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ABSTRACT 

DNA methylation is an epigenetic modification that plays a key role in gene regulation.  Previous studies 

have investigated its genetic basis by mapping genetic variants that are associated with DNA 

methylation at specific sites, but these have been limited to microarrays that cover less than 2% of the 

genome and cannot account for allele-specific methylation (ASM).  Other studies have performed 25 

whole-genome bisulfite sequencing on a few individuals, but these lack statistical power to identify 

variants associated with DNA methylation.  We present a novel approach in which bisulfite-treated DNA 

from many individuals is sequenced together in a single pool, resulting in a truly genome-wide map of 

DNA methylation.  Compared to methods that do not account for ASM, our approach increases 

statistical power to detect associations while sharply reducing cost, effort, and experimental variability.  30 

As a proof of concept, we generated deep sequencing data from a pool of 60 human cell lines; we 

evaluated almost twice as many CpGs as the largest microarray studies and identified over 2,000 genetic 

variants associated with DNA methylation.  We found that these variants are highly enriched for 

associations with chromatin accessibility and CTCF binding but are less likely to be associated with traits 

indirectly linked to DNA, such as gene expression and disease phenotypes.  In summary, our approach 35 

allows genome-wide mapping of genetic variants associated with DNA methylation in any tissue of any 

species, without the need for individual-level genotype or methylation data. 

 

INTRODUCTION 

 DNA methylation is an epigenetic mark that usually occurs at cytosine bases within CG 40 

dinucleotides (CpGs) in the human genome.  CpGs often occur in dense clusters, known as CpG islands, 

which are surrounded by regions known as CpG shores; in non-malignant cells, CpG islands and shores 

are less frequently methylated than CpGs outside of these regions (Smith and Meissner 2013).  
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Methylated CpG islands and shores in promoters may provide a “locking mechanism” that prevents 

repressed genes from being re-activated, while methylation in gene bodies is often associated with 45 

active transcription (Jones 2012; Wolf et al. 1984).  In addition, DNA methylation has been linked to a 

wide range of diseases, including cancer, Alzheimer's disease, bipolar disorder, and type 2 diabetes 

(Ambrosone et al. 2014; Baylin et al. 1998; Pease et al. 2013; The Cancer Genome Atlas Network 2012; 

Baylin and Herman 2000; Irier and Jin 2012; De Jager et al. 2014; Lunnon et al. 2014; Gamazon et al. 

2012; Dayeh et al. 2013).  Interestingly, CpGs whose methylation has been associated with gene 50 

expression and disease are found not only in promoter regions or gene bodies but also in other parts of 

the genome, such as enhancers and insulators, suggesting additional roles of DNA methylation in 

transcriptional regulation (Jones 2012; Gutierrez-Arcelus et al. 2013; Zhang et al. 2014; Banovich et al. 

2014; You et al. 2011).  Although many studies have investigated potential additional roles, general 

conclusions about the role of methylation outside of promoters and gene bodies are still lacking (Jones 55 

2012). 

Several studies have investigated the relationship between DNA methylation and other 

epigenetic factors, such as histone modifications and chromatin accessibility (Wagner et al. 2014; 

Wrzodek et al. 2012; Shi et al. 2014; Zhang et al. 2014).  For example, DNA methylation is associated 

with transcription factor (TF) binding (You et al. 2011; Thomson et al. 2010; Shi et al. 2014; Feldmann et 60 

al. 2013; Heyn 2014; Ziller et al. 2013; Wiench et al. 2011; Smith et al. 2014).  In associations with 

epigenetic variation, the direction of causality is usually unclear; DNA methylation may affect TF-binding 

or may be affected by it, or both may be determined by another factor (or any combination of these). 

 In addition to epigenetic variation, DNA methylation can also be associated with genetic 

variation (Gibbs et al. 2010; Fraser et al. 2012; Smith et al. 2014; Drong et al. 2013; Lam et al. 2012; 65 

Grundberg et al. 2013; Bell et al. 2012, 2011; Ambrosone et al. 2014; Wagner et al. 2014; Liu et al. 2013; 
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Shi et al. 2014; Moen et al. 2013; Heyn et al. 2013; Bibikova et al. 2011; Gutierrez-Arcelus et al. 2013; 

Zhang et al. 2014; Zhi et al. 2013; De Jager et al. 2014; Lunnon et al. 2014; Banovich et al. 2014).  

Associations with genetic variants such as SNPs are qualitatively different from epigenetic associations 

with disease or gene expression because the causality is clear: Mendelian randomization ensures that an 70 

individual’s genotype is a random combination of parental alleles, and thus any associations must be 

due to the effects of genotype (in a study free of confounding factors) (Mokry et al. 2014).  Genetic 

variants showing these associations are known as DNA methylation quantitative trait loci (mQTLs). 

 Nearly all published human mQTL studies have relied upon commercially available microarrays 

that interrogate either ~28,000 CpGs or ~480,000 CpGs, corresponding to 0.1% and 1.7% of CpGs in the 75 

genome, respectively (Gibbs et al. 2010; Fraser et al. 2012; Smith et al. 2014; Drong et al. 2013; 

Grundberg et al. 2013; Bell et al. 2012, 2011; Ambrosone et al. 2014; Wagner et al. 2014; Liu et al. 2013; 

Shi et al. 2014; Moen et al. 2013; Heyn et al. 2013; Gutierrez-Arcelus et al. 2013; Zhang et al. 2014; Zhi et 

al. 2013; Banovich et al. 2014).  Not surprisingly, the number of CpGs associated with mQTLs is generally 

greater in the studies using the larger arrays.  However, the remaining 98.3% of CpG sites, including 80 

nearly all CpGs outside of CpG islands and shores, have yet to be included in any mQTL study, thus 

limiting our understanding of the roles of DNA methylation far from CpG islands.   

 In addition to covering only a small subset of the genome, DNA methylation arrays can be 

affected by experimental variability between samples, such as differences between the quality of 

bisulfite treatment across samples and “batch effects” that affect groups of samples, such as the day of 85 

hybridization (Leek et al. 2010; Sun et al. 2011).  While many computational methods have been 

developed to mitigate these issues, they can be impossible to correct for perfectly and thus remain 

important potential sources of both false positives and false negatives (Stegle et al. 2012; Mostafavi et 

al. 2013; Johnson et al. 2007; Sun et al. 2011; Yousefi et al. 2013; Leek et al. 2010). 
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Another property of DNA methylation arrays is that they provide only the average methylation 90 

level for each targeted CpG in a sample.  If an individual’s two alleles have the same methylation level, 

this is not an issue; however, samples heterozygous for a cis-acting mQTL will have allele-specific 

methylation (ASM) because cis-acting variants affect methylation of only the CpG allele to which they 

are linked (Kerkel et al. 2008; Shoemaker et al. 2010).  Thus a significant source of information present 

in heterozygotes is lost.  A previous ChIP-seq study used allele-specific information with a combined 95 

haplotype test, in which the authors modeled the read depth for each allele from each individual and 

tested whether there is a significant difference between allelic read depths across individuals, 

identifying thousands of histone modification QTLs (McVicker et al. 2013).  Other ChIP-seq studies have 

also identified allele-specific histone modifications (Kasowski et al. 2013; Kilpinen et al. 2013; Mikkelsen 

et al. 2007), underscoring the value of allele-specific information. 100 

 Deep sequencing of bisulfite-converted DNA (Frommer et al. 1992) overcomes many of the 

limitations of microarrays by allowing genome-wide detection of DNA methylation and ASM (Lister et al. 

2009; Xie et al. 2012; Lister et al. 2013; Schmitz et al. 2013a, 2013b).  Applying this technology to F1 

hybrid mice (CAST x 129) revealed over 105 sites of allele-specific DNA methylation, suggesting that cis-

acting effects of genetic variation on DNA methylation are widespread (Xie et al. 2012).  However, 105 

performing whole-genome bisulfite sequencing — or even reduced representation bisulfite sequencing, 

which preferentially targets CpG-rich regions (Meissner et al. 2005, 2008) — on more than a few human 

individuals is prohibitively expensive.  Nevertheless, because distal non-coding variants affecting DNA 

methylation may play key roles in some human traits (Ward and Kellis 2012; Dayeh et al. 2013; 

Grundberg et al. 2013), whole-genome bisulfite sequencing of many individuals may prove to be 110 

essential in understanding the genetic and epigenetic bases of phenotypic variation. 
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 In this study, we developed a novel method for identifying mQTLs from pooled sequencing data 

that allows genome-wide mQTL mapping while reducing the effort, cost, and experimental variability 

associated with bisulfite sequencing and genotyping of many individual samples.  Our approach allows 

us to study thousands of molecular traits in a single experiment, in contrast to existing pooled QTL 115 

mapping methods that are limited to individual phenotypes (Ehrenreich et al. 2010; Michelmore and 

Paran 1991).  We first tested our approach in simulations and then applied it to bisulfite sequencing 

data from a pool of 60 human lymphoblastoid cell lines (LCLs).  We identified over 2,000 novel mQTLs, 

including some that are also associated with variation in DNase hypersensitivity, TF-binding, gene 

expression levels, or complex diseases (Pickrell et al. 2010; Lappalainen et al. 2013; Degner et al. 2012; 120 

Welter et al. 2014; Ding et al. 2014).  We also show that TF-binding sites and open chromatin regions 

from LCLs are enriched for mQTLs.  Our approach represents a powerful and cost-effective framework 

for mapping mQTLs genome-wide, in any species. 

 

RESULTS 125 

A pooling approach to mQTL mapping 

 In most genetic association studies of quantitative traits, each sample is genotyped at many 

variants (typically at least 106 for humans), and trait values (e.g. DNA methylation at specific CpGs) are 

measured for each sample.  Genotypes are then compared to the trait values to detect statistically 

significant associations.  This approach has been widely used in many species to map loci associated 130 

with both molecular-level traits (expression QTLs, mQTLs, DNase hypersensitivity QTLs, etc.) and 

organismal-level traits (height, blood pressure, etc.). 
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Our pooling approach is outlined in Figure 1.  The central idea is that, for any cis-acting mQTL-

CpG pair, if both the variant and the CpG are observed on the same DNA sequencing read, then any 

association between the two can be detected using Fisher’s Exact Test (see Methods).  For example, a 135 

CpG near a G/T SNP might have a higher methylation level when linked to the G allele than when linked 

to the T allele.  Analysis at the level of alleles, rather than individuals, allows samples to be pooled prior 

to bisulfite treatment because the allelic identity of every informative read can be inferred directly from 

the read’s sequence.  In addition to minimizing experimental variability between samples, pooling 

obviates the needs for individual-level genotyping and DNA methylation profiling. 140 

 

Assessing the pooling approach via simulations 

 We compared our pooling approach (“pooled ASM method”), which allows us to detect allele-

specific methylation (ASM), to a more traditional approach (“traditional non-ASM method”), which 

consists of bisulfite sequencing and genotyping of each sample separately, followed by the comparison 145 

of the individual-level genotypes and average DNA methylation levels.  We focused on genome-wide 

methods, so we did not include DNA methylation arrays in the simulations.  Each simulation featured an 

mQTL-CpG pair, for which we estimated the power to detect the mQTL (at p < 0.001).  Across 

simulations we varied five parameters: the effect size of the mQTL (the correlation between allele and 

methylation status), the read depth at the site (across all individuals), the minor allele frequency (MAF), 150 

the minor DNA methylation status frequency (the frequency of the less common methylation status), 

and the number of individuals.  We also ran our simulations at additional p-value cutoffs and simulated 

variant-CpG pairs with no association between allele and methylation status at various p-value cutoffs to 

evaluate our false positive rate. 
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 The pooled ASM method identified substantially more mQTLs than the traditional non-ASM 155 

method at most parameter values — the exception being a strong mQTL covered by many reads, in 

which case the methods both had close to 100% power (Figure 2, Supplemental Figures 1-7).  In fact, for 

effect sizes ≤ 0.83, read depths ≤ 40x, and ≤ 100 individuals, the pooled ASM method had over twice the 

power of the traditional non-ASM method.  The false positive rate for both methods was extremely low, 

especially for lower p-value cutoffs (Supplemental Figures 8-10).  Furthermore, for nearly all parameter 160 

settings, the pooled ASM method produced significantly lower mQTL p-values than the traditional 

method (Supplemental Figure 11). 

The increased power of our approach is due primarily to the difference in what information is 

extracted from heterozygotes.  For example, consider a strong mQTL (0% methylation of the major 

allele, 100% for the minor allele) with a low MAF that is present as only either major-allele homozygotes 165 

or heterozygotes in a particular cohort.  The traditional non-ASM method averages together the effects 

of the two different alleles in each heterozygote, thus diluting the signal from each minor allele (the 

traditional method cannot distinguish between when the minor allele in heterozygotes always 

corresponds to the minor methylation status and when the allele in heterozygotes has no correlation 

with the methylation status).  As a result, the two quantities being compared — average methylation of 170 

the CpG in homozygotes vs. heterozygotes — would be 0% vs. 50%. In contrast, because the pooled 

ASM method takes into account the allelic origin of each read, it is equally informative regardless of 

whether a read is from a homozygote or heterozygote.  In our example, the two quantities in the 

comparison —methylation of the CpG in one allele vs the other — would be 0% vs. 100% in the pooled 

ASM method, which is more easily detected with limited data.  This concept applies to any mQTL that 175 

can be found in a heterozygous state, even when all three possible genotypes are present in a cohort.  

As a result, the pooled ASM method had the greatest advantage at large MAFs (Supplemental Figures 4-

5, Supplemental Figures 9-10), since these have the most heterozygotes. 
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Applying our pooling approach to empirical data 180 

 As an experimental test of our pooling approach, we performed bisulfite sequencing on pooled 

genomic DNA from LCLs derived from 60 Yoruban (YRI) HapMap individuals (see Methods) (Frazer et al. 

2007).  We obtained ~860 million pairs of 101 bp reads, of which 77.1% passed our quality control filters 

and mapped uniquely, corresponding to an average per-base coverage of ~40x. 

 To assess the efficiency of our bisulfite treatment and pooling, we performed three quality 185 

control tests.  First, to evaluate the efficiency of bisulfite conversion of unmethylated cytosines to 

thymines, we spiked unmethylated lambda phage DNA into the pool prior to bisulfite treatment.  The 

percentage of unconverted lambda phage cytosines ranged from 0.0% to 0.2% across library/sequencing 

lane pairs, suggesting that the bisulfite treatment consistently had at least 99.8% efficiency, which is 

comparable to previous bisulfite sequencing studies (Banovich et al. 2014; Lister et al. 2009).  Second, 190 

we estimated the rate of spurious cytosine to thymine conversion by creating two untreated control 

libraries from our pooled human samples.  In these libraries, only 0.4-0.5% of bases that mapped to 

cytosines were thymines, suggesting a low rate of spurious C-to-T conversion, sequencing errors, and 

unannotated C/T SNPs.  Finally, we estimated the relative abundance of each individual sample’s DNA in 

the pool and found that it was near the expected 1/60 ratio (1.0 – 2.8% abundance of each sample), 195 

confirming that our pool was relatively homogenous (Supplemental Figure 12).  We note that sample 

heterogeneity should not impact our ability to map mQTLs so long as each allele is well-represented 

because our approach does not require an equal abundance of each sample in the pool. 

 Our pooled data provided sufficient coverage to test the strength of association at 823,726 

variant-CpG pairs, from which we identified 2,379 mQTLs (at 2,332 unique CpGs) at p < 0.001 200 

[corresponding to a false discovery rate (FDR) of 6.0%; see Methods and Supplemental Table 6].  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013649doi: bioRxiv preprint 

https://doi.org/10.1101/013649
http://creativecommons.org/licenses/by-nc/4.0/


 

 10 

Examples of two mQTLs are shown in Figure 3a.  mQTLs tended to be close to their corresponding CpGs 

because our method required that they be on the same sequenced fragment; the average distance was 

25.4 bp, with a range of 0-377 bp (Supplemental Figure 13).   

 We employed pyrosequencing on individual samples to validate our results in two ways.  First, 205 

as a technical validation of the pooling method, we performed pyrosequencing at two CpGs with mQTLs 

in the same 60 samples that composed our pool.  Both of these were successfully validated in the un-

pooled samples (Figure 3b).  Second, we tested the reproducibility of our mQTLs by pyrosequencing 

eight CpGs (spanning a wide range of p-values and including the two with technical validation) in a 

separate set of 30 YRI samples, which are offspring of the 60 individuals in our pool.  In seven out of 210 

eight cases, the mQTL was successfully validated in these additional samples (Figure 3c, Table 1, and 

Supplemental Figures 14-18; also described below).  

We then compared our mQTLs to those in two recent studies of YRI LCLs (Zhang et al. 2014, 

Banovich et al. 2014), which both used the largest commercially available DNA methylation array, the 

Illumina Infinium HumanMethylation450 BeadChip (Bibikova et al. 2011).  Comparing these studies to 215 

one another, we found 19.1-45.7% overlap (depending on the direction of analysis; see Methods).  The 

disagreement was likely caused by a combination of false positives and false negatives (e.g. due to low 

power or between-sample variability).  Comparing these two catalogs to our data, we found that less 

than 1% of our tested CpG sites were also tested in each of these studies.  Focusing on the small number 

of sites in common, we found a similar level of overlap (40.0-53.3%; 4/10 and 8/15, respectively), which 220 

was significantly more than expected by chance (hypergeometric p = 5.5 x 10-3 and 9.6 x 10-7, 

respectively).  In sum, our pooling-based approach agrees with microarray studies as well as these 

studies agree with one another, despite the major methodological differences of our approach 

(Supplemental Figures 19-20). 
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 225 

mQTLs were associated with molecular-level and organismal-level traits 

To explore the potential effects of our mQTLs, we examined their distribution in CpG islands and 

shores as well as in genomic regions with different chromatin states (see Methods).  Unlike DNA 

methylation microarrays that are primarily targeted in and around CpG islands, only 2.0% of our tested 

CpGs were in islands and only 10.8% were within 2 kb of CpG islands (Wu et al. 2010; Irizarry et al. 230 

2009).  Instead, most (86.0%) were in repressed/inactive genomic regions, which usually lack CpG 

islands.  As a result, the majority (78.1%) of the CpGs with mQTLs was also in repressed/inactive regions, 

though this is less than the 86% expected by chance, suggesting that variants in active genomic regions 

may be more likely to influence methylation than those in inactive regions.  Chromatin states that are 

related to active transcription and active enhancers were enriched for CpGs with mQTLs (Table 2, 235 

Supplemental Figure 21), suggesting that some of these mQTLs may affect transcription or enhancer 

activity. 

 To understand if our mQTLs may be involved in cell-type-specific open chromatin, we compared 

our mQTL catalog with 402 DNase hypersensitivity experiments from the ENCODE and Epigenetics 

Roadmap projects, which measured chromatin accessibility (Thurman et al. 2012; The ENCODE Project 240 

Consortium 2012; Bernstein et al. 2010). We found that our mQTLs were more strongly enriched in 

regions of open chromatin in LCLs than in open chromatin in other cell types (p = 1.4 x 10-7) 

(Supplemental Figure 22), suggesting that mQTLs may be more likely to affect DNA methylation in 

tissues where they are in accessible chromatin.   

To further understand the relationship between transcriptional activity and mQTLs, we 245 

intersected our mQTLs with TF-binding and histone modification ChIP-seq peaks from GM12878, an LCL 

studied extensively by the ENCODE consortium (The ENCODE Project Consortium 2012; Gerstein et al. 
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2012).  We found that mQTLs were enriched in the binding sites for 12 TFs in GM12878 (Supplemental 

Table 1, Supplemental Figure 23).  The strongest of these enrichments is for binding sites of CTCF, which 

often acts as an insulator by blocking the spread of chromatin states.  SNPs associated with CTCF binding 250 

were recently mapped in LCLs (Ding et al. 2014); 18 of these are also mQTLs (p = 2.0 x 10-3), and 

increased binding is usually associated with decreased methylation (binomial p = 7.7 x 10-4), suggesting 

that variants affecting CTCF binding can also impact DNA methylation, consistent with their known 

relationship (Feldmann et al. 2013). 

We next investigated the relationship between our mQTLs and other molecular traits by 255 

comparing our results to expression QTLs (eQTLs) and DNase hypersensitivity QTLs (dsQTLs) mapped in 

the same YRI population (Degner et al. 2012; Lappalainen et al. 2013).  We found a strong overlap with 

dsQTLs, 48 of which were also mQTLs (p = 1.2 x 10-27); alleles associated with lower DNA methylation 

tended to be associated with open chromatin (binomial p = 5.5 x 10-7).  For eQTLs, we found that 28 

mQTLs are exon-level eQTLs and five are gene-level eQTLs; for exon-level eQTLs, this was significantly 260 

more than expected by chance (p = 1.5 x 10-3).  In addition, considering SNPs in strong LD with eQTLs 

and dsQTLs revealed additional overlaps (Supplemental Table 2, Supplemental Table 3).  We validated 

one eQTL overlap and one dsQTL overlap using pyrosequencing in an additional 30 YRI individuals (Table 

1).  These overlaps were consistent with our expectation of a relationship between DNA methylation, 

transcription, and chromatin structure (Gutierrez-Arcelus et al. 2013; Jones et al. 2013). 265 

 We also tested to what extent our mQTLs may impact organismal-level traits.  To investigate 

this, we performed a similar comparison of our mQTLs with variants implicated by genome-wide 

association studies (GWAS) for diseases and other traits (Welter et al. 2014).  Nine mQTLs were 

previously identified in GWAS or are in perfect LD with GWAS hits, and an additional 13 mQTLs are in 

strong (r2 ≥ 0.8) LD with GWAS-implicated variants (Welter et al. 2014) (Supplemental Table 4), though 270 
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this is not significantly more overlaps than expected by chance (p = 0.67 for GWAS hits and variants in 

perfect LD; p = 0.70 for GWAS hits and variants in strong LD).  We validated two of the overlaps using 

pyrosequencing on the individuals in our bisulfite sequencing study (Figure 3b, Table 1) and tested six of 

the overlaps on 30 additional YRI individuals; all but one test was successful (Figure 3c, Table 1).  All of 

the validated mQTLs are associated with CpGs that are not included on commercially available 275 

microarrays, demonstrating that our method can identify novel disease-associated mQTLs. 

 Across the different types of QTLs/GWAS that we compared to our mQTLs, we noticed an 

interesting trend: QTLs associated with the earliest steps of transcription (dsQTLs affecting chromatin 

accessibility) had the strongest overlap with mQTLs, while moving progressively towards phenotype, the 

enrichment decreased at each stage (Figure 4).  This may suggest a buffering or dilution of mQTL effects 280 

at transcriptional and post-transcriptional levels, consistent with recent models for the attenuated 

effects of eQTLs on protein levels (Battle et al. 2014).  As such, this could allow for plasticity in DNA 

methylation, with a small subset of methylation changes overcoming the many layers of gene expression 

regulation to ultimately affect organismal phenotypes. 

 285 

DISCUSSION 

 The pooling approach introduced here represents a major advance in our ability to map cis-

acting mQTLs genome-wide.  Our simulations demonstrated the substantial increase in power that our 

approach provides as a result of accounting for ASM.  In an empirical test of our approach, we identified 

mQTLs in many functionally important sites that are not covered by microarrays, including TF-binding 290 

sites, dsQTLs, CTCF-binding-QTLs, eQTLs, and GWAS hits.  Thus, our approach overcomes two of the 

greatest weaknesses of microarrays — inability to detect ASM and limited coverage of CpGs — enabling 

us to detect thousands of novel mQTLs throughout the genome. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013649doi: bioRxiv preprint 

https://doi.org/10.1101/013649
http://creativecommons.org/licenses/by-nc/4.0/


 

 14 

 An additional advantage of our approach over microarrays and other individual-level assays is 

the minimization of between-sample experimental variability and batch effects, which are known to be 295 

important sources of error (Mostafavi et al. 2013).  By pooling samples prior to bisulfite treatment, most 

potential sources of variability are eliminated.  However, because our simulations did not account for 

these factors, we may have underestimated our increase in power over the traditional non-ASM 

method. 

Several important advantages of the traditional approach of genotyping and using microarrays 300 

for DNA methylation measurement were also not captured by our simulations.  For example, the 

traditional approach can detect mQTLs acting at any distance away from their CpG targets, including 

trans-acting mQTLs.  Because pooling requires the variant and CpG to be on the same sequenced DNA 

fragment, the distance is limited by the size of these fragments.  (This includes the insert size in paired-

end reads, so the distance can be many kilobases if large fragments are selected for sequencing, though 305 

having a larger variance in insert size can lead to fewer reads covering a given variant/CpG pair.)  As read 

lengths increase with new sequencing technologies, this limitation may be lessened.  However even 

now, this may not be a major issue since the majority of “likely causal” mQTLs have been found to be 

located within 100 bp of the corresponding CpG (Banovich et al. 2014). 

 Another limitation of our approach is that it excludes C/T and G/A SNPs from consideration 310 

because their genotypes cannot be disentangled from the effects of bisulfite conversion.  However, 

because most SNPs (including C/T and G/A SNPs) are in strong linkage disequilibrium with other variants, 

their mQTL associations may still be measured via other “tag SNPs” (that are on the same read as the 

corresponding CpG), as is done in any QTL or GWAS study.  Moreover, this limitation is shared by other 

methods for inferring ASM from individual-level bisulfite sequencing data.  315 
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 Our approach also cannot account for population structure or any known covariates (e.g. gender 

or environmental differences) since the individual from which each read originated is unknown.  In our 

study, this is probably not an issue because our individuals lack significant population structure, and the 

cell lines were grown in controlled laboratory conditions.  Future applications of this approach would 

ideally use cohorts in which these issues are minimized, such as unstructured natural populations or 320 

controlled F2 crosses (as is ideal for any QTL study or GWAS) (Bush and Moore 2012). 

 Finally, our approach relies on detecting alleles directly from reads as well as detecting the 

positions of variants in the genome directly from reads if the data are from populations for which 

variant positions are not known.  Detecting alleles from reads is not perfect due to sequencing errors 

and imperfect mapping.  However, this is unlikely to have a substantial effect on our results because 325 

only errors at the variant positions would lead to an incorrect allelic assignment.  Detecting variants is a 

more challenging problem (Li 2014; Nielsen et al. 2011), but it can be minimized by limiting the 

genotype calls to known variant positions, by sequencing deeply, or by excluding rare variants. 

While pooling individuals enables us to overcome limitations of previous approaches for mQTL 

mapping, we are not the first to use pooling for QTL mapping.  Previous studies have used pooling for 330 

QTL or association mapping of individual traits.  These approaches include bulk segregant analysis (BSA) 

(Michelmore and Paran 1991) and X-QTL mapping (Ehrenreich et al. 2010).  They involve phenotyping 

many individuals for a specific trait followed by genotyping (via microarrays or sequencing) pools of 

individuals with either high or low trait values.  QTLs are then identified as genetic variants with 

different allele frequencies between the two pools.  These approaches have been gaining popularity 335 

because they, like ours, do not require individual-level genotyping, which is often the most laborious 

and expensive component of QTL mapping.  In comparison to our method, BSA and X-QTL mapping can 

be applied to a much wider range of traits, including organismal-level traits.  Two key advantages of our 
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mQTL approach are that it can be applied to millions of molecular-level traits in one pool (as opposed to 

a single trait for every two pools) and that it does not require any individual-level phenotyping. 340 

We are also not the first to leverage allele-specific information for QTL mapping.  Previous work 

has also used allele-specific information in ChIP-seq data to map QTLs associated with histone 

modification levels (McVicker et al. 2013) and to identify allele-specific histone modifications (Kasowski 

et al. 2013; Kilpinen et al. 2013; Mikkelsen et al. 2007).  Unlike ChIP-seq, bisulfite sequencing results in 

approximately even sampling of all DNA in the sample, not just the DNA that is bound by a protein of 345 

interest.  Therefore, our goal is not to identify the difference in read depth between alleles but rather 

the difference in the fraction of CpG methylation between alleles.  Because these problems require 

distinct approaches, we proposed a novel approach for use in bisulfite sequencing studies. 

 While our approach has many advantages over measuring genotypes and DNA methylation 

separately for each individual, there are ways to combine the approaches that would leverage ASM 350 

without sacrificing the ability to identify trans-acting and distal cis-acting mQTLs.  For example, one 

could alter the step at which pooling takes place by creating a uniquely barcoded library for each sample 

prior to pooling and bisulfite treatment, thereby allowing each read to be assigned to its sample of 

origin.  However, this would come at the cost of the additional experimental variability, effort, and 

expense associated with creating a separate library for each sample.  Alternatively, even with no 355 

pooling, the extra power gained from allele-specific information in heterozygotes can be achieved by 

inferring both alleles and methylation statuses directly from reads. 

 Large mQTL mapping studies have been limited by the effort and expense involved in data 

generation; our approach does not require individual-level data for either genotypes or DNA 

methylation, thereby significantly decreasing the barrier to mQTL mapping in any tissue or species.  360 

Although the number of mQTLs we identified was modest, this is primarily a limitation of our sequencing 
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depth and not the method itself.  As illustrated by our simulations, with 40x coverage, our power to 

detect even strong mQTLs is modest.  As sequencing becomes less expensive, this pooling approach may 

help us achieve a comprehensive understanding of the relationship between genetic variation and DNA 

methylation, which will provide insight into traits such as evolutionary adaptations in many species and 365 

human diseases in many tissues.  Moreover, with some modifications, the pooling framework we have 

introduced could also be applied to mapping QTLs for other molecular-level traits, such as TF-binding 

and histone modifications.  We anticipate that pooling will enable us to leverage sequencing technology 

to study the relationship between genetic and epigenetic variation in a much wider range of cell types 

and species than has previously been possible. 370 

 

METHODS 

Simulations comparing the pooled and traditional association methods 

 In order to compare the power of identifying mQTLs using the pooled ASM method – 

sequencing on pooled samples and accounting for ASM – versus the traditional non-ASM method of 375 

associating genotypes with average methylation statuses, we performed simulations of a single 

theoretical variant-cytosine pair, varying several parameters of interest.  We varied the effect size 

(correlation between the variant’s allele and the cytosine’s methylation status), read depth (number of 

reads across all individuals), MAF and minor methylation status frequency (the minor methylation status 

is the cytosine methylation status with fewer reads), and number of individuals.  We tested effect sizes 380 

ranging from 0.5 to 1.0; 20, 40, 80, 160, 320, 640, and 1280 reads across individuals; minor allele and 

methylation status frequencies 0.1, 0.2, 0.3, 0.4, and 0.5; and 25, 50, 100, 200, and 400 individuals.  

When assigning genotypes to individuals, we always assumed that our population is in Hardy-Weinberg 

equilibrium.  For each parameter combination, we ran 10,000 simulations for the variant-cytosine pair. 
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 We ran each simulation as if we were randomly selecting DNA fragments from a pool of cells.  385 

For the pooled data simulations, we sampled allele-methylation status pairs with replacement for each 

read.  We used Fisher’s Exact Test, implemented in Matlab using Michael Boedigheimer’s fexact function 

(www.mathworks.com/matlabcentral/fileexchange/22550-fisher-s-exact-test), to quantify the 

association.  For the traditional non-ASM method simulations, we randomly assigned each read to an 

individual so that each individual had approximately (but not necessarily exactly) the same number of 390 

reads.  For each individual, we used the genotype that we had initially assigned to it and computed the 

average methylation status, rounded to the nearest integer.  We used a 2 x 3 Fisher’s Exact Test to 

compute the associations between genotype and average methylation status, which was implemented 

in Matlab using Giuseppe Cardillo’s myfisher23 function 

(www.mathworks.com/matlabcentral/fileexchange/15399-myfisher23).  For comparison, we also 395 

computed p-values using the asymptotic p-value of the Pearson correlation between allele and 

methylation status; when we ran these simulations for the “traditional non-ASM method,” we did not 

average the methylation status for each individual.  For each method, we estimated power as the 

fraction of simulations in which the variant-cytosine pair reached p < 0.001, the same p-value threshold 

that we used for identifying mQTLs in our real data. 400 

 We then ran additional simulations that model different distributions of read depth across 

individuals and across the genome.  First, we simulated pooled reads by sampling the number of reads 

from a Poisson distribution with λ = total number of reads (the Poisson distribution assumes that the 

mean and the variance of the number of reads are equal).  For the traditional non-ASM method, we 

randomly distributed the number of reads that we sampled across individuals as we did in the previous 405 

simulations and then sampled allele/methylation status pairs with replacement for each read from the 

read’s individual. 
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 Since sequencing data are known to be over-dispersed, the number of reads is often modeled as 

being sampled from a negative binomial instead of Poisson distribution (Anders and Huber 2010).  We 

therefore also sampled the number of reads from a negative binomial distribution.  We fit negative 410 

binomial parameters to the numbers of reads covering CpGs by finding maximum likelihood values.  

After sampling a number of reads from the negative binomial distribution, we scaled the number of 

reads to 
(𝑁𝑢𝑚.𝑅𝑒𝑎𝑑𝑠 𝑎𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)∗(𝑁𝑢𝑚.𝑅𝑒𝑎𝑑𝑠 𝑖𝑛 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛)

𝑀𝑒𝑎𝑛 𝑁𝑢𝑚.𝑅𝑒𝑎𝑑𝑠 𝐴𝑐𝑟𝑜𝑠𝑠 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠
 before sampling.  For the traditional non-ASM 

method, we randomly distributed the post-scaling number of reads that we sampled across individuals 

as we did in the previous simulations and then sampled allele, methylation status pairs with 415 

replacement for each read from the read’s individual. 

 In addition to evaluating the power of each method, we also compared its false positive rate to 

its true positive rate.  We simulated false positives by creating a distribution of reads with the same MAF 

and MMF as our real distribution but 0.0 correlation between allele and methylation status and 

sampling reads from that distribution.  We ran our true positive and false positive simulations at p-value 420 

cutoffs 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, and 0.00001.  We did this for all of our 

Fisher’s Exact Test negative binomial simulations with 100 individuals and all combinations of numbers 

of reads, effect sizes, MAFs, and MMFs.  We generated ROC curves to illustrate our results. 

 

Whole-genome bisulfite sequencing library preparation 425 

 We pooled genomic DNA derived from 60 Yoruban LCLs (parental samples from 30 HapMap 

trios, purchased from Coriell).  48 μg of this DNA was spiked with 240 ng unmethylated cl857 Sam7 

Lambda DNA (Promega, Madison, WI) to yield 0.5% W/W lambda DNA.  The DNA was fragmented with a 

Covaris instrument (Covaris) in 50 uL volumes (duty factor 10%, peak incident power 175, 200 cycles per 
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burst, 40 seconds duration, 5.5-6.0 ̊C), followed by end repair, adenylation, and adapter ligation using 430 

the Truseq DNA LT Sample Prep Kit (Illumina) as per manufacturer’s instructions.  Purification steps were 

performed using Agencourt Ampure beads (Beckman-Coulter).  All 24 indexed methylated adapters 

from Truseq DNA LT Sample Prep Kit Sets A and B (Illumina) were used to construct the libraries in order 

to increase base complexity. 

 Adapter-ligated DNA of 400-500 bp was isolated by 2% agarose gel electrophoresis using low 435 

range ultra agarose (Bio-Rad) with Sybr gold Nucleic acid gel stain (Invitrogen), and fractions were 

purified using MinElute Gel Extraction Kit (Qiagen).  Two of the 24 libraries were reserved and not 

bisulfite-converted for control purposes.  Sodium bisulfite conversion was carried out on each of the 22 

remaining libraries using the Epitect Bisulfite Kit (Qiagen #59104) as per manufacturer’s 2006 

instructions, except the reaction mix incubation cycle from the Whole-Genome Bisulfite Sequencing for 440 

Methylation Analysis was used (Illumina, Part # 15021861 Rev. A) and consisted of 95 ̊C for 5 min., 60 ̊C 

for 25 min., 95 ̊C for 5 min., 60 ̊C for 85 min., 95 ̊C for 5 min., 60 C̊ for 175 min., 3 cycles consisting of 

95 ̊C for 5 min., and 60 ̊C for 180 min., ending with a 20 ̊C hold.  Bisulfite-converted products were 

purified using MinElute PCR Purification Kit (Qiagen). 

 Adapter-ligated, bisulfite-converted libraries were enriched using KAPA HiFi HotStart Uracil+ 445 

ReadyMix uracil-insensitive polyermase (D-mark Biosciences #KK2801).  Thermocycler parameters for 

bisulfite-converted libraries consisted of 98 C̊ for 45 sec.; four cycles of 98 ̊C for 15 sec., 65 ̊C for 30 sec., 

72 ̊C for 30 sec., ending with a 4 ̊C hold.  Adapter-ligated, non-bisulfite-converted control libraries were 

enriched using the reagents and protocol from the Truseq DNA LT Sample Prep Kit (Illumina).  

Thermocycler parameters consisted of 98 ̊C for 30 sec.; four cycles of 98 ̊C for 10 sec., 60 ̊C for 30 sec., 450 

72 ̊C for 30 sec., ending with a 4 ̊C hold.  PCR reaction products were purified using Agencourt Ampure 

beads (Beckman-Coulter).  Library validation was performed using the KAPA SYBR FAST Universal qPCR 
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Library Quantification Kit (D-mark Biosciences, #KK4824) to measure the concentration of viable 

sequencing template molecules, as well as the Agilent Bioanalyzer High Sensitivity DNA Assay (Agilent) 

to determine the size and distribution of the template molecules.  Libraries were further concentrated 455 

using the MinElute PCR Purification Kit (Qiagen).  Each non-control library was divided across eight 

sequencing lanes in three flowcells, and each control library was divided across four of these sequencing 

lanes, which were in two of the flowcells. 

 

Data processing 460 

 To obtain high-quality allele and methylation information from our bisulfite sequencing data, we 

trimmed reads, aligned reads to the genome, identified methylation statuses for cytosines and alleles 

for SNPs, and filtered our data according to various metrics.  We trimmed reads using Trim Galore! 

version 0.2.8 (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/).  We used the default 

parameters with the exception of --stringency 4, --quality 35, and --paired.  These parameter 465 

adjustments prevented us from removing ends of reads where only a few bases overlap with the 

adapter, removed read ends that were not especially high-quality, and forced Trim Galore! to account 

for our reads being paired-end.  We chose these parameters after trying multiple parameter settings on 

a subset of our data because they enabled the most reads to map uniquely to the genome.  Next, we 

converted all Hapmap Phase II (Frazer et al. 2007) and 1000 Genomes Phase I Integrated Version 3 470 

(Altshuler et al. 2010) single nucleotide polymorphisms (SNPs) with MAF > 0.04 in human genome 

version hg19 (International Human Genome Sequencing Consortium 2001) into N’s in order to eliminate 

sources of reference bias when mapping (Degner et al. 2009).  We mapped reads to the autosomes in 

hg19 (International Human Genome Sequencing Consortium 2001) using Bismark version 0.12.3 

(Krueger and Andrews 2011) with Bowtie2 version 2.2.3 (Langmead and Salzberg 2012).  Bismark 475 
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converts all Cs to Ts and all Gs to As before mapping, maps them to both a C-to-T and a G-to-A-

converted genome, and then converts the Ts and As back to their original bases (Krueger and Andrews 

2011). We used the default parameters with the exception of, for mapping, --bowtie2 and, for extracting 

methylation, --ignore_r2 7, -p, and --no_overlap so that we could remove incorrect methylation calls at 

the 5’ end of read 2 due to DNA repair (Supplemental Figure 24), account for our reads being paired-480 

end, and not double-count cytosines on both ends of the reads.  In addition, when calling methylation 

statuses, we removed the 11 bases at the 3’ end of read one and the 31 bases at the 3’ end of read two 

because we noticed substantial methylation degradation towards the 3’ end that seemed independent 

of read sequence (Supplemental Figure 24).  We also used Bismark (Krueger and Andrews 2011) to map 

reads to the lambda phage genome (Leinonen et al. 2011) and to evaluate the observed methylation; 485 

since lambda phage is completely unmethylated, any observed methylation is due to failure in bisulfite 

treatment or sequencing errors. 

 We also filtered the reads in multiple ways.  Bismark divides all cytosines into four categories: 

cytosines followed by guanines (CpGs), cytosines followed by non-guanines followed by guanines 

(CHGs), cytosines followed by at least two non-guanines (CHHs), and cytosines followed by Ns (CNs).  For 490 

our analysis, we focused on CpGs.  The CpGs with called methylation statuses should not contain most 

SNPs because we masked SNPs with Ns, so such CpGs would have become CNs; therefore, we did not 

need to filter out CpGs with SNPs because Bismark had already done this for most SNPs.  After running 

Bismark, we removed duplicates from the mapped reads using rmdup from Samtools version 0.1.19 (Li 

et al. 2009).  We also removed reads that overlapped with regions in the ENCODE black list (The ENCODE 495 

Project Consortium 2012).  Thus, we were left with reliable mapped reads and methylation calls. 

 After removing duplicates, we determined the allele of each SNP, insertion, and deletion from 

1000 Genomes AFR in each read; because we do this directly from the sequencing reads, we used only 
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the genomic positions of variants (Altshuler et al. 2010).  We used only the 1000 Genomes AFR variants 

because calling variants from pooled data is a challenging problem (Nielsen et al. 2011; Li 2014) and this 500 

panel should contain most of the variants in these individuals (Altshuler et al. 2010); however, when 

genomic variant positions are not available, they can also be inferred from the reads using established 

methods like GATK (McKenna et al. 2010) or Bis-SNP (Liu et al. 2012).  When identifying alleles from 

reads, we did not include any cytosine/thymine (C/T) SNPs or adenine/guanine (A/G) SNPs.  During the 

bisulfite treatment, unmethylated cytosines are converted into uracils (that become thymines during 505 

PCR) and, as a result, the guanines that complement them become adenines during PCR.  Therefore, for 

C/T SNPs, we cannot distinguish between unmethylated cytosines and thymines from the original reads, 

and for A/G SNPs on the reverse strand, we cannot distinguish between adenines that complement 

unmethylated cytosines (that have become thymines) and adenines from the original reads. 

 510 

Estimating the fraction of each individual in the pool 

 Although unnecessary for our method, we evaluated how well our pool represented each 

individual by using our reads to estimate the frequency of each individual in our pool.  In order to do 

this, we first computed the number of reads covering each allele of each SNP from Hapmap Phase II 

(Frazer et al. 2007).  We then solved the constrained optimization problem 515 

argmin𝑓

1

2
(𝑋𝑓 − 𝑦)2 

subject to 

𝑓 ≥ 0 
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∑ 𝑓𝑗  = 1,

60

𝑗

 

where 𝑦 is the weighted vector of alternate allele frequencies in the pool, 𝑓 is the vector of individual 

frequencies in the pool, 𝑓𝑗 is the entry in the vector 𝑓 for individual 𝑗, and 𝑋 is a weighted (number of 

variants) x (number of individuals) matrix of genotypes (on a 0 to 1 scale, where 0 is homozygous 

reference allele, 0.5 is heterozygous, and 1 is homozygous alternate allele) of each individual for each 520 

SNP.  We weighted 𝑦 and 𝑋 by multiplying them by the number of reads at the current SNP and then 

dividing them by the sum of the numbers of reads across all SNPs; this allows SNPs with more reads to 

contribute more to the optimization.  We solved the optimization problem using Matlab’s lsqlin 

(Coleman and Li 1996) with initial individual frequencies of 1/60.  We should note that this does require 

genotype information, which may not always be available for pooled samples, but the results from this 525 

are not necessary for our pooling method. 

 

Identifying methylation quantitative trait loci (mQTLs) 

 To find cytosines that are strongly associated with genetic variation, we combined variants in 

perfect linkage disequilibrium (LD), tested whether each association was significant, and used 530 

permutation tests to compute a false discovery rate (FDR).  We associated every variant (including SNPs, 

insertions, and deletions) with every cytosine on the same read, creating a list of variant-cytosine pairs; 

thus, CpGs that never occurred on a read with a variant were not analyzed.  When associating variants 

with CpGs, we combined cytosines on different strands of each CpG.  For each cytosine, we combined 

associated variants whose genotypes in 1000 Genomes AFR (Altshuler et al. 2010) are perfectly 535 

correlated by replacing the allele of the variant that is later on the chromosome with the associated 

allele for the variant earlier on the chromosome (Supplemental Figure 25).  After combining SNPs, we 
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computed the significance of the associations between variants’ alleles and cytosines’ methylation 

statuses for every variant-cytosine pair using Fisher’s Exact Test (Fisher 1922), which we implemented 

using Scipy’s fisher_exact (Oliphant 2007).  We removed all variant-cytosine pairs for which the number 540 

of reads with the minor allele or minor methylation status was so low that, given the total number of 

reads, the lowest p-value that could be achieved using Fisher’s Exact Test was ≥ 0.001.  For each 

cytosine, we defined methylation quantitative trait loci (mQTLs) to be variants for which the association 

between the allele and the cytosine’s methylation status had a Fisher’s Exact Test p < 0.001; this gave us 

an FDR of 0.0601.  We computed the FDR by permuting the methylation statuses for each variant-545 

cytosine pair 100 times, re-computing the p-value for each pair, re-identifying mQTLs, and averaging the 

number of mQTLs across permutations.  The FDR is the ratio of the average number of mQTLs across 

permutations to the number of real mQTLs.  To check for possible position-specific biases in our mQTL 

mapping, we intersected the variant-cytosine pairs for our real mQTL list with the variant-cytosine pairs 

for each permuted mQTL list; no variant-cytosine pair for a real mQTL occurred in more than two 550 

permuted lists, as expected. 

 

Computing mQTL enrichments 

 In order to test whether mQTLs associate with specific chromatin states or transcription factor 

(TF)-binding sites, we intersected our CpGs with mQTLs with chromatin states from GM12878 (Kasowski 555 

et al. 2013; Ernst and Kellis 2012) and our mQTLs with reproducible (IDR 2%) TF-binding sites and 

histone modification regions from GM12878 (Myers et al. 2011; The ENCODE Project Consortium 2012; 

Gerstein et al. 2012; Landt et al. 2012; Li et al. 2011).  If multiple data-sets were available for a TF or 

histone modification, we used the dataset with the largest number of peaks.  We used the 

hypergeometric test, with the background defined as all variants in variant-cytosine pairs with enough 560 
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reads to be tested.  We corrected p-values using the Bonferroni correction (Shaffer 1995).  For 

chromatin state enrichments, we multiplied p-values by the number of possible chromatin states.  For 

the TF-binding site and histone modification enrichments in GM12878, we multiplied p-values by the 

number of TFs and histone modifications tested.  In addition to computing p-values, we computed fold 

enrichments for chromatin states, TF-binding sites, and histone modification regions. 565 

 To test whether mQTLs associate with open chromatin in various cell types, we intersected the 

variants we tested for mQTLs with Joseph Pickrell’s list of SNPs in open chromatin regions in various cell 

types, which were downloaded from https://github.com/joepickrell/1000-genomes (Bernstein et al. 

2010; The ENCODE Project Consortium 2012; Thurman et al. 2012).  We used a hypergeometric test to 

evaluate the enrichment for mQTLs in variants overlapping open chromatin regions in each cell type.  570 

We then used a one-sided Wilcoxon rank-sum test to compare the mQTL enrichments for LCLs versus 

other cell types, where our null hypothesis was that the median hypergeometric p-value for LCLs is not 

less than the median hypergeometric p-value for other cell types. 

 

Computing overlap between mQTLs, eQTLs, dsQTLs, CTCF-binding-QTLs, and GWAS hits 575 

 In order to evaluate whether mQTLs may be associated with gene expression, open chromatin, 

CTCF-binding, and organismal-level traits, we computed overlap between mQTLs and variants from 

expression QTLs (eQTLs), DNase hypersensitivity QTLs (dsQTLs), CTCF-binding-QTLs, and genome-wide 

association study (GWAS) datasets.  For eQTLs from Pickrell et al., we downloaded the final_eqtl_list, 

and final_sqtl_list files from eqtl.uchicago.edu/RNA_Seq_data/results (Pickrell et al. 2010).  For eQTLs 580 

from the Geuvadis Consortium, a larger, more recent study, we downloaded the YRI89 files from 

ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/E-GEUV-1/analysis_results; for 

SNPs that were tested for eQTLs in Geuvadis YRI, we downloaded data from 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2015. ; https://doi.org/10.1101/013649doi: bioRxiv preprint 

https://github.com/joepickrell/1000-genomes
https://doi.org/10.1101/013649
http://creativecommons.org/licenses/by-nc/4.0/


 

 27 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502 (Lappalainen et al. 2013).  For dsQTLs, we 

downloaded the files from eqtl.uchicago.edu/dsQTL_data/QTLs; for SNPs that were tested for dsQTLs, 585 

we downloaded data from http://eqtl.uchicago.edu/dsQTL_data/GENOTYPES (Degner et al. 2012).  We 

then used liftOver (Kent et al. 2002) to convert the SNP coordinates from hg18 to hg19 and finally 

combined short-range and long-range dsQTLs.  For CTCF-binding-QTLs and SNPs that were tested for 

CTCF-binding-QTLs, we downloaded data from http://www.ebi.ac.uk/birney-srv/CTCF-QTL (Ding et al. 

2014).  For the GWAS data, we downloaded the GWAS Catalog (Welter et al. 2014) on January 14, 2014.  590 

For all QTL and GWAS data-sets except for the CTCF-binding-QTLs, we used SNAP Proxy Search (Johnson 

et al. 2008) with the YRI population panel and the default distance limit to identify 1000 Genomes Pilot 1 

YRI SNPs in perfect LD and 𝑟2 ≥ 0.8 LD with the SNPs in the data-set and used liftOver (Kent et al. 2002) 

to convert SNP coordinates from hg18 to hg19.  For the CTCF-binding-QTLs, we used the same 

procedure for finding SNPs in LD as was used in the other studies except that we used SNAP’s CEU 595 

population panel (Johnson et al. 2008) because this study was done in individuals with European 

ancestry; we used this study even though it came from a different population because it is the only 

existing CTCF-binding-QTL study. 

To compute the enrichment of mQTLs in another molecular QTL study, we used a 

hypergeometric test, with the background defined as all variants tested in both our study and the other 600 

study.    In addition to computing p-values, we computed fold enrichments.  The p-values and fold 

enrichments reported in the Results section are those for molecular QTLs and variants in perfect LD with 

molecular QTLs. 

 Because we do not know all of the SNPs in our study that have been tested in a GWAS, we 

applied a method similar to the one used by Lappalainen et al. (Lappalainen et al. 2013) for finding the 605 

enrichment of mQTLs in GWAS hits.  We first created 10,000 null sets of variants from our study, where 
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each variant 𝑖 in a null set had an MAF within 0.001 of variant 𝑖 in the set of mQTLs found in our study.  

Then we found the number of overlaps between the null set and GWAS hits.  The p-value was defined as 

the fraction of null sets with at least as many overlaps with GWAS hits as mQTLs have with GWAS hits.  

We computed the fold enrichment for GWAS in the same way as the fold enrichment for molecular 610 

QTLs. 

 

Obtaining mQTLs from the Zhang et al. data 

 We compared our mQTLs to those in the Zhang et al. study because it is one of the two largest 

CpG microarray study of Yoruban LCLs (Zhang et al. 2014).  We obtained a list of filtered CpGs from the 615 

authors, where the filtering included all of the metrics described in their paper.  We downloaded their 

Supplemental Table 2, which has their YRI mQTLs.  We computed the p-value for the overlap between 

CpGs with mQTLs in both studies using a hypergeometric test, where the background was all CpGs 

tested in both studies. 

 620 

Obtaining mQTLs from the Banovich et al. data 

 We also compared our mQTLs to those in the Banovich et al. study because it is the other of the 

two largest CpG microarray studies of Yoruban LCLs (Banovich et al. 2014).  We obtained a list of filtered 

CpGs from the authors, where the filtering included all of the metrics described in their paper.  We 

downloaded their mQTLs from http://giladlab.uchicago.edu/data/meQTL_summary_table.txt (Banovich 625 

et al. 2014).  We computed the p-value for the overlap between CpGs with mQTLs in both studies using 

a hypergeometric test, where the background was all CpGs tested in both studies.  We also intersected 
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their CpGs with mQTLs with those found by Zhang et al. (Zhang et al. 2014) to compare the results of 

these two earlier studies. 

 630 

Overlapping CpGs in our study with CpG islands and surrounding regions 

 We determined the fraction of CpGs with mQTLs in our data-set that are also in CpG islands or 

shores.  We did this by downloading CpG islands from http://rafalab.jhsph.edu/CGI/model-based-cpg-

islands-hg19.txt (Irizarry et al. 2009; Wu et al. 2010).  Because CpG shores are generally defined as the 2 

kb surrounding CpG islands in each direction (Price et al. 2013), we extended each CpG island by 2 kb in 635 

each direction using BEDtools slopBed version 2.16.1 (Quinlan and Hall 2010).  We then identified the 

number of CpGs with mQTLs that are in both the CpG islands and the extended CpG islands. 

 

Validation of mQTLs through bisulfite pyrosequencing 

 Bisulfite PCR-pyrosequencing assays were designed with PyroMark Assay Design 2.0 (Qiagen).  640 

The regions of interest were amplified by PCR using the HotstarTaq DNA polymerase kit (Qiagen) as 

follows: 15 minutes at 95°C (to activate the Taq polymerase), 45 cycles of 95°C for 30 sec., 58°C for 30 

sec., and 72°C for 30 sec., and a 5 minute 72°C extension step; primer sequences are listed in 

Supplemental Table 5.  For pyrosequencing, a single-stranded DNA was prepared from the PCR product 

with the Pyromark™ Vacuum Prep Workstation (Qiagen), and the sequencing was performed using 645 

sequencing primers on a Pyromark™ Q96 MD pyrosequencer (Qiagen).  The quantitative levels of 

methylation for each CpG dinucleotide were calculated with Pyro Q-CpG software (Qiagen).  p-Values for 

associations were the asymptotic p-values of the correlations between genotype and average 
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methylation from the pyrosequencing assay.  We performed pyrosequencing on the 60 individuals in our 

pool, as well as on 30 additional individuals, who are the offspring of those 60. 650 

 

DATA ACCESS 

 The data generated in this study have been submitted to the Sequence Read Archive 

(http://www.ncbi.nlm.nih.gov/sra) under accession number SRP045408. 
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Figure 1: Using pooled bisulfite sequencing to identify mQTLs 670 

Our pooling method enables us to identify mQTLs directly from bisulfite sequencing reads.  In this 

approach, cells or DNA samples from all individuals are combined into a single pool, which is then 

subject to bisulfite sequencing.  Alleles and methylation statuses are inferred from the sequence reads, 

which are then used to generate a 2x2 contingency table (where columns represent methylation 

statuses and rows represent alleles).  Fisher’s Exact Test is used to compute a p-value for the null 675 

hypothesis of no association. 

 

Figure 2: Simulations comparing our pooled ASM method to the traditional non-ASM method 

Our pooled ASM method has more power to detect mQTLs than the traditional non-ASM method, 

especially for low effect sizes.  Simulated reads from 100 individuals were sampled from a negative 680 

binomial distribution, with minor allele and minor methylation frequencies of 0.1.  Power to detect an 

mQTL is shown for each method as a function of mQTL effect size and total read depth.  The effect size is 

the correlation between allele and methylation status, and the power is the fraction of the simulations 

in which we identified an mQTL (with p < 0.001).  Additional simulations are shown in Supplemental 

Figures 1-7, and ROC curves from the simulations are shown in Supplemental Figures 8-10. 685 

 

Figure 3: Pyrosequencing validation of mQTLs 

Shown are two mQTLs involving SNPs previously identified in GWAS.  (Left: The SNP is associated with 

age-related macular degeneration.  Right: The SNP is associated with the ratio of visceral adipose tissue 

to subcutaneous adipose tissue.)  a) Pooled bisulfite sequencing for the two mQTLs, showing strong 690 

association.  b) Pyrosequencing validation of the two mQTLs in individual samples that were used for the 

pooled bisulfite sequencing confirms the bisulfite sequencing results.  Light blue points are the 

methylation percentages from individuals, and crosses are the mean methylation percentages for 

individuals of each genotype.  c) Pyrosequencing validation of the two mQTLs in 30 additional YRI 

individuals shows that the mQTLs are not limited to the individuals in our study.  Light blue points are 695 

the methylation percentages from individuals, and crosses are the mean methylation percentages for 

individuals of each genotype.  

 

Figure 4: Fold enrichments of mQTLs overlapping other QTLs and GWAS hits 

mQTLs have greater enrichment for QTLs physically associated with DNA than they do for QTLs related 700 

to downstream traits only indirectly linked to DNA.  
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mQTL rsID CpG position mQTL annotation p-value in 

pooled bisulfite 

sequencing data 

p-value in 

pyrosequencing data 

rs10737680 chr1:196679457 GWAS hit  4.3 x 10-5 3.6 x 10-32, 3.3 x 10-16 

rs9517668 chr13:99923889 In LD with GWAS hit 7.7 x 10-4 > 1 

rs12905925 chr15:65164853 dsQTL 5.3 x 10-6 4.0 x 10-7 

rs617201 chr17:3089145 In LD with GWAS hit 3.5 x 10-5 6.4 x 10-9 

rs1113144 chr18:71774787 In LD with GWAS hit 1.4 x 10-5 4.4 x 10-13 

rs4809456 chr20:61660870 In LD with GWAS hit 1.2 x 10-4 2.4 x 10-5 

rs62223713 chr21:30158046 Exon-level eQTL 2.0 x 10-4 9.7 x 10-12 

rs7705033 chr5:122774795 GWAS hit 4.7 x 10-5 3.8 x 10-23, 8.3 x 10-8 

 

Table 1: Pyrosequencing validation of mQTLs 

Seven out of tested eight mQTLs were successfully validated using pyrosequencing.  All mQTLs have p-

values for the pyrosequencing validation on 30 YRI individuals who were not included in our pooled 705 

bisulfite sequencing data.  mQTLs with two p-values are those that were also validated using the 60 YRI 

individuals in our study; the p-value from pyrosequencing of the 60 individuals in our data is listed first.  

All pyrosequencing data p-values have been Bonferroni-corrected. 

 

710 
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Chromatin state Percentage of CpGs with 
mQTLs in state 

Enrichment p-value 

1.  Active TSS 0.90% 3.0 x 10-6 

2.  Flanking Active TSS 1.0% 7.4 x 10-3 

3.  Strong Transcription 3.8% 1.6 x 10-2 

4.  Weak Transcription 3.3% 1.2 x 10-4 

5.  Acetylated Active Enhancer 1.5% 1.7 x 10-3 

6.  Acetylated Active Enhancer (Genic) 0.26% > 1 

7.  Active Enhancer 2.8% 4.4 x 10-5 

8.  Active Enhancer (Genic) 0.86% 7.8 x 10-2 

9.  Weak Enhancer 3.1% 4.9 x 10-1 

10.  Weak Enhancer (Genic) 0.99% 6.6 x 10-1 

11.  Bivalent TSS 0.30% > 1 

12.  Bivalent Enhancer 1.1% > 1 

13.  Repressed PolyComb 23% > 1 

14.  CTCF Only 1.9% 7.6 x 10-2 

15.  Quiescent/Low 55% > 1 

 

Table 2: Enrichment of CpGs with mQTLs in LCL chromatin states 

Most CpGs with mQTLs occur in regions of the genome that are in the “Repressed PolyComb” or 

“Quiescent/Low” chromatin states, but this is still no more than expected by chance.  All p-values are 715 

Bonferroni-corrected.  States with enrichment p < 0.05 are in bold. 
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