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Abstract 

Integrated -omics approaches are quickly spreading across microbiology research labs, 
leading to i) the possibility of detecting previously hidden features of microbial cells like 
multi-scale spatial organisation and ii) tracing molecular components across multiple 
cellular functional states. This promises to reduce the knowledge gap between genotype 
and phenotype and poses new challenges for computational microbiologists. We underline 
how the capability to unravel the complexity of microbial life will strongly depend on the 
integration of the huge and diverse amount of information that can be derived today from -
omics experiments. In this work, we present opportunities and challenges of multi –omics 
data integration in current systems biology pipelines. We here discuss which layers of 
biological information are important for biotechnological and clinical purposes, with a 
special focus on bacterial metabolism and modelling procedures. A general review of the 
most recent computational tools for performing large-scale datasets integration is also 
presented, together with a possible framework to guide the design of systems biology 
experiments by microbiologists.  
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Introduction 

The ease at which genomes are currently sequenced has assigned to genomics one of the 

first steps in microbial systems biology. Regardless of the technique used, assembly and 

annotation typically follow genome sequencing and return an almost complete picture of 

the genetic reservoir of a given microorganism. On the other hand, genome sequence only 

represents a snapshot of the real phenotypic capabilities of an organism, providing very 

few indications on other crucial aspects of the underlying life cycle such as response to 

environmental and genetic perturbations, fluctuations in time, gene essentiality and so on. 

To gain a systemic and exhaustive description of living entities, static information deriving 

from genome sequence is not enough and other levels of knowledge must be taken into 

consideration. Nowadays, technologies do exist for measuring, in a large-scale fashion, 

other crucial aspects of cellular life, including the level of RNA within the cell 

(transcriptomics), the nature of metabolites present within the cell (metabolomics), the 

interaction among different proteins (protein-protein interaction) and many others (detailed 

below). Also, metabolic biodiversity of microbial communities can be today evaluated 

through metagenomics and metatranscriptomics approaches. However, no single –omics 

analysis can fully unravel the complexities of fundamental microbiology (Zhang et al., 

2010). Multi- and integrated -omics approaches have thus started spreading among 

several research areas, from bio-based fuel production (Zhu et al., 2013) to 

biopharmaceuticals processes (Schaub et al., 2012), from medical research (Wiench et al., 

2013) to host-pathogen interactions (Ansong et al., 2013b). The integration of such diverse 

data types may be considered one of the key challenges of present-day bioinformatics, 

due to different data formats, high data dimensionality and need for data normalization.  

One of the most important drawbacks associated with the booming of genomics resides in 

the possibility to (almost) automatically derive the potential metabolic landscape of a 

strain, given its genome. Bacteria continuously provide industry with novel 

products/processes based on the use of their metabolism and numerous efforts are being 

undertaken to deliver new usable substances of microbial origin to the marketplace 

(Beloqui et al., 2008), including pharmaceuticals, biofuels and bioactive compounds in 

general (George et al., 1983; Garcia-Ochoa et al., 2000; Lee et al., 2005; Zou et al., 2012). 

In this context, computational modelling and in silico simulations are often adopted by 

metabolic engineers to quantitatively simulate chemical reactions fluxes within the whole 

microbial metabolism. To exploit computational approaches, genome annotation-derived 
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metabolic networks are transformed into models by defining the boundaries of the system, 

a biomass assembly reaction, and exchange fluxes with the environment (Durot et al., 

2009). Also needed are i) structured (mathematical) representation of that network, ii) 

possibly quantitative parameters enabling simulations or predictions on the joint operation 

of all network reactions in a given environment and, in particular, iii) predictions on the 

values of metabolite fluxes and/or concentrations (Papin et al., 2003). A constraint-based 

modelling framework can then be used to automatically compute the resulting balance of 

all the chemical reactions predicted to be active in the cell and, in turn, to bridge the gap 

between knowledge of the metabolic network structure and observed metabolic processes  

(Varma and Palsson, 1994). 

Innovative high-throughput technologies (see Figure 1) represent a valuable resource also 

in the context of metabolic modelling, since data integration can be performed to gain a 

clearer and more comprehensive picture of the metabolic traits of a given organism. 

Diverse data types can be mapped onto metabolic models in order to elucidate more 

thoroughly the metabolism of a cell and its response to environmental factors; this is 

usually done by including functional characterization and accurate quantification of all 

levels of gene products, mRNA, proteins and metabolites, as well as their interaction 

(Zhang et al., 2010).  

Here we review and discuss possible experimental and computational pipelines for 

multiple data integration in microbial research, allowing the simultaneous analysis of 

different data-types and their mapping onto a de novo genome annotation. We discuss 

which layers of biological information have been shown to be important for 

biotechnological/clinical purposes and whether these layers are independent or have to be 

considered as a single complex system. Computational insights will be reviewed, including 

data mining, pre-processing, assimilation and iterative integration in order to exploit all 

available information.  

Furthermore, given the link existing between microbial phenotypes and underlying 

metabolism, we will discuss a general framework of the major steps and checkpoints 

encountered when reconstructing the metabolic network of a given organism and in its 

consequent exploitation for computational simulation and/or phenotype prediction. 

We underline the importance of integrating different sources of information to gain a more 

comprehensive view of genome annotation and metabolic features in general.  
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Information layers overview 

This section provides a schematization of the sources of information (layers) that are 

currently the most exploited in systems biology. These layers represent the basis of multi-

omics integration discussed in the next section.  

 

Microbial genomics pipelines  

Since fast genome sequencing and preliminary data post-processing have been achieved, 

well-grounded experimental design and strains selection have (re)gained a key position 

when drafting genomics-oriented research plans (Fig. 1A). Complete genome sequence is 

increasingly more often the starting point for integrative pipelines (see below and Fig. 1). 

Sample preparation and sequencing can be performed in a few days while data post-

processing (including quality check, de novo assembly, gene prediction) still represents 

the most demanding bottleneck of the genomics pipeline. For this reason, most of the 

leading genomics centres (including BGI, DOE-JGI, Craig Venter Institute, Sanger) couple 

genome sequencing to bioinformatics analysis and usually make their software open 

access to the research community. In this way, preliminary assembly, annotation and 

analysis of genomes are carried out, although many other popular tools exist for de novo 

genome annotation (see for example (Angiuoli et al., 2008; Aziz et al., 2008; Seemann, 

2014)).  

Besides basic genomic knowledge (e.g. gene presence/absence patterns), many other 

additional information layers are today available to be merged and integrated when trying 

to fully elucidate complex biological patterns of living entities (Fig. 1). References to study 

cases and computational tools related to these informational layers are reported in 

Supporting Information 1 and 2, respectively. These include: 

• Gene constraints represent the additional information present in DNA sequences 

and not fully exploited by functional annotation pipelines. These may include the 

detection of gene fusions, the identification of operons and the computation of gene 

Codon Adaptation Index (CAI). Gene structure data (e.g. the presence of gene 

fusions) can guide the identification of potential protein–protein interactions (Enright 

et al., 1999). Further, the study of operonic organization  exploits co-directional 

intergenic distances and can provide homology-free functional annotation through 

the transfer of functions among co-operonic genes (i.e. genes belonging to the 
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same operon) through the so-called the ‘guilt by association’ principle. Lastly, CAI 

measures the variability of the codon usage in a gene in respect to the variability of 

a reference set of genes and usually provides a reliable index of potential protein 

expression levels within a cell. 

• Genomic constraints include compositionally heterogeneous G+C domains in 

DNA sequences that can provide much insight into biological features such as 

horizontal gene transfer (HGT) events, pathogenicity, and antibiotic resistance. 

Also, 3D structure of chromosomes is known to regulate many DNA-based 

processes including repair, replication, and transcription. 

• Metabolic information (the repertoire of metabolic reactions possessed by a 

microbe) can be automatically computed starting from genome annotations. Derived 

metabolic reconstructions (models) can be exploited for in silico metabolic 

modelling and simulation, for example using so called constraints-based methods 

(e.g. flux balance analysis, FBA) that are currently widely adopted (mainly because 

they do not require detailed information on the chemical equations of the studied 

system). 

• Phylogenetic information refers to the potential represented by the huge 

taxonomic range of sequenced genomes available in public database. More 

specifically, it involves the use/integration of pieces of information extrapolated from 

closely related organisms to fill knowledge gaps of the microbe(s) under 

investigation. 

• Epigenomics can be today investigated at single-base and strand resolution and is 

gaining a central role since sometimes it can explain phenotypic differences arising 

among cells with identical genetic information. DNA methylation state of particular 

regions, for example, is linked to chromosomes partitioning, gene expression and 

virulence and DNA repair. Unlike eukaryotes, bacteria use DNA adenine 

methylations as epigenetic signals (rather than DNA cytosine methylation). Similar 

to eukaryotes, however, spatial organization of phenotypes was recently shown to 

be controlled and/or regulated by an epigenetic memory effect in bacteria (Kurz et 

al., 2013), thus establishing a link between metabolism, ecology and tuning cellular 

phenotype. Importantly, links between epigenetic mechanisms and bacterial 

pathogenesis/virulence have been established (Casadesus and Low, 2006; Shell et 

al., 2013). 
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• Metabolomics provides the metabolic profiling of a given organism in the form of 

an instantaneous snapshot of the physiology of that cell. Mapping the outputs 

metabolomic technologies onto genome annotations may improve the accuracy of 

existing gene models metabolic pathways identification and genomes re-

annotations   

• Transcriptomics (generated and measured through high-density tiling microarrays 

or transcriptome shotgun sequencing using next generation technology) can yield 

an improved description of metabolic processes active in well-defined 

environmental conditions, also providing useful functional insights since many 

functionally related genes (e.g. belonging to the same metabolic pathway) have 

been shown to be co-expressed. 

• Proteomics refers to the study of proteins structure, function and abundance at the 

whole-cell level. Accordingly, it allows the quantitation of the level of expression of 

cellular proteins; also it can shed light onto post-translational modifications [that can 

be identified, for example, by surface plasmon resonance (SPR) combined with 

Mass Sprectometry (MS), named SPR-MS (Buijs and Franklin, 2005), by 

glycoproteomics pipelines (Hitchen and Dell, 2006) or by a plethora of possible 

phosphoproteomics approaches (Lin et al., 2010)], protein-protein interaction (PPI, 

detected, for example, by means of co-immunoprecipitation. See (Rao et al., 2014) 

for a review ) and protein localization (for example studied by immunofluorescence 

and fluorescent-protein tagging (Stadler et al., 2013)). PPI data, for example, have 

proven valuable for inferring protein function from functions of interaction partners. 

Additionally, protein phosphorylation can alter protein functions by changing 

structure/function relationship as well as enzymes catalysis/interaction and allowing 

a quick adjustment to changing environment. 

• Phenomics (high-throughput phenotyping) allows exploring the phenotypic space 

of a given organism and deriving phenotype capabilities (e.g. the capability of 

metabolizing certain carbon sources in respect to others) in an automated and 

large-scale fashion. This is typically performed through Phenotype MicroArrays 

(PMs) (Bochner et al., 2001) which uses cellular respiration (i.e. NADH reduction) 

and consequent production of a purple colour as a reporter system for overall 

metabolic activity. 

• Microscopy can provide high quality imaging of microbial life and detailed 

knowledge on a number of cellular components, including i) protein expression, 
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localization and interaction (through fluorescence and confocal laser scanning 

microscopy), ii) alterations of bacterial cell envelope  and interaction between host 

and bacterial cells (Transmission and Scanning Electron Microscope, TEM and 

SEM, respectively) and iii) detection of single molecules (through super-resolution 

microscopy, SRM  (Schermelleh et al., 2010; Vogelsang et al., 2010)). 

 

 

Integration of information layers 

To date, many examples of multi-layer studies exist in scientific literature (Fig. 1C), ranging 

from simpler integrations (two different –omics datasets) to more comprehensive and 

computationally demanding ones (multiple –omics data).  

Two layers integration include approaches that combine transcriptomics and 

metabolomics (Kromer et al., 2004; Durre, 2007; Yoshida et al., 2008; Depuydt et al., 

2009; Yang et al., 2009; Sana et al., 2010), proteomics and metabolomics (Ma et al., 

2011; Fu et al., 2013) and proteomics and transcriptomics (Huang et al., 2013). These 

latter kind of studies, in particular, have shown how gene expression regulation can be 

largely decoupled from protein dynamics and how translation efficiency can a have higher 

regulatory impact on protein abundance than protein turnover (Jayapal et al., 2008; Maier 

et al., 2011). These recent studies suggest a relevant role of post-transcriptional, 

translational and degradation regulation in determining cellular protein concentrations and 

that they may contribute at least as much as transcription itself (Vogel and Marcotte, 

2012). 

An interesting two layer integration was recently proposed (Burton et al., 2014) to 

reconstruct the individual genomes of microbial species present within a mixed sample 

and combining metagenomics with chromatin-level contact probability maps [generated 

with the Hi-C method (Lieberman-Aiden et al., 2009)]. By applying this approach to 

synthetic metagenomes data, authors succeeded in clustering genome content of fungal, 

bacterial, and archaeal species with great accuracy (99% agreement with published 

reference genomes) 

Other, less exploited integrated approaches, comprise i) the integration of 

metatranscriptomics and metagenomics for determining the functional role of each 

microorganism in relation to the composition of the microbial community it is inserted into 
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(Shi et al., 2011), ii) the integration of comparative genomics and transcriptomics (Hain 

et al., 2012) and iii) the combination of photo-activated localization microscopy and 

proteomics (Endesfelder et al., 2013)  

Three different information layers (encompassing metabolomics, transcriptomics and 

genomics) were combined with metabolic modeling of Mycoplasma pneumoniae (Maier et 

al., 2013). Results obtained led the authors to infer a certain rigidity of metabolic pathway 

architecture in M. pneumoniae, suggesting that these are regulated as functional units 

rather than on the level of individual enzymatic reactions probably allowing a simplification 

of metabolic fluxes adjustment (Maier et al., 2013). Deatherage et al. (2013) applied a 

combined approach (which included proteomics, metabolomics, glycomics, and 

metagenomics) and identified complex metabolic interplay among the intestinal 

microbiome including the capability of S. enterica to suppress the growth of Bacteroidetes 

and Firmicutes representatives while promoting growth of Salmonella and Enterococcus 

ones (Deatherage Kaiser et al., 2013).  

Transcriptomics, proteomics and translatomics (the evaluation of mRNAs in polysome 

fractions) were combined by Berghoff et al. (2013) in order to evaluate the dynamic and 

regulatory features of bacterial oxidative stress responses of the purple bacterium 

Rhodobacter sphaeroides, leading to the creation of a multi-layered expression map on 

the system level (expressome) (Berghoff et al., 2013). Authors found that, in this case, 

translational control appears to exceed simple regulation at the transcriptional level and 

that gene positioning might be involved in the tuning of the expression patterns within 

inducible operons. Finally, (Perco et al., 2010) recently proposed the integration of several 

-omics profiles from similar datasets at the level of PPI, thus including a further level of 

information in these kind of studies.  

Super-meta approaches (Fig. 2) are the result of these multidimensional integrations, 

capable of combining multiple heterogeneous information layers. Also, from these 

examples [and (Poblete-Castro et al., 2012; Ansong et al., 2013a; Chang et al., 2013; 

Karaosmanoglu et al., 2013; Zhu et al., 2013)] it emerges that multi-omics, same condition, 

experiments promise to be crucial in the future of systems microbiology. Indeed, since 

complex phenotypes may arise as a result of the action of different biological processes 

(e.g. transcription, translation, post-translational modifications and so on) an integrated 

multi –omics approach may reveal which of them is (or are) contributing the most to the 

observed cellular behaviour.  
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Computational aspects of information layers integration 

In large scale, multi-omics studies, the computational resources allocation needed for data 

processing and integration quickly outpaces the resource allocation for data generation 

(Palsson and Zengler, 2010) and one of the greater efforts resides in analysing the 

outcome of a set of experiments in a unified and interactive way.  

In a broader sense, integration of different information layers poses (at least) three main 

computational challenges, that is i) tracking the different molecular components (i.e. gene, 

molecules, enzymes) across different datasets and experiments (Task 1), ii) identifying (or 

developing) reliable data normalization procedures and multi-level data analysis (Task 2) 

and iii) producing an effective visualization of the results (Task 3). 

Task 1. The first task is achieved by linking gene names to codes that are shared across 

multiple databases during genome annotation. This is usually done on the basis of 

orthology relationships across gene datasets and sequence DBs, although other pieces of 

information can provide hints for refining functional classification (gene 

structure/organization, see below). COG (Tatusov et al., 2003), KAAS (Moriya et al., 2007) 

and GO (Dimmer et al., 2012) are widely adopted tools for functional annotation that allow 

the retrieval of gene-centred information during multi-layer study. Similarly, databases 

such as ChEBI (Hastings et al., 2013), PubChem (Li et al., 2010) provide unique identifiers 

for linking the same compound across multiple datasets or experiments. 

Task 2. Concerning the second step (normalization procedures and multi-layer data 

analysis), linear regression (Park et al., 2003), central tendency (global normalization) 

(Yang et al., 2002) and singular value decomposition (Karpievitch et al., 2009) are widely 

adopted techniques to reduce systematic errors in n-high-throughput studies. However, 

since different –omics layers may possess characteristic rates of noise, variation or 

discrepancies caused by complex molecular mechanisms, accurate normalization 

procedures are required when performing statistical analyses over a multi-layer dataset 

(Arakawa and Tomita, 2013). The Expression Index (EI), for example, accounts for the 

global change within a specific type of cellular component measured by the corresponding 

analytical method. Focused statistical analyses on EI values across multi-layer datasets 

enable highlighting differences between samples in various perturbation experiments (Ishii 

et al., 2007; Arakawa and Tomita, 2013).  
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Tools have been developed to facilitate handling and correlating large and diverse 

datasets under the same working environment and allowing measuring a number of 

different metrics (like pathway overrepresentation, inter-associations between pathways 

and diseases, enrichment analyses) (Zhang and Drabier, 2012; Sun et al., 2013). A list of 

currently available computational tools for downstream analysis and biological 

interpretation of omics data is presented in Table 1. Although with differences among each 

other, these tools allow tracing the relationships existing between different biological 

functional levels (e.g. gene expression, metabolism) and their corresponding molecular 

components (e.g. genes, metabolites) by integrating results from two (or more) –omics 

experiments. MONA is a model-based Bayesian tool for inferring significant associations 

across multiple information layers such as mRNA and protein expression profiling as well 

as DNA methylation and microRNA regulation (Sass et al., 2013a). Besides providing a 

pipeline for data analysis of different high-throughput approaches, MADMAX database 

also tackles the issue of data storage in multi-omics experiments (Lin et al., 2011). 

CONFERO can store the lists of genes derived from a priori biological knowledge and 

integrate them with results from -omics data. Statistics on these multi-level datasets can 

then be performed including, for example, functional enrichment analyses. By exploiting a 

method called Kriging (typical of geostatistics and machine learning), Omickriking 

computes a genomic similarity among the samples using a linear combination of -omics 

similarity matrices and predicts the emergence of cellular complex traits through weighted 

average of the phenotype of individuals in the training set. VANTED provides a framework 

for mapping and integrating experimental data over biochemical networks that are drawn 

by the user or downloaded from the KEGG database. NetGestalt is a tool suited for 

presenting multi-scale experimental data and facilitating their integration, visualization and 

analysis. Each information layer is represented on a separate track but this structure can 

be easily turned into a network that can be visualized using the implemented Cytoscape 

web plug-in (Shannon et al., 2003). Also, six different methods are available for analysing 

data stored in the tracks, such as, for example, the identification of enriched network 

modules or enrichment in GO terms or metabolic pathways. 

InCroMAP (Wrzodek et al., 2013) currently supports the simultaneous analysis of mRNA, 

miRNA (microRNA), DNA methylation and protein (modification) data. By means of a 

hypergeometric test InCroMAP is able to assess the significance of the overrepresentation 

of predefined gene sets in multiple platforms experiments. Results obtained with this tool 

and representing the structured view of the metabolic changes present in a certain 
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experimental condition can be interactively browsed and visualized by means of the 

classical KEGG representation scheme.  

The R-package (http://www.R-project.org) provides a set of tools for multi-omics 

integration. DAnTE, for example, performs statistical and quantitative analyses of different 

high-throughput datasets that can be imported in the format of a simple csv file (Polpitiya 

et al., 2008). Moreover it provides a graphical front-end for basic data analysis tasks in –

omics disciplines, although being particularly suited for proteomics datasets. Similarly, 

IntegrOmics can perform correlation analysis among (-omics) variables measured for the 

same sample and provided in the form of two-block data matrices.  

A multivariate approach to the integration of multi-omics datasets has been recently 

proposed (named MCIA, Multiple Co-Inertia Analysis) (Meng et al., 2014).This method 

allows the identification of co-relationships between multiple high dimensional datasets 

through an exploratory data analysis method and was shown to fit both heterogeneous 

(proteomics and transcriptomics) and homogeneous (microarray and RNAseq based 

transcriptomics) datasets. An important characteristic of this tool resides in the fact that, 

since it does not rely on genomic feature annotation, it is not limited by the well-known 

issue of the incompleteness of present day annotations. Finally, mixOmics provides 

statistical integrative techniques [regularized Canonical Correlation Analysis (CCC) and 

sparse Partial Least Square, (PLS)] to analyse highly dimensional and heterogeneous 

data sets and to unravel relationships them.  

Another consequence that stems for the collection of multiple, standardised, highly-

dimensional 'omics' datasets from living organisms resides in the possibility to investigate 

causal relationships between genomics differences, phenotypes and -omics datasets in 

general. Granger causality has been applied to multi-omics study cases (Walther et al., 

2010; Doerfler et al., 2013) and tools have been developed for identifying cause-effect 

relationships between experimental variables in large scale datasets (Table 1). 

An alternative strategy may consist in performing multi-layer data integration through a 2 

step network approach and in considering, from a statistical perspective, the -omics data 

point as a huge space of causal models. Indeed, multiple -omics data sets can be 

represented in the form of a multiple-weighted network where vertex and vertex weights 

represent –omics data whereas data regarding functional or physical interactions between 

components are represented as edges and edge weights. Multi Objective (MO) 
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optimisation could be then used to find networks that are optimal according to several 

criteria, corresponding to desired phenotypes. These criteria can be implemented as 

functions of the biological data. For example, these functions (objective functions) can be 

defined to calculate overrepresentation analysis statistics among datasets. Optimisation 

quality indicators, such as the hyper volume, are used to establish comparisons among 

different runs of MO optimisation. Important directions of methodological development will 

be the multi parameter evidence synthesis and methods for causality inference based on 

extensions of sparse instrumental variable approaches (Forbes and Griffiths, 2002; Carlo 

Berzuini, 2012). 

 

Task 3. ,Finally, when analysing different layers of information, it is useful to produce an 

integrated view of the obtained results and represent quantitative data of the complete 

cascade from genotype to phenotype for individual organisms. Available methods (see 

(Gehlenborg et al., 2010) for an exhaustive review) can be roughly divided in i) tools for 

automated, network-oriented representation and analysis of large biological datasets and 

ii) tools focused on assembly and curation of pathways. Network visualization is often 

adopted in this context since it is effective in representing diverse (cellular) components 

and the interactions existing among them and providing intuitive interpretation of multi-

layer data. Cytoscape is probably the most popular tool for visualizing biological networks. 

Through a large set of plugins it permits specific analyses and different combinations of –

omics integration also allowing researchers to map multiple omics datasets over the same 

cellular components network (Table 1). 

Mapping heterogeneous –omics data using customized metabolic pathway maps is also a 

common practice and a large plethora of alternatives are currently available (Table 1). The 

Pathway Tools offers an overview diagram of the biochemical networks and pathways of 

an organism including the possibility to combine and represent gene expression and 

metabolomics measurements over it (Paley and Karp, 2006). The web-based ProMeTra 

visualizes and integrates datasets from several –omics datasets on user defined metabolic 

pathway maps (Neuweger et al., 2009). Similarly, Paintomics is able to derive lists of 

significant gene or metabolite changes from transcriptomics and metabolomics data and 

paint this information on KEGG-derived metabolic maps (Garcia-Alcalde et al., 2011). 

3Omics software is a web based tool able to perform inter-omics correlation analyses and 

to visualize relationships in data with respect to time, experimental conditions and data 
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types (Kuo et al., 2013). Experimental data for metabolites, genes and pathways can be 

combined and integrated in the context of relevant metabolic networks with the software 

Metscape (Karnovsky et al., 2012). Finally, MAYDAY is an application for analysis and 

visualization of general -omics data and providing functional insights with the possibility to 

combine gene expression, metabolomes and biosynthetic pathways and visualize results 

as differentially coloured pathway diagrams (Battke et al., 2010).  

 

Metabolic modelling 

Given the link existing between phenotypic features of a given microbe and its underlying 

metabolism, in this part of the review we provide a general overview of the major steps 

and checkpoints encountered when reconstructing the metabolic network of a given 

organism and in its consequent exploitation for computational simulation and/or phenotype 

prediction (Fig. 3). We will here focus on stoichiometric rather than kinetic modelling. A 

kinetic reaction network consists of biochemical reactions that can be traditionally 

described by ordinary or partial differential equations (ODEs and PDEs, respectively) 

(Tomar and De, 2013). The application of kinetic models, however, is limited to small (well 

characterized) biochemical systems since many intracellular experimental measurements 

are needed in this modelling framework. Conversely, stoichiometric (constraints based) 

modelling can be applied to larger (genome scale) biochemical systems since it requires 

only the information on metabolic reactions stoichiometry and mass balances around the 

metabolites under pseudo-steady state assumption (Oberhardt et al., 2009).  

Interestingly, global-scale properties of metabolic networks have been inferred using 

network modelling techniques. These include, for example,  the emergence of bow-tie 

structures (Friedlander, 2014), latent versatility and carbon efficiency (Bardoscia, 2014), 

robustness and plasticity of metabolic pathways (Berger et al., 2014), identification of 

synthetic lethal reaction sets in metabolic networks, essential plasticity and redundancy of 

metabolism (Guell et al., 2014). The application of metabolic modelling approaches seems 

promising also in the context of the emerging issue of antibiotic resistance, as it has been 

shown that specific metabolic traits are crucial for the persistence of multi-drug resistant 

microbial sub-populations [the so-called persisters, (Prax and Bertram, 2014)].   Finally, as 

new genomes from the same taxonomic unit (e.g. bacterial species) are being released, 

comparative metabolic modelling approaches are being exploited for studying the 
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correlation between unique strain-specific metabolic capabilities and their corresponding 

pathotypes and/or environmental niches (Monk et al., 2013). 

Currently available computational tools for in silico metabolic modelling have been recently 

reviewed in (Copeland et al., 2012; Moura et al., 2013) and will not be covered here. 

A metabolic modelling pipeline 

The input of a common metabolic modelling flowchart is usually a (complete or draft) 

genome sequence (generally referred to as “NGS” in Fig. 3A). Publically available 

resources exist for automatically generating draft metabolic reconstructions (see 

Supporting Information 2). Draft metabolic models usually require extensive gap-filling for 

the identification of metabolic functions that have not been identified during preliminary 

reconstruction step; this can usually be performed using comparative genomics 

approaches using highly curated models of (more or less distantly) related microorganisms 

(see next section). Once gaps have been correctly identified and filled, a first comparison 

between phenotypes prediction capabilities of the model and experimental data (i.e. 

experimentally validated growth rates) can be performed (Fig. 3B). Initial reconstruction 

usually fails in correctly identifying all the metabolic capabilities, and extensive model 

refinement is required for reconciling model predictions with phenotypic data (e.g. Biolog 

data, Fig. 3C). When a fitting is found between experimental data and in silico predictions, 

well-grounded computational simulation can start (Fig. 3D), according to the biological 

rationale of the overall metabolic modelling project [e.g. optimisation of biomass production 

and overproduction of a given compound using, for example, Pareto optimality and multi-

objective functions (Angione et al., 2013; Sengupta et al., 2013)]. Outcomes of 

computational simulations typically require experimental validation; in case this is 

achieved, the reconstruction process can generally be considered terminated and the 

model can be used for further in silico analyses (e.g. knockouts simulation, robustness 

analysis, changes in growth medium composition, etc.) or to suggest further wet-lab 

experiments. Importantly, a working metabolic model can be used for the refinement of 

other metabolic models (possibly from closely related microorganisms), thus connecting 

the end of the pipeline with the beginning stages of reconstruction of other organisms (i.e. 

C and A boxes of Fig. 3).  

Finally, in case no agreement is found or a greater accuracy is required, in this final stage 

additional (experimental) data (typically -omics data, “-omics box” in Fig. 3D) should be 
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produced in order to integrate, fix and expand the reconstructed model. This integration is 

also useful when a given (metabolic) phenotype cannot be explained relying exclusively 

the metabolic information layer. 

Which -omics information could improve metabolic modelling? 

Despite fine-scale cellular features - such as molecular crowding (Beg et al., 2007) and 

macromolecular synthesis (Thiele et al., 2012) - can be accounted for by metabolic 

modelling, –omics-derived data is often used to assist and improve metabolic model 

predictions and to provide a system-level understanding of the cellular behaviour (in Fig. 

3D).  

Comparative genomics/taxonomy between multiple organisms can be exploited during 

metabolic reconstructions especially when gap-filling a newly reconstructed model or when 

trying to include novel reactions into it. Indeed, as each metabolic reconstruction is a 

reflection of the genetic content of the respective organism, the identification of the 

overlaps between the genomic content of the organisms for which a metabolic 

reconstruction is available can help understanding which reaction should be 

added/removed to/from a network. The refinement of the metabolic models from two 

Pseudomonas representatives is an example such an approach (Oberhardt et al., 2011). 

Full comparative analysis of their genome-scale metabolic reconstructions has led, in this 

case, to the identification of differences in their virulence mechanisms and in their 

metabolic features that, in turn, may be of help for future metabolic engineering 

application.  

Transcriptomics is one of the most exploited layers for improving or correcting metabolic 

predictions. By exploiting gene expression data, genome scale metabolic networks can be 

turned into condition specific models in which only those reactions corresponding to 

expressed genes will be present and active [see for example (Fondi et al., 2014)]. In 

practice, this corresponds to respectively “turn on” or “turn off” those reactions whose 

corresponding genes are up- or down-regulated in vivo, when running the in silico 

simulation. 

 When mapping gene expression data onto metabolic models, data derived from multi-

condition, single platform –omics studies are of value, in that results from every single 

experiment can be easily compared with those from the other replicates (Faith et al., 2007; 

Colijn et al., 2009). In some cases, such approach has been shown to provide a realistic 
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picture of the actual metabolic state of a microbial cell and to lead to a deeper 

understanding of its basic functioning, including the consequences of environmental 

perturbations such as gene knock-outs and/or growth medium manipulation. 

Similarly, under the assumption that protein abundance changes correlate to changes in 

metabolic fluxes, quantitative proteomics data can be used for deriving condition-specific 

metabolic models.  

Relative proteomics (and transcriptomics) data can be useful for studying system-level 

changes of the metabolism following an external perturbation (e.g. changes in growth 

temperature, medium, pH, etc.). In a recent work, for example, we have mapped protein 

abundance data onto the newly reconstructed metabolic model of the Antarctic bacterium 

Pseudoalteromonas haloplanktis TAC125 (Fondi et al., 2014). This has led to the 

identification of biologically consistent metabolic adjustments caused by cold shock-

dependent changes in protein expression. Similarly, metabolic network modelling and 

proteome data were combined in (Tong et al., 2013) to explore the metabolic 

consequences of a downshift in culture temperature in the anaerobic thermophilic 

bacterium Thermoanaerobacter tengcongensis and to decipher the effect of proteome 

change on the bacterial growth under perturbation. 

Absolute quantitation of protein abundance, instead, can be used for de novo drafting of 

metabolic models(Thomas et al., 2014; Vanee et al., 2014). Indeed, the use of high-

throughput proteomics data as a starting point proved to be the most accurate in 

resembling in vivo growth conditions (Vanee et al., 2014). 

Several methods are today available for integrating gene expression with (constraints-

based) modelling (see Table 1 and (Blazier and Papin, 2012)). GIMME and iMAT 

maximise the flux across those reactions whose genes display high mRNA levels and 

minimise those of reactions associated with low mRNA levels according to a user-supplied 

expression threshold. MADE does not require an a priori threshold on expression levels, 

relying on multiple expression datasets to account for differential expression and constraint 

fluxes across model reactions. Unlike the above-mentioned approaches, E-FLUX provides 

more physiologically consistent solutions since it does not convert expression levels to 

binary states (active or inactive reactions). Besides constraints based modelling and 

expression data, PROM allows integrating pre-compiled transcription regulatory networks. 

GX-FBA combines hierarchical regulation imposed by gene-expression with the constraint 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2015. ; https://doi.org/10.1101/013532doi: bioRxiv preprint 

https://doi.org/10.1101/013532
http://creativecommons.org/licenses/by-nc-nd/4.0/


of metabolic reaction connectivity and using information on mRNA levels to guide 

hierarchical regulation of metabolism subject to the interconnectivity of the metabolic 

network. Finally, RELATCH takes advantage of the concept of relative optimality (based 

on relative flux changes with respect to a reference flux distribution) and uses flux and 

gene expression data to predict metabolic responses in a genetically or environmentally 

perturbed state. Remarkably, the application of all these methods may be hampered by 

the observation that, in some cases, mRNA transcript levels do not correlate with protein 

levels (Gygi et al., 1999; Nie et al., 2006). In those cases, other information layers (e.g. 

post-translational modifications, post-transcriptional regulation) may explain this 

discrepancy and, in turn, their integration during metabolic modelling procedures might 

provide more realistic insights and/or predictive capability. A systematic evaluation of the 

available methods for integrating transcriptomics data into constraint-based models of 

metabolism has been recently performed (Machado and Herrgard, 2014), revealing that 

none of the methods outperforms the others for all the tested conditions. Also, in most 

cases, the predictions obtained by simple FBA using growth maximization and parsimony 

[i.e. assuming that the cell attempts to achieve its objective while allocating the minimum 

amount of resources (Machado and Herrgard, 2014)] criteria still represents a preferable 

choice for a realistic picture of the metabolic landscape of the organism under study. 

Stoichiometric network modelling can be integrated with in vivo measurements of 

metabolic fluxes to determine the absolute flux through large networks of the carbon 

metabolism, using FBA, 13C fluxomics or 13C-constrained FBA approaches (Winter and 

Kromer, 2013). Directly comparing the result of an in silico simulation with isotopologue 

data, for example, can help in addressing which of the predicted metabolic fluxes is real 

and how far its value is from the in vivo measurements. Alternatively, 13C-based metabolic 

flux analysis (13C-MFA) can be formulated as an inverse problem to compute a set of 

fluxes that leads to the best match of the experimentally measured fluxes.  

For example, a 13C-MFA network model was generated for E. coli revealing the reliability 

of this integrated approach to predict and measure the operation and regulation of 

metabolic networks (Chen et al., 2011).  Similarly, by applying 13C metabolic flux analysis 

and in silico FBA, insights into xylose metabolism in S. cerevisiae were obtained, including 

futile pathways and the link between high cell maintenance energy and xylose utilization 

(Feng and Zhao, 2013). 
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A hypothesis-driven algorithm for the integration of transcriptomics and metabolomics data 

with metabolic network topology was originally developed and its application to the 

metabolic network of Saccharomyces cerevisiae showed the feasibility of inferring whether 

biochemical reactions within a cell are hierarchically or metabolically regulated (Cakir et 

al., 2006). A novel method (IOMA) has been developed to quantitatively integrate 

proteomic and metabolomic data with genome-scale metabolic models using a 

mechanistic model for determining reaction rate (Yizhak et al., 2010). The integration of 

such sources of information has led to achieve a greater accuracy in predicting the 

metabolic state of E. coli under different gene knockouts in respect to other methods (i.e. 

FBA and MOMA, Minimization Of Metabolic Adjustment).  

In silico modelling growth predictions on defined media can be easily compared with 

Biolog substrate utilization data (phenomics). This is typically achieved by (qualitatively) 

comparing the estimated flux value across biomass assembly reaction of the model with 

the activity directly measured during phenotype microarray experiment. In other words, 

growth predictions on a given sole carbon source (either growth or no growth) are 

compared against the outcome of a large scale phenotype profiling experiment and in case 

no agreement is found some reconciliation steps are usually necessary. These include, for 

example, the inclusion of a transport reaction for a specific tested compound (for which 

disagreement of in silico and in vivo data is observed) or the inclusion of previously 

missing metabolic reactions (gap-filling). 

This comparison usually speeds up the identification of missing transport reactions and/or 

metabolic gaps in the model and, in some cases, can give essential functional insights 

concerning unknown genes. A number of currently available metabolic reconstructions 

have been validated adopting such approach, including models of Burkholderia 

cenocepacia J2315 (Fang et al., 2011), Acinetobacter baylyi ADP1 (Durot et al., 2008), 

Bacillus subtilis (Oh et al., 2007). Most of the metabolic reconstructions that are currently 

available display accuracy values ranging from 75% up to more than 95% when their 

growth predictions are compared against phenotype microarrays growth data.  

A list of available computational tools for integrating –omics datasets and metabolic 

models is reported in Table 2. 

 

What is missing in metabolic reconstruction? 
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Currently, about 4000 complete genome sequences are available in public databases 

(www.genomesonline.org); conversely, only around 100 reconstructions of microbial 

metabolic systems can be retrieved (see 

http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms for an updated list). 

This gap is the most evident consequence of the difficulties in reconstructing “working” 

metabolic models starting from genome annotations and speeding up this process is a key 

challenge for future systems microbiology (Fig. 2). 

Also, the sketchiness of present-day metabolic models is an important point that needs 

consideration. Indeed, even in the case of model organisms, reconstructions rarely 

account for any more than roughly 25% of their genes, leading to an underestimation of 

their real metabolic capabilities of the strain under study. However, in some cases, such 

an apparently small fraction of genes embedded in metabolic reconstructions may indeed 

represent the majority of the metabolic genes that are actually expressed during normal 

growth. This is the case, for example, of the Antarctic bacterium Pseudoalteromonas 

haloplanktis TAC125, whose metabolic reconstruction embeds around 97% of the 

metabolic genes actually expressed during exponential phase (Fondi et al., 2014). 

Since metabolic reconstructions are usually homology-based, classic metabolic 

reconstructions fail in identifying characteristic metabolic feature and/or pathways of 

microorganisms that are phylogenetically and/or functionally different from well-

characterized ones. -omics integration strategies that we have illustrated in previous 

sections are a promising approach in this context, since the combination of heterogeneous 

information layers may contribute to identify and properly fill metabolic gaps left in 

reconstructions derived from sequence-based annotations.  In this context, it is to be noted 

that software for exploiting –omics information during constraints-based modelling are 

mostly focused on the integration of transcriptomics (expression) data (Table 2). 

Accordingly, more effort is needed in the future to allow including other –omics datasets 

(e.g. proteomics, metabolomics etc.) when modelling microbial metabolism. Nevertheless, 

experiments with fine scale observation (e.g. single knock-out mutants) are usually 

decisive in providing a robust answer to knowledge gaps in homology-based reconstructed 

metabolic models. 
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Finally, taxonomic information is another, still not fully exploited, resource in metabolic 

reconstruction and very few works describe possible approaches for merging information 

from models of two (or more) close organisms. Nevertheless as the number of available 

and, most importantly, highly curated and experimentally validated metabolic models will 

increase and span over a larger phylogenetic range, this resource is expected to gain an 

important role. This is also relevant for experimental design and strains selection, 

providing insights into the issue of which species/genera should be sequenced with higher 

priority in order to increase the coverage of available metabolic information, Some works 

have tried quantifying the increase in information content when adding novel genomes to a 

given dataset and, importantly, the influence of phylogenetic distance among species in 

guiding this choice (“where to add taxa”) (Eddy, 2005; McAuliffe et al., 2005; Pardi and 

Goldman, 2005; Geuten et al., 2007). Similar approaches may thus be useful in the 

context of microbial metabolic biodiversity exploration, leading, for example, to the 

identification of novel, biotechnologically relevant pathways. Indeed, we underline that a 

thorough exploration of metabolic diversity may be obtained integrating taxonomic and 

metabolic information, guiding strains selection for more focused downstream post-

genomics analyses. 

 

Conclusions  

Many possible pathways link genotype and phenotypes, being represented by distinct 

functional states of cellular components (genes, metabolites, DNA methylation states, 

proteins). In an ideal future scenario, most of the information layers herein described and 

accounting for those functional states will be known for a given bacterium in different 

environmental conditions. In this situation, computational biology will be able to guide in 

silico reverse engineering and trace back the optimal path towards the desired microbial 

phenotype(s).  

In this work we have reviewed some of these information layers and their growing 

exploitation in present-day microbiology research due to the spreading of massive –omics 

technologies. Each of them is bringing valuable insights into the comprehension of cellular 

architecture and functioning. Nevertheless, mounting evidences suggest that it is the 

integration of these large, multi-scale datasets that will bring alternative perspectives to our 

current view of microbial cell organization and possibilities for explain the emergence of 
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complex phenotypes. Also, connections among biological features that were previously 

thought to be unrelated (e.g. epigenetics and pathogenicity) are being discovered following 

this path. The capability of integrating and combining multi –omics data with metabolic 

modelling techniques is expected to provide even more accurate and realistic predictions 

of cellular metabolism in those cases in which, for example, metabolic activity is decoupled 

from expression of the corresponding genes. In this context, genetic constraints (e.g. CAI) 

and epigenetics mechanisms (e.g. DNA methylation, post-translational modifications) 

represent still unexploited layers in metabolic modelling and a challenge for future in silico 

simulations. 
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Tables 

 
Table 1: 
List of software/methods for–omics integration  

 
Method/Software Website Ref. 
-omics datasets integration   

Omickriging (R package) http://cran.r-
project.org/web/packages/OmicKriging/inde
x.html 

- 

Integromics https://www.integromics.com/ (Le Cao et al., 2009) 
MONA http://sourceforge.net/projects/monaos/ (Sass et al., 2013b) 
NetGestalt http://www.netgestalt.org/ (Shi et al., 2013) 
VANTED http://vanted.ipk-gatersleben.de/ (Klukas and Schreiber, 

2010) 
mixOmics (R package) http://www.qfab.org/mixomics/ - 
Confero http://sourceforge.net/projects/confero/ (Hermida et al., 2013) 
DAnTE http://omics.pnl.gov/software/DanteR.php (Polpitiya et al., 2008) 
MADMAX http://madmax2.bioinformatics.nl:443/dev/f?

p=104:1 
(Lin et al., 2011) 

MCIA http://www.bioconductor.org/packages/relea
se/bioc/html/omicade4.html 

(Meng et al., 2014) 

InCroMAP http://www.ra.cs.uni-
tuebingen.de/software/InCroMAP/ 

(Wrzodek et al., 2013) 

Causality   
qtlnet http://cran.r-

project.org/web/packages/qtlnet/ 
(Neto et al., 2010) 

pcalg http://pcalg.r-forge.r-project.org/ (Markus Kalisch, 2012) 
-omics data visualization   
OmicsAnalyzer http://apps.cytoscape.org/apps/omicsanalyz

er 
(Xia et al., 2010) 

GALANT http://www.lbbc.ibb.unesp.br/galant/ (Camilo et al., 2013) 
BisoGenet http://apps.cytoscape.org/apps/bisogenet (Martin et al., 2010) 
CytoHiC http://www.cl.cam.ac.uk/~ys388/CytoHiC/ (Shavit and Lio, 2013) 
MODAM http://www.softpedia.com/get/Programming/

Components-Libraries/MODAM.shtml 
(Nagy et al., 2013) 

NuChart ftp://fileserver.itb.cnr.it/nuchart (Merelli et al., 2013) 
Pathway Tools http://bioinformatics.ai.sri.com/ptools/ (Paley and Karp, 2006) 
ProMeTra https://prometra.cebitec.uni-bielefeld.de/cgi-

bin//prometra.cgi?login=prometra 
(Neuweger et al., 2009) 

Paintomics http://bioinfo.cipf.es/node/826 (Garcia-Alcalde et al., 
2011) 

3Omics http://3omics.cmdm.tw/ (Kuo et al., 2013) 
Metscape http://metscape.ncibi.org/ (Karnovsky et al., 2012) 
MAYDAY http://www-ps.informatik.uni-

tuebingen.de/mayday/ 
(Battke et al., 2010) 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2015. ; https://doi.org/10.1101/013532doi: bioRxiv preprint 

https://doi.org/10.1101/013532
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Table 2: 
List of software/methods for integrating –omics data and metabolic modeling 

 
Method/Software -omics data Website Ref. 
GrowMatch Phenomics http://maranas.che.psu.edu/su

bmission/growmatch_2.htm 
(Kumar and Maranas, 

2009) 
GeneForce Phenomics - (Kim and Reed, 2012) 
GIM3E Transcriptomics, 

Metabolomics 
http://opencobra.sourceforge.n
et/ 

(Schmidt et al., 2013) 

iMAT Transcriptomics http://imat.cs.tau.ac.il/ (Shlomi et al., 2008) 
MADE Transcriptomics http://www.bme.virginia.edu/cs

bl/downloads/ 
(Jensen and Papin, 

2011) 
E-Flux Transcriptomics - (Colijn et al., 2009) 
PROM Transcriptomics http://www.igb.uiuc.edu/labs/pr

ice/downloads 
(Chandrasekaran and 

Price, 2010) 
GX-FBA Transcriptomics http://www.ntnu.edu/almaaslab

/metabolism 
(Navid and Almaas, 

2012) 
AdaM Transcriptomics -  (Topfer et al., 2012) 
RELATCH Transcriptomics - (Kim and Reed, 2012) 
FASTCORMICS Transcriptomics - (Pacheco, 2014) 
IOMA Proteomics, 

Metabolomics 
http://www.cs.technion.ac.il/~to
mersh/methods.html 

(Yizhak et al., 2010) 

E-Flux Fluxomics http://openflux.sourceforge.net/ (Quek et al., 2009) 
MASS Metabolomic, 

Fluxomic, Proteomic 
- (Jamshidi and Palsson, 

2010) 
 
 

Figure captions: 
 

Figure 1 

Data integration in microbial –omics pipelines. 

A: Strain isolation and preliminary experimental characterization usually leads to the 
identification/selection of bacteria that may be of potential interest in biotechnology. B: 
Nowadays, to gain a systems level perspective on biotechnologically relevant strains NGS 
and preliminary genome annotation is usually performed. After this step, information on the 
presence/absence of metabolic pathways and overall metabolic capabilities of a given 
microbe is gained. C: Nevertheless, to obtain a systems-level knowledge, a body of 
additional information can be mapped onto a genome annotation (the “-omics wheel”). This 
includes: gene and genomic constraints (derived from a deep inspection of genome 
properties), taxonomic and metabolic information, “-omics” data (transcriptomics, 
proteomics, metabolomics, epigenomics, phenomics), other phenotypic information (e.g. 
high-resolution microscopy), ecosystem information, (microbiome composition, community 
functional characterization, meta-transcriptomics). Furthermore, these different layers of 
information can be combined and integrated to merge together datasets resulting from the 
application of different technologies. Links among -omics represent present-day study 
cases in which integration among two or more information layers has been performed (see 
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corresponding references). D: After -omics integration has been performed, a more 
comprehensive perspective on the microbe(s) under study is gained, providing clues on the 
possible interactions with the surrounding environment (including metabolic cross-talk with 
other microbial species), statistically grounded inferences and novel questions to be 
addressed (possibly re-iterating the pipeline).  In this figure, orange boxes include possible 
software (see Supplementary Table 2 for the full list) while green-blue boxes specific tasks 
of general –omics strategy. 

 

Figure 2 

Super-meta and multi-parameter evidence synthesis approaches for -omics 
integration. 

Available technologies and public datasets allow approaching systems biology issues 
through a super-meta approach. Accordingly, different combinations of microbial ensembles 
(y axis), sampling environments (z axis) and/or -omics technologies (x axis) can be 
integrated and analysed, exploiting, for example multi evidence synthesis approaches. In 
this figure, the different circles represent different datasets, with hypothetical data quality 
represented in red-scale and the amount of data by circles size. 

Figure 3 

Overall scheme of a metabolic reconstruction/modelling pipeline and possible –
omics integration. A: The input is typically a genome resulting from NGS. Tools for 
automatically generating draft metabolic reconstructions from public repositories are 
reported in Supplementary Table 1). B: Experimental data (i.e. growth rates, phenotype 
microarrays) can be used at this moment to help model construction/refinement. C: Draft 
metabolic models usually undergo extensive gap-filling. Once gaps have been correctly 
identified and filled, a first comparison between phenotypes prediction capabilities of the 
model and experimental data. D: When a fitting is found between experimental data and in 
silico predictions, more grounded computational simulation start. In this phase, -omics data 
integration (e.g. transcriptomics, proteomics) can be used for refining and reconciling 
modelling predictions. Finally, a working and experimentally validated metabolic model can 
be used for the refinement of other metabolic models.  
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