distribution is singular. To cir-
cumvent this problem we compute the likelihood of a (K − 1)-dimensional projec-
tion of the data. Any projection would do; we choose a projection matrix Ψ by
dropping the last column of the orthogonal matrix in the QR decomposition of T ,
and compute the likelihood of the empirical covariance matrix of allele frequencies
Ω̂ = X̂T X̂ as

P (Ω̂ | Ω∗) =W
(
LΨTXTXΨ | ΨTΩ∗Ψ, L

)
. (12)

Markov chain Monte Carlo Inference Procedure

The inference algorithm described here may be used to estimate the parameters
with any of these held fixed, for instance: (1) population locations are fixed, and
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Model
# of Free

Parameters
Parameters

stationary population locations,
no admixture

K + 3 α0, α1, α2, η

inferred population locations,
no admixture

2K + 3 α0, α1, α2, η, G

stationary population locations,
inferred admixture

2K + 3 α0, α1, α2, η, G
∗, w

inferred population locations,
inferred admixture

3K + 3 α0, α1, α2, η, G,G
∗, w

Table 1: List of models that may be specified using SpaceMix, along with the
number and identity of free parameters in each.

they do not draw any admixture; (2) populations may choose their own locations,
but not admixture; (3) populations may draw admixture, but their own locations
are fixed; or (4) populations may both choose their own locations and draw ad-
mixture. The free parameters for each of options are given in Table 1.

Below, we outline the inference procedure for the most parameter-rich model (infer-
ence on both population locations, their sources of admixture, and the proportions
in which they draw admixture, in addition to inference of the parameters of the
spatial covariance function). A table of all parameters, their descriptions, and
their priors is given in Table 2.

We now specify in detail the Markov chain Monte Carlo algorithm we use to sample
from the posterior distribution on the parameters, for Bayesian inference.

We assume that the user has specified the following data:

• the allelic count data, C, from K population over L variant loci, where Ck,`
gives the number of observations of a given allele at locus ` in population k.

• the sample size data, S, from K population over L variant loci, where Sk,`
gives the total number of alleles typed at locus ` in population k.

It is not necessary, but a user may also specify

• the geographic sampling locations, G(obs), from each of the K populations,
where G

(obs)
k gives the longitude and latitude of the kth sampled individual(s).
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Parameter Description Prior

α0
controls the sill of the covari-
ance matrix

α0 ∼ Exp(λ = 1/100)

α1
controls the rate of the decay
of covariance with distance

α1 ∼ Exp(λ = 1)

α2

controls the shape of the de-
cay of covariance with dis-
tance

α2 ∼ U(0.1, 2)

ηk

the nugget in population k
(population specific drift pa-
rameter)

ηk ∼ Exp(λ = 1)

Gk
the geogenetic location of
population k

Gk ∼ N (µ = G
(obs)
k , σ = 1

2
D̄(G(obs)))

wk
the proportion of admixture
in population k

2wk ∼ β(α = 1, β = 100)

G∗
k

the geogenetic location of the
source of admixture in popu-
lation k

G∗k ∼ N (µ = ¯G(obs), σ = 2D̄(G(obs)))

Table 2: List of parameters used in the SpaceMix models, along with their descrip-
tions and priors. D̄(G(obs)) is the mean of the pairwise distances between observed
locations G(obs).
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The geographic location data may be missing, or generated randomly, for some or
all of the samples; if so, the spatial priors on estimated population locations, G,
and their sources of admixture, G∗ will not be tethered to the true map.

Initiating the MCMC We then calculate the standardized sample covariance
matrix Ω̂ as described in the section “The standardized sample covariance” above,
as well as S̄k, the mean sample size across loci for each population. Armed with
the standardized sample covariance, the geographic sampling locations, and the
inverse mean sample sizes across samples (Ω̂, G(obs), 1/S̄k), we embark upon the
analysis.

To initiate the chain, we specify starting values for each parameter. We draw
initial values for α0, α1, α2, η, and w randomly from their priors. We initiate G at
user-specified geographic sampling locations and G∗ at randomly drawn, uniformly
distributed values of latitude and longitude in the observed range of both axes.

Overview of MCMC procedure We use a Metropolis-Hastings update al-
gorithm. In each iteration of the MCMC, one of our current set of parameters
Θ = {α0, α1, α2, η, w, G, G∗} is randomly chosen to be updated by proposing a
new value. In the cases of {η, w, G, G∗}, where each population has its own pa-
rameter, a single population, k is randomly selected and only its parameter value
(e.g. ηk) is chosen to be updated. Below we outline the proposal distributions for
each parameter. This gives us a proposed update to our set of parameters Θ′,
which differs from Θ at only one entry.

The set of locations of populations and their sources of admixture specify a pairwise
geographic distance matrix D, which, given the current ~α and η parameters, gives
the admixed covariance matrix described in (6), Ω∗. The likelihood of the two sets
of parameters Θ and Θ′, calculated with (12) and the priors of Table 2, combine
to give the Metropolis-Hastings ratio, R, the probability of accepting the proposed
parameter values Θ′:

R = min

(
1,
P (Ω̂ | Ω∗(Θ′))
P (Ω̂ | Ω∗(Θ))

P (Θ′)

P (Θ)

)
, (13)

Note that all of our moves, described below, are symmetric, so the Hastings ratio is
always 1. If we accept our proposed move, Θ is replaced by Θ′ and this is recorded,
otherwise Θ′ is discarded and we remain at Θ.
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Updates for ~α, η, and w We propose updates to the values of the ~α, η, and
w parameters via a symmetric normal density with mean zero and variance given
by a tuning parameter specific to that parameter. For example, α′0 ∼ α0 + δ,
where δ ∼ N (0, σ2

α0
) and σα0 is the tuning parameter for α0. For η and w, each

of which consists of K parameters, each parameter receives its own independent
tuning parameter. If the proposed move takes the parameter outside the range of
its prior, the move is rejected and we do not move in that iteration of the MCMC.

Updates for geographic coordinates G and G∗ Updates to the location
parameters, G and G∗, are somewhat more complicated due to the curvature of
the Earth. Implementing updates via a symmetric normal density on estimated
latitude and longitude directly would have the drawback of a) being naive to the
continuity of the spherical manifold and b) vary the actual distance of the proposed
move as a function of the current lat/long parameter values (e.g., a 1◦ change in
longitude at the equator is a larger distance than at the North Pole).

Instead, we propose a bearing and a distance traveled, and, given these two quan-
tities and a starting position, calculate the latitude and longitude of the proposed
update to the location. For example, in an update to the location of population
i, Gi, we propose a distance traveled ∆Gi

, where, e.g., ∆Gi
∼ |N (0, σGi

)|, and a
bearing, γ, where γ ∼ U(0, 2π). Then we use the following equations to calculate
the latitude and longitude of the proposed location:

proposed latitude = arcsin(sin(current latitude)× (14)

cos(∆)× cos(current latitude)×
sin(∆)× cos(γ))

and

proposed longitude = current longitude

− arctan

(
sin(γ) sin(∆) cos(current latitude)

cos(∆)− sin(current latitude) sin(proposed latitude)

)
,

(15)

where latitude and longitude are given in radians and are taken mod 2π. As with
η and w, each population’s location and admixture source location parameters
have their own tuning parameters.

Adaptive Metropolis-within-Gibbs proposal mechanism We use an adap-
tive Metropolis-within-Gibbs proposal mechanism on each parameter [Roberts and
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Rosenthal, 2009, Rosenthal, 2011]. This mechanism attempts to maintain an ac-
ceptance proportion for each parameter as close as possible to 0.44 [optimal for
one-dimensional proposal mechanisms; Roberts et al., 1997, Roberts and Rosen-
thal, 2001]. We implement this mechanism by creating, for each variable i, an
associated variable ζi, which gives the log of the standard deviation of the normal
distribution from which parameter value updates are proposed. As outlined above,
in the cases of {η, w, G, G∗}, for which each population receives a free parameter,
each population gets its own value of ζ.

When we start our MCMC, ζi for all parameters is initiated at a value of 0,
which gives a proposal distribution variance of 1. We then proceed to track the
acceptance rate, ri for each parameter in windows of 50 MCMC iterations, and,
after the nth set of 50 iterations, we adjust ζi by an “adaption amount”, which is
added to ζi if the acceptance proportion in the nth set of 50 iterations (r

(n)
i ) has

been above 0.44, and subtracted from ζi if not. The magnitude of the adaption
amount is a decreasing function of the index n, so that updates to ζi proceed as
follows:

ζn+1
i =

{
ζni + min(min(0.01, n−

1
2 ), 20), if r

(n)
i > 0.44

ζni −min(0.01, n−
1
2 ), if r

(n)
i < 0.44

(16)

We choose to cap the maximum adaption amount at 20 (which is the equivalent of
capping the variance of the proposal distribution at 4.85× 108) to avoid proposal
distributions that offer absurdly large or small updates. This procedure, also
referred to as “auto-tuning”, results in acceptance rate plots like those shown in
Figure S20, and in more efficient mixing and decreased autocorrelation time of
parameter estimates in the MCMC.

Simulations

We ran our simulations using a coalescent framework in the program ms (Hudson).
Briefly, we simulated populations on a lattice, with nearest neighbor (separated
by a distance of 1) migration rate mi,j, as well as migration on the diagonal of the
unit square at rate mi,j/

√
2. For each locus in the dataset, we used the -s option to

specify a single segregating site, and then we simulated 10,000 loci independently,
which were subsequently conglomerated into a single dataset for each scenario.
For all simulations, except the “Populations on a line” scenario (Figure S19), we
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sampled only every other population, and, from each population, we sampled 10
haplotypes (corresponding to 5 diploid individuals). In the “Populations on a line”
scenario, we simulated no intervening populations, such that every population was
sampled.

To simulate a barrier event, we divided the migration rate between neighbors
separated by the longitudinal barrier by a factor of 5. To simulate an expansion
event, we used the -ej option to move all lineages from each daughter population
to its parent population at a very recent point in the past. For admixture events,
we used the -es and -ej options to first (again, going backward in time) split
the admixed population into itself and a new subpopulation of index k + 1, and
second, to move all lineages in the (kth + 1) into the source of admixture. Forward
in time, this procedure corresponds to cloning the population that is the source
of admixture, then merging it, in some admixture proportion, with the (now)
admixed population. The command line arguments used to call ms for a single
locus for each simulation are included in the Appendix.

Intuition on identifiability of admixture parameters

A natural concern is whether all of the parameters we infer are separately identi-
fiable, most notably whether population locations, admixture locations, and pro-
portions can be estimated. That is, if a population has received some admixture
from another population, what is to stop it from simply moving toward that pop-
ulation in geogenetic space to satisfy its increased resemblance to that population,
rather than choosing admixture from that location? We do not provide a formal
proof, but here build and illustrate some relevant intuition.

Admixture is identifiable in our model because there are covariance relationships
among populations that cannot simply be satisfied by shifting population locations
around (as demonstrated by the tortured nature of Figure 2b). Consider the simple
spatial admixture scenario shown in Figure 11. Populations A–D are arrayed along
a line, but there is recent admixture from D into B (such that 40% of the alleles
assigned to B are sampled from location D). The lines show the expected covariance
under isolation by distance that each population (A, C, or D, as indicated by line
color) has with a putative population at a given distance. The dots show the
admixed covariance between B and the three other populations, as well as B’s
variance with itself (B-B) as specified by equation (6), with no nugget or sampling
effect.
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Figure 11: Lines show the covariances populations A, C, and D would have with
population B as a function of B’s location, with no admixture, under the paramet-
ric form of equation (2). The colored dots above ‘B’ show the covariances observed
with B at that location if B has 40% admixture from D. There is no single spatial
location with unadmixed covariances remotely similar to these.

Due to its admixture from D, B has lower covariance with A than expected given
its distance, somewhat higher covariance with C, and much higher covariance with
D. In addition, the variance of B is lower than that of the other three populations,
which each have variance 1: the value of the covariance when the distance is zero.
This lower variance results from the fact that the frequencies at B represent a
mixture of the frequency at D and the frequency at B before the admixture.

Now, using this example scenario, let us return to the concern posed above: that
admixture location and population location are not identifiable. For the sake of
simplicity, assume that we hold the locations of A, C, and D constant, as well as
the decay of covariance with distance (as could be the case if A-D are part of a
larger analysis). The covariance relationships of B to the other populations cannot
be simply satisfied by moving B towards D, as B would then have a covariance
with C that is higher, and a covariance with A that is lower, than that we actually
observe.

Introducing admixture into the model allows it to satisfy all of these conditions: it
can draw ancestry from D but keep part of its resemblance to A, it avoids B having
to move closer to C, and it explains B’s low variance. Even in the absence of a
sample from population C, B is better described as a linear mixture of a population
close to A and D. However, there are specific scenarios in which a limited sampling
scheme (both in size and location), can lead to tradeoffs in the likelihood between
estimated population location and that of its source of admixture.
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The analyses depicted in Figures 2c, 4b, and 4c, give examples of these tradeoffs. In
each, the inferred admixture proportions in the admixed populations are less than
those used to simulate the data, and the admixed populations are able to explain
the high covariance they have with their sources of admixture via their inferred
location, rather than just via their inferred source of admixture and admixture
proportion. The reason they choose to do explain their anomalous covariance with
their inferred location, rather than with their admixture source, is that we place
a very harsh prior against admixture inference (Table 2). The prior is designed to
make inference conservative with respect to admixture, but it has the side effect
of skewing the posterior probability toward lower admixture proportions.

Empirical Applications

Below, we describe the specifics of our analyses of the greenish warbler dataset
and the global human dataset. The analysis procedure for each dataset is given
here:

For each analysis,

1. Five independent chains were run for 5×106 MCMC iterations each in which
populations were allowed to choose their own locations (but no admixture).
Population locations were initiated at the origin (i.e. - at iteration 1 of the
MCMC, Gi = (0, 0)), and all other parameters were drawn randomly from
their priors at the start of each chain.

2. The chain with the highest posterior probability at the end of the analysis
was selected and identified as the “Best Short Run”.

3. A chain was initiated from the parameter values in the last iteration of the
Best Short Run. Because inference of admixture proportion and location was
not allowed in the five initial runs, admixture proportions were initiated at
0 and admixture locations, G∗ were initiated at the origin. This chain (the
“Long Run”) was run for 108 iterations, and sampled every 105 iterations for
a total of 1000 draws from the posterior.

For each dataset, we ran two analyses using the observed population locations as
the prior on G. Then, to assess the potential influence of the spatial prior on
population locations, we ran one analysis in which the observed locations were
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replaced with random, uniformly distributed locations between the observed min-
ima and maxima of latitude and longitude. For the warbler dataset, we repeated
this analysis procedure, treating each sequenced individual as its own population.
For clarity and ease of interpretation, we present a full Procrustes superimposition
of the inferred population locations (G) and their sources of admixture (G∗), us-
ing the observed latitude and longitude of the populations/individuals (G) to give
a reference position and orientation. As results were generally consistent across
multiple runs for each dataset regardless of the prior employed, we (unless stated
otherwise) present only the results from the ‘random’ prior analyses.

Finally, we compared the SpaceMix map to a map derived from a Principal Com-
ponents Analysis (Patterson and Reich 2006). For this analysis, we calculated the
eigendecomposition of the mean-centered allelic covariance matrix, then plotted
individuals’ coordinates on the first two eigenvectors (e.g. Novembre et al 2008).
For consistency of presentation, we show the full Procrustes superimposition of
the PC coordinate space around the geographic sampling locations.
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Figure S1: Decays in covariance for four different simulation scenarios (from top
to bottom: simple lattice; lattice with barrier; lattice with expansion; lattice with
admixture). Left column: sample covariance plotted against observed pairwise
distance. Right column: sample covariance plotted against inferred geogenetic
distance.
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Figure S2: Comparing geographic to geogenetic pairwise distance between warbler
populations: a) observed population coordinates; b) pairwise geographic (great-
circle) distance between populations compared to that between their geogenetic
locations. The highlighted points show distances between populations from the
plumbeitarsus and viridanus subspecies. Notice that, regardless of their observed
distance, their geogenetic separations are roughly constant, and much larger than
the geographic distance between them.
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Figure S3: Comparison of inferred maps from three independent analyses. (a,b)
Results from analysis using observed locations as priors on population locations.
(c) Results from analysis using random, uniformly distributed locations within the
observed range of latitude and longitude as priors on population locations.
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(b) Posterior probability

Figure S4: Likelihood surfaces for different placements of population ST between
plumbeitarsus and viridanus clusters: (a) log likelihood surface; (b) posterior
probability surface, incorporating the priors. The maximum a posteriori estimate
(MAP) is shown as a star.
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Figure S5: Credible intervals on estimated warbler population nugget parameters.
a) analysis without admixture; b) analysis with admixture.
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Figure S6: Credible intervals on estimated warbler population admixture propor-
tion parameters.
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Figure S7: The map of warbler individuals derived from a Principal Components
analysis. The PC coordinates have undergone a full Procrustes transformation
around the actual sampling coordinates.

55

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 7, 2015. ; https://doi.org/10.1101/013474doi: bioRxiv preprint 

https://doi.org/10.1101/013474
http://creativecommons.org/licenses/by/4.0/


40 60 80 100

3
0

3
5

4
0

4
5

5
0

Eastings

N
o

rt
h

in
g

s

YKYKYKYKYKYKYKYKABABSTSTSTTLTLTLTLTLTLTLTLTLTLTLAAAAAAAAAAAAAAAAAAAA

TUTU

PKAPKAPKBPKBPKBPKBKSKS

KL
KLKLPAPA

ML
MNMN

MN

MNMN
MN

LNLN

LN

LNLN
LNLNLNLN
LN
LNLNLN

LNLN
EMXN

XN
XN

XN

BKBKAN
AN
IL
ILILSTST
ST

UYUYUYUYUYUYSLSLTA

●

●

●

●

●

●

Nitidus
Viridanus
Ludlowi
Trochiloides
Obscuratus
Plumbeitarsus

(a) Warbler individuals map, no admixture
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(b) Close-up of non-nitidus samples
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(c) Warbler individuals map, admixture
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(d) Close-up of non-nitidus samples

Figure S8: Inferred maps for warbler individuals, colored by subspecies under anal-
yses with and without admixture inference. a) map inferred without admixture;
(b) close-up of all non-nitidus samples in non-admixture map; c) map inferred
with admixture; d) close-up of all non-nitidus samples in the admixture map.
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Figure S9: Maps of the posterior distributions on population locations in three
separate SpaceMix analyses on the warbler individual dataset.

57

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 7, 2015. ; https://doi.org/10.1101/013474doi: bioRxiv preprint 

https://doi.org/10.1101/013474
http://creativecommons.org/licenses/by/4.0/


0.
0

0.
2

0.
4

0.
6

Warbler Individual Nuggets:
No Admixture

N
ug

ge
t V

al
ue

 N
i−

T
U

1
 N

i−
T

U
2

 V
ir−

Y
K

1
 V

ir−
Y

K
11

 V
ir−

Y
K

3
 V

ir−
Y

K
4

 V
ir−

Y
K

5
 V

ir−
Y

K
6

 V
ir−

Y
K

7
 V

ir−
Y

K
9

 V
ir−

A
B

1
 V

ir−
A

B
2

V
ir−

S
T

vi
1

V
ir−

S
T

vi
2

V
ir−

S
T

vi
3

 V
ir−

T
L1

 V
ir−

T
L1

0
 V

ir−
T

L1
1

 V
ir−

T
L1

2
 V

ir−
T

L2
 V

ir−
T

L3
 V

ir−
T

L4
 V

ir−
T

L5
 V

ir−
T

L7
 V

ir−
T

L8
 V

ir−
T

L9
 V

ir−
A

A
1

 V
ir−

A
A

10
 V

ir−
A

A
11

 V
ir−

A
A

3
 V

ir−
A

A
4

 V
ir−

A
A

5
 V

ir−
A

A
6

 V
ir−

A
A

7
 V

ir−
A

A
8

 V
ir−

A
A

9
 L

ud
−

P
K

A
8

 L
ud

−
P

K
A

10
 L

ud
−

P
K

B
1

 L
ud

−
P

K
B

2
 L

ud
−

P
K

B
4

 L
ud

−
P

K
B

5
 L

ud
−

K
S

1
 L

ud
−

K
S

2
 L

ud
−

K
L6

 L
ud

−
K

L7
 L

ud
−

K
L1

 L
ud

−
PA

1
 L

ud
−

PA
2

 L
ud

−
M

L2
 L

ud
−

M
N

1
 L

ud
−

M
N

12
 L

ud
−

M
N

3
 L

ud
−

M
N

5
 L

ud
−

M
N

8
 L

ud
−

M
N

9
 T

ro
−

LN
1

 T
ro

−
LN

10
 T

ro
−

LN
11

 T
ro

−
LN

12
 T

ro
−

LN
14

 T
ro

−
LN

16
 T

ro
−

LN
18

 T
ro

−
LN

19
 T

ro
−

LN
2

 T
ro

−
LN

20
 T

ro
−

LN
3

 T
ro

−
LN

4
 T

ro
−

LN
6

 T
ro

−
LN

7
 T

ro
−

LN
8

 O
bs

−
E

M
1

 O
bs

−
X

N
1

 O
bs

−
X

N
2

 O
bs

−
X

N
3

 O
bs

−
X

N
5

 P
lu

−
B

K
2

 P
lu

−
B

K
3

 P
lu

−
A

N
1

 P
lu

−
A

N
2 

 P
lu

−
IL

1
 P

lu
−

IL
2

 P
lu

−
IL

4
 P

lu
−

S
T

1
 P

lu
−

S
T

12
 P

lu
−

S
T

3
 P

lu
−

U
Y

1
 P

lu
−

U
Y

2
 P

lu
−

U
Y

3
 P

lu
−

U
Y

4
 P

lu
−

U
Y

5
 P

lu
−

U
Y

6
 P

lu
−

S
L1

 P
lu

−
S

L2
 P

lu
−

TA
1

Population

●

●

●

●

●

●

Nitidus
Viridanus
Ludlowi
Trochiloides
Obscuratus
Plumbeitarsus

(a)

0.
0

0.
2

0.
4

0.
6

Warbler Individual Nuggets: Admixture

N
ug

ge
t V

al
ue

 N
i−

T
U

1
 N

i−
T

U
2

 V
ir−

Y
K

1
 V

ir−
Y

K
11

 V
ir−

Y
K

3
 V

ir−
Y

K
4

 V
ir−

Y
K

5
 V

ir−
Y

K
6

 V
ir−

Y
K

7
 V

ir−
Y

K
9

 V
ir−

A
B

1
 V

ir−
A

B
2

V
ir−

S
T

vi
1

V
ir−

S
T

vi
2

V
ir−

S
T

vi
3

 V
ir−

T
L1

 V
ir−

T
L1

0
 V

ir−
T

L1
1

 V
ir−

T
L1

2
 V

ir−
T

L2
 V

ir−
T

L3
 V

ir−
T

L4
 V

ir−
T

L5
 V

ir−
T

L7
 V

ir−
T

L8
 V

ir−
T

L9
 V

ir−
A

A
1

 V
ir−

A
A

10
 V

ir−
A

A
11

 V
ir−

A
A

3
 V

ir−
A

A
4

 V
ir−

A
A

5
 V

ir−
A

A
6

 V
ir−

A
A

7
 V

ir−
A

A
8

 V
ir−

A
A

9
 L

ud
−

P
K

A
8

 L
ud

−
P

K
A

10
 L

ud
−

P
K

B
1

 L
ud

−
P

K
B

2
 L

ud
−

P
K

B
4

 L
ud

−
P

K
B

5
 L

ud
−

K
S

1
 L

ud
−

K
S

2
 L

ud
−

K
L6

 L
ud

−
K

L7
 L

ud
−

K
L1

 L
ud

−
PA

1
 L

ud
−

PA
2

 L
ud

−
M

L2
 L

ud
−

M
N

1
 L

ud
−

M
N

12
 L

ud
−

M
N

3
 L

ud
−

M
N

5
 L

ud
−

M
N

8
 L

ud
−

M
N

9
 T

ro
−

LN
1

 T
ro

−
LN

10
 T

ro
−

LN
11

 T
ro

−
LN

12
 T

ro
−

LN
14

 T
ro

−
LN

16
 T

ro
−

LN
18

 T
ro

−
LN

19
 T

ro
−

LN
2

 T
ro

−
LN

20
 T

ro
−

LN
3

 T
ro

−
LN

4
 T

ro
−

LN
6

 T
ro

−
LN

7
 T

ro
−

LN
8

 O
bs

−
E

M
1

 O
bs

−
X

N
1

 O
bs

−
X

N
2

 O
bs

−
X

N
3

 O
bs

−
X

N
5

 P
lu

−
B

K
2

 P
lu

−
B

K
3

 P
lu

−
A

N
1

 P
lu

−
A

N
2 

 P
lu

−
IL

1
 P

lu
−

IL
2

 P
lu

−
IL

4
 P

lu
−

S
T

1
 P

lu
−

S
T

12
 P

lu
−

S
T

3
 P

lu
−

U
Y

1
 P

lu
−

U
Y

2
 P

lu
−

U
Y

3
 P

lu
−

U
Y

4
 P

lu
−

U
Y

5
 P

lu
−

U
Y

6
 P

lu
−

S
L1

 P
lu

−
S

L2
 P

lu
−

TA
1

Population

(b)

Figure S10: Credible intervals on estimated warbler individual nugget parameters.
a) analysis without admixture; b) analysis with admixture.
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Figure S11: Credible intervals on estimated warbler individual admixture propor-
tion parameters.
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(b) Just within population comparisons

Figure S12: Comparing observed to estimated pairwise distance between warbler
individuals, (a) between and (b) within subspecies populations.
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Figure S14: Credible intervals on estimated human sample nugget parameters. a)
analysis without admixture; a) analysis with admixture.
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Figure S15: Comparison of observed distance to estimated distance between hu-
man populations, colored by continent from which populations were sampled (i.e.
- two populations sampled from Africa are green). Eurasia is divided into Western
Eurasia and East Asia.
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Figure S16: PCA map of human samples used in SpaceMix analyses. The PC
coordinates have undergone a full Procrustes transformation around the actual
sampling coordinates (shown in the inset map).
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(a) Inferred map of human populations
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(b) Close-up of Eurasian populations

Figure S17: Map of human populations from a different SpaceMix analysis
(“Real Prior1” - inferred with admixture), using real geographic coordinates as
population location priors. a) complete map; b) close-up of Eurasian populations
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(a) Inferred map of human populations
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(b) Close-up of Eurasian populations

Figure S18: Map of human populations from another SpaceMix analysis
(“Real Prior2”, inferred with admixture), using real geographic coordinates as
population location priors. a) complete map; b) close-up of Eurasian populations
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scenario

Figure S19: Simulation scenario of populations on a line, contrasting PCA-based
inference and SpaceMix inference. a) Scenario used to simulate data in a spatial
coalescent framework with nearest-neighbor migration; b) PCA map of allele fre-
quencies, plotting PC axis 1 against PC axis 2, forming a ‘U’ shape; c) Posterior
distribution of SpaceMix location inference, forming a rough line; d) snapshot of
the MAP draw from the posterior, again showing a rough line.
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Figure S20: Example parameter acceptance proportions for the α2 parameter and
the nugget parameter, η, using the adaptive Metropolis-within-Gibbs proposal
mechanism.
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Sample Subspecies Longitude Latitude
Vir-YK1 Viridanus 60.60 60.60

Vir-YK11 Viridanus 60.60 60.60
Vir-YK3 Viridanus 60.60 60.60
Vir-YK4 Viridanus 60.60 60.60
Vir-YK5 Viridanus 60.60 60.60
Vir-YK6 Viridanus 60.60 60.60
Vir-YK7 Viridanus 60.60 60.60
Vir-YK9 Viridanus 60.60 60.60
Vir-AB1 Viridanus 89.50 89.50
Vir-AB2 Viridanus 89.50 89.50

Vir-STvi1 Viridanus 92.60 92.60
Vir-STvi2 Viridanus 92.60 92.60
Vir-STvi3 Viridanus 92.60 92.60
Vir-TL1 Viridanus 87.60 87.60

Vir-TL10 Viridanus 87.60 87.60
Vir-TL11 Viridanus 87.60 87.60
Vir-TL12 Viridanus 87.60 87.60
Vir-TL2 Viridanus 87.60 87.60
Vir-TL3 Viridanus 87.60 87.60
Vir-TL4 Viridanus 87.60 87.60
Vir-TL5 Viridanus 87.60 87.60
Vir-TL7 Viridanus 87.60 87.60
Vir-TL8 Viridanus 87.60 87.60
Vir-TL9 Viridanus 87.60 87.60
Vir-AA1 Viridanus 74.48 74.48

Vir-AA10 Viridanus 74.48 74.48
Vir-AA11 Viridanus 74.48 74.48
Vir-AA3 Viridanus 74.48 74.48
Vir-AA4 Viridanus 74.48 74.48
Vir-AA5 Viridanus 74.48 74.48
Vir-AA6 Viridanus 74.48 74.48
Vir-AA7 Viridanus 74.48 74.48
Vir-AA8 Viridanus 74.48 74.48
Vir-AA9 Viridanus 74.48 74.48
Ni-TU1 Nitidus 42.00 42.00
Ni-TU2 Nitidus 42.00 42.00

Lud-PKA8 Ludlowi 73.69 73.69
Lud-PKA10 Ludlowi 73.69 73.69
Lud-PKB1 Ludlowi 73.61 73.61
Lud-PKB2 Ludlowi 73.61 73.61
Lud-PKB4 Ludlowi 73.61 73.61
Lud-PKB5 Ludlowi 73.61 73.61
Lud-KS1 Ludlowi 75.19 75.19
Lud-KS2 Ludlowi 75.19 75.19
Lud-KL6 Ludlowi 76.37 76.37
Lud-KL7 Ludlowi 76.37 76.37
Lud-KL1 Ludlowi 76.37 76.37
Lud-PA1 Ludlowi 76.97 76.97
Lud-PA2 Ludlowi 76.97 76.97
Lud-ML2 Ludlowi 76.43 76.43
Lud-MN1 Ludlowi 77.16 77.16

Lud-MN12 Ludlowi 77.16 77.16
Lud-MN3 Ludlowi 77.16 77.16
Lud-MN5 Ludlowi 77.16 77.16
Lud-MN8 Ludlowi 77.16 77.16
Lud-MN9 Ludlowi 77.16 77.16
Tro-LN1 Trochiloides 85.50 85.50

Tro-LN10 Trochiloides 85.50 85.50
Tro-LN11 Trochiloides 85.50 85.50
Tro-LN12 Trochiloides 85.50 85.50
Tro-LN14 Trochiloides 85.50 85.50
Tro-LN16 Trochiloides 85.50 85.50
Tro-LN18 Trochiloides 85.50 85.50
Tro-LN19 Trochiloides 85.50 85.50
Tro-LN2 Trochiloides 85.50 85.50

Tro-LN20 Trochiloides 85.50 85.50
Tro-LN3 Trochiloides 85.50 85.50
Tro-LN4 Trochiloides 85.50 85.50
Tro-LN6 Trochiloides 85.50 85.50
Tro-LN7 Trochiloides 85.50 85.50
Tro-LN8 Trochiloides 85.50 85.50
Obs-EM1 Obscuratus 103.30 103.30
Obs-XN1 Obscuratus 102.00 102.00
Obs-XN2 Obscuratus 102.00 102.00
Obs-XN3 Obscuratus 102.00 102.00
Obs-XN5 Obscuratus 102.00 102.00
Plu-BK2 Plumbeitarsus 104.90 104.90
Plu-BK3 Plumbeitarsus 104.90 104.90
Plu-AN1 Plumbeitarsus 102.50 102.50
Plu-AN2 Plumbeitarsus 102.50 102.50
Plu-IL1 Plumbeitarsus 95.50 95.50
Plu-IL2 Plumbeitarsus 95.50 95.50
Plu-IL4 Plumbeitarsus 95.50 95.50
Plu-ST1 Plumbeitarsus 92.60 92.60

Plu-ST12 Plumbeitarsus 92.60 92.60
Plu-ST3 Plumbeitarsus 92.60 92.60
Plu-UY1 Plumbeitarsus 94.10 94.10
Plu-UY2 Plumbeitarsus 94.10 94.10
Plu-UY3 Plumbeitarsus 94.10 94.10
Plu-UY4 Plumbeitarsus 94.10 94.10
Plu-UY5 Plumbeitarsus 94.10 94.10
Plu-UY6 Plumbeitarsus 94.10 94.10
Plu-SL1 Plumbeitarsus 91.00 91.00
Plu-SL2 Plumbeitarsus 91.00 91.00
Plu-TA1 Plumbeitarsus 92.00 92.00

Table S1: Subspecies and geographic meta-data for greenish warbler individuals
included in analysis

69

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 7, 2015. ; https://doi.org/10.1101/013474doi: bioRxiv preprint 

https://doi.org/10.1101/013474
http://creativecommons.org/licenses/by/4.0/


Population Longitude Latitude Mean Sample Size
1 BantuSouthAfrica 28.00 -26.00 15.99
2 SanKhomani 18.10 -24.60 59.96
3 SanNamibia 20.00 -21.50 9.99
4 Hadza 33.10 -4.50 5.93
5 BantuKenya 37.00 -3.00 21.99
6 MbutiPygmy 29.00 1.00 25.98
7 BiakaPygmy 17.00 4.00 41.97
8 Sandawe 35.70 6.20 55.94
9 Yoruba 5.00 8.00 41.98

10 Ethiopian 38.70 9.00 37.70
11 Mandenka -12.00 12.00 43.98
12 EthiopianJew 38.70 14.10 22.00
13 Egyptian 26.80 30.80 24.00
14 Mozabite 3.00 32.00 57.98
15 Moroccan -5.50 33.60 49.97
16 Tunisian 9.80 35.60 24.00
17 Ireland -8.20 53.40 14.00
18 Scottish -4.20 56.50 12.00
19 Spanish -3.70 40.50 67.95
20 Welsh -3.70 52.60 8.00
21 Orcadian -3.00 59.00 29.99
22 English -0.80 52.00 12.00
23 Basque 0.00 43.00 47.99
24 French 2.00 46.00 55.97
25 Norwegian 8.50 60.50 35.99
26 Sardinian 9.00 40.00 55.98
27 NorthItalian 9.70 45.70 23.99
28 GermanyAustria 10.50 51.20 8.00
29 Tuscan 11.00 43.00 16.00
30 WestSicilian 12.50 38.00 20.00
31 EastSicilian 16.10 37.00 20.00
32 SouthItalian 16.90 39.50 35.96
33 Polish 19.10 51.90 31.99
34 Hungarian 19.50 47.20 40.00
35 Greek 21.80 39.10 39.99
36 Lithuanian 23.90 55.20 20.00
37 Romanian 25.00 45.90 28.00
38 Bulgarian 25.50 42.70 35.99
39 Finnish 25.70 61.90 4.00
40 Belorussian 28.00 53.70 16.00
41 Bedouin 33.50 31.00 89.98
42 Cypriot 33.50 35.50 24.00
43 Palestinian 35.00 33.50 91.95
44 Turkish 35.20 39.00 34.00
45 Druze 37.00 32.00 83.96
46 Jordanian 37.00 30.00 40.00
47 Adygei 39.00 44.00 33.99
48 Syrian 39.00 34.80 32.00
49 Russian 40.00 61.00 49.98
50 Georgian 44.60 41.80 39.99
51 Armenian 45.00 40.10 31.99
52 Saudi 45.10 23.90 20.00
53 Lezgin 47.50 43.00 35.96
54 Yemeni 48.50 15.60 13.99
55 Chuvash 50.20 53.20 34.00
56 Iranian 53.70 32.40 39.99
57 UAE 54.40 24.50 27.98
58 Makrani 64.00 26.00 49.99
59 Uzbekistani 64.60 41.40 29.99
60 Brahui 65.00 29.00 49.98
61 Balochi 67.00 31.00 47.99
62 Sindhi 69.00 25.00 47.99
63 Hazara 69.50 33.00 43.98
64 Kalash 71.00 36.00 45.99
65 Pathan 72.50 34.00 43.99
66 IndianJew 72.90 19.00 16.00
67 Burusho 74.00 37.00 49.98
68 Indian 77.60 13.00 25.97
69 Uygur 81.00 44.00 20.00
70 Xibo 81.00 43.00 17.99
71 Myanmar 96.00 21.90 5.99
72 Dai 99.00 21.00 19.98
73 Naxi 100.00 26.00 15.99
74 Lahu 101.00 22.00 16.00
75 Tu 101.00 36.00 20.00
76 Yi 103.00 28.00 20.00
77 Cambodian 105.00 12.00 19.98
78 HanNchina 108.00 39.00 20.00
79 Miao 108.00 28.00 19.99
80 Tujia 110.00 29.00 20.00
81 Han 114.00 26.00 67.96
82 Mongola 119.00 48.00 20.00
83 She 119.00 27.00 19.99
84 Daur 124.00 49.00 17.99
85 Oroqen 126.00 50.00 18.00
86 Yakut 129.00 63.00 49.98
87 Hezhen 133.00 47.00 16.00
88 Japanese 138.00 38.00 55.97
89 Papuan 143.00 -4.00 33.97
90 Melanesian 155.00 -6.00 19.99
91 Pima -108.00 29.00 27.99
92 Maya -91.00 19.00 41.97
93 Colombian -68.00 3.00 13.99
94 Karitiana -63.00 -10.00 27.99
95 Surui -62.00 -11.00 16.00

Table S2: sample size and geographic meta-data for human samples included in
analysis
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