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Abstract11

We have carried out a comprehensive analysis of the determinants of human influenza A H312

hemagglutinin evolution, considering three distinct predictors of evolutionary variation at in-13

dividual sites: solvent accessibility (as a proxy for protein fold stability and/or conservation),14

experimental epitope sites (as a proxy for host immune bias), and proximity to the receptor-15

binding region (as a proxy for protein function). We found that these three predictors individ-16

ually explain approximately 15% of the variation in site-wise dN/dS. The solvent accessibility17

and proximity predictors were largely independent of each other, while the epitope sites were not.18

In combination, solvent accessibility and proximity explained 32% of the variation in dN/dS.19

Incorporating experimental epitope sites into the model added only an additional 2 percentage20

points. We also found that the historical H3 epitope sites, which date back to the 1980s and21

1990s, showed only weak overlap with the latest experimental epitope data. Finally, sites with22

dN/dS > 1, i.e., the sites most likely driving seasonal immune escape, are not correctly predicted23

by either historical or experimental epitope sites, but only by proximity to the receptor-binding24

region. In summary, proximity to the receptor-binding region, and not host immune bias, seems25

to be the primary determinant of H3 evolution.26

Author summary27

The influenza virus is one of the most rapidly evolving human viruses. Every year, it accumulates28

mutations that allow it to evade the host immune response of previously infected individuals.29

Which sites in the virus’ genome allow this immune escape and the manner of escape is not30

entirely understood, but conventional wisdom states that specific “immune epitope sites” in the31

protein hemagglutinin are preferentially attacked by host antibodies and that these sites mutate32

to directly avoid host recognition; as a result, these sites are commonly targeted by vaccine33

development efforts. Here, we combine influenza hemagglutinin sequence data, protein structural34

information, experimental immune epitope data, and historical epitopes to demonstrate that35

neither the historical epitope groups nor epitopes based on experimental data are crucial for36
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predicting the rate of influenza evolution. Instead, we find that a simple geometrical model37

works best: sites that are closest to the location where the virus binds the human receptor are38

the primary driver of hemagglutinin evolution. There are two possible explanations for this39

result. First, the existing historical and experimental epitope sites may not be the real antigenic40

sites in hemagglutinin. Second, alternatively, hemagglutinin antigenicity may not the primary41

driver of influenza evolution.42

Introduction43

The influenza virus causes one of the most common infections in the human population. The44

success of influenza is largely driven by the virus’s ability to rapidly adapt to its host and escape45

host immunity. The antibody response to the influenza virus is determined by the surface pro-46

teins hemagglutinin (HA) and neuraminidase (NA). Among these two proteins, hemagglutinin,47

the viral protein responsible for receptor binding and uptake, is a major driver of host immune48

escape by the virus. Previous work on hemagglutinin evolution has shown that the protein49

evolves episodically [1–3]. During most seasons, hemagglutinin experiences mostly neutral drift50

around the center of an antigenic sequence cluster; in those seasons, it can be neutralized by51

similar though not identical antibodies, and all of the strains lie near each other in antigenic52

space [4–7]. After several seasons, the virus escapes its local sequence cluster to establish a new53

center in antigenic space [7–9].54

There is a long tradition of research aimed at identifying important regions of the hemag-55

glutinin protein, and by proxy, the sites that determine sequence-cluster transitions [4,6,10–21].56

Initial attempts to identify and categorize important sites of H3 hemagglutinin were primarily57

sequence-based and focused on substitutions that took place between 1968, the emergence of58

the Hong Kong H3N2 strain, and 1977 [10,11]. Those early studies used the contemporaneously59

solved protein crystal structure, a very small set of mouse monoclonal antibodies, and largely60

depended on chemical intuition to identify antigenically relevant amino-acid changes in the ma-61

ture protein. Many of the sites identified in those studies reappeared nearly two decades later,62

in 1999, as putative epitope sites with no additional citations linking them to actual immune63

data [4]. Those sites and their groupings are still considered the canonical immune epitope set64

today [3, 16, 22]. While the limitations of experimental techniques and of available sequence65

data in the early 1980’s made it necessary to form hypotheses based on chemical intuition, these66

limitations are starting to be overcome through recent advances in experimental immunological67

techniques and wide-spread sequencing of viral genomes. Therefore, it is time to revisit the68

question of whether or not the host immune system directly pressures influenza to evolve to es-69

cape antibody binding, or perhaps, there is some other indirect manner of immune escape. For70

example, at least one recent model has suggested that the hemagglutinin protein may evolve to71

modulate receptor-binding avidity rather than to modulate antibody-binding [23]. Moreoever,72

since the original epitope set was identified via sequence analysis, we do not even know whether73

bona-fide immune-epitope sites actually exist, i.e., sites which represent a measurable bias in74

the host immune response. Most importantly, even if immune-epitope sites do exist and can be75

experimentally identified, it is possible that they do not experience more positive selection than76

other important sites in the protein.77
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Some recent studies have begun to address these questions indirectly, via evolutionary anal-78

ysis. For example, over the last two decades, virtually every major study on positive selection in79

hemagglutinin has found some but never all of the historical epitope sites to be under positive80

selection [3, 16, 18, 19, 23]. Furthermore, each of these studies has found a set of sites that are81

under positive selection but do not belong to any historical epitope. Finally, because every study82

identifies slightly different sites, there seems to be no broad agreement on which sites are under83

positive selection [12, 16, 18, 19]. The sites found by disparate techniques are similar but they84

are never identical.85

To dissect the determinants of hemagglutinin evolution, we here linked several predictors,86

including relative solvent accessibility, the inverse distance from the receptor-binding region,87

and experimental immune epitope data, to site-wise evolutionary rates calculated from all of88

the human H3N2 sequence data for the last 22 seasons (1991–2014). We found that, indi-89

vidually, all these predictors explained approximately 15% of evolutionary rate variation. In90

addition, we analyzed all of the available H3 experimental epitope data, and we found that91

current experimental data does not at all reflect the historical epitope sites or their groups.92

After controlling for biophysical constraints with relative solvent accessibility and function with93

distance to the receptor-binding region, the remaining predictive power of either experimental or94

historical categories was relatively low. Finally, by explicitly accounting for RSA, proximity, and95

host immune data, we found that we could predict nearly 35% of the evolutionary rate variation96

in hemagglutinin, nearly twice as much variation as could be explained by earlier models.97

Results98

Relationship between evolutionary rate and inverse distance to the receptor-99

binding site100

Our overarching goal in this study was to identify specific biophysical or biochemical properties of101

the mature protein that determine whether a given site will evolve rapidly or not. As a measure102

of evolutionary variation and selective pressure, we used the metric dN/dS. dN/dS can measure103

both the amount of purifying selection acting on a site (when dN/dS � 1 at that site) and the104

amount of positive diversifying selection acting on a site (when dN/dS & 1). For simplicity, we105

will refer to dN/dS as an evolutionary rate, even though technically it is a relative evolutionary106

rate or evolutionary-rate ratio. We built an alignment of 3854 full-length H3 sequences spanning107

22 seasons, from 1991/92 to 2013/14. We subsequently calculated dN/dS at each site, using a108

one-rate fixed-effects likelihood (FEL) model as implemented in the software HyPhy [24].109

Several recent works have shown that site-specific evolutionary variation is partially pre-110

dicted by a site’s solvent exposure and/or number of residue-residue contacts in the 3D struc-111

ture [19, 20, 25–30] (see Ref. [31] for a recent review). This relationship between protein struc-112

ture and evolutionary conservation likely reflects the requirement for proper and stable protein113

folding: Mutations at buried sites or sites with many contacts are more likely to disrupt the114

protein’s conformation [30] or thermodynamic stability [32]. In addition, there may be func-115

tional constraints on site evolution. For example, regions in proteins involved in protein–protein116

interactions or enzymatic reactions are frequently more conserved than other regions [27,33,34].117

However, these structural and functional constraints generally predict the amount of purifying118
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selection expected at sites, and therefore they cannot identify sites under positive diversify-119

ing selection. Moreover, the short divergence time of viruses causes the systematic biophysical120

pressures that predict much of eukaryotic protein evolution to be much less dominant in viral121

evolution [28]. Thus, we set out to find a constraint on hemagglutinin evolution that was related122

to the protein’s role in viral binding and fusion.123

A few earlier studies had shown that sites near the sialic acid-binding region of hemagglu-124

tinin tend to evolve more rapidly than the average for the protein [4, 20, 21]. Furthermore,125

when mapping evolutionary rates onto the hemagglutinin structure, we noticed that the den-126

sity of rapidly evolving sites seemed to increase somewhat towards the receptor-binding region127

(Fig. 1A). Therefore, as the primary function of hemagglutinin is to bind to sialic acid and in-128

duce influenza uptake, we reasoned that distance from the receptor-binding region of HA might129

serve as a predictor of functionally driven HA evolution. We calculated distances from the sialic130

acid-binding region (defined as the distance from site 224 in HA), and correlated these distances131

with the evolutionary rates at all sites. We found that distance from the receptor-binding re-132

gion was a strong predictor of evolutionary rate variation in hemagglutinin (Pearson correlation133

r = 0.41, P < 10−15).134

Next, we wanted to verify that this correlation was representative of hemagglutinin evolution135

and not just an artifact of the specific site chosen as the reference point in the distance calcula-136

tions. It would be possible, for example, that distances to several spatially separated reference137

sites all resulted in similarly strong correlations. We addressed this question systematically by138

making, in turn, each individual site in HA the reference site, calculating distances from that site139

to all other sites, and correlating these distances with evolutionary rate. We then mapped these140

correlations onto the structure of hemagglutinin, coloring each site according to the strength141

of the correlation we obtained when we used that site as reference in the distance calculation142

(Fig. 1B). We obtained a clean, gradient-like pattern: The correlations were highest when we143

calculated distances relative to sites near the receptor-binding site (with the maximum correla-144

tion obtained for distances relative to site 224), and they continuously declined and then turned145

negative the further we moved the reference site away from the apical region of hemagglutinin146

(Fig. 1B). This result was in stark contrast to the pattern we had previously observed when147

mapping evolutionary rate directly (Fig. 1A). In that earlier case, while there was a perceptible148

preference of faster evolving sites to fall near the receptor-binding site, the overall distribution of149

evolutionary rates along the structure looked mostly random to the naked eye. We thus found a150

geometrical, distance-based constraint on hemagglutinin evolution: Sites evolve faster the closer151

they lie toward the receptor-binding region.152

We also evaluated how proximity to the receptor-binding region performed as a predictor of153

dN/dS in comparison to the previously proposed structural predictors relative solvent accessi-154

bility (RSA) and weighted contact number (WCN). We found that among these three quantities,155

proximity to the sialic acid-binding region was the strongest predictor, explaining 16% of the156

variation in dN/dS (Pearson r = 0.41, P < 10−15, see also Figs. 2 and S1). RSA and WCN ex-157

plained 14% and 6% of the variation in dN/dS, respectively (r = 0.37, P < 10−15 and r = 0.25,158

P = 7× 10−9). Proximity to the sialic acid-binding region and RSA were virtually uncorrelated159

(r = 0.08, P = 0.09) while RSA and WCN correlated strongly (r = −0.64, P < 10−15). These160

results suggested that proximity to the sialic acid-binding region and RSA should be used jointly161

in a predictive model.162
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Because hemagglutinin has, in addition to its function as a receptor-binding protein, a host163

of other intermediate functional states during the viral fusion process, we also tested the ability164

of structural metrics from the post-fusion state to predict hemagglutinin evolutionary rate [35].165

We found no significant metric, either RSA or proximity, derived from the post-fusion state.166

(Complete data and analysis scripts are available in the accompanying github repository, see167

Methods for details.)168

Incorporating experimental immunological data169

Another potential functional constraint on hemagglutinin evolution is a bias in the human170

immune system. This bias, generally referred to as antigenicity, describes the extent to which171

the human immune system does a better job attacking one region of a protein compared to172

another. Conventional wisdom states that functionally important sites in the protein that are173

targeted by antibodies will evolve more rapidly to facilitate immune escape. And indeed, our174

results from the previous subsection have shown that proximity to the receptor-binding region175

is a good predictor of evolutionary variation. However, if substitutions to avoid direct antibody176

binding are the primary cause of positive selection, then we would expect antigenic sites on177

hemaggalutinin to serve as a substantially better predictors of adaptation than proximity to the178

receptor-binding site alone.179

For influenza hemagglutinin H3, there exists a list of canonical, historical epitope sites that180

are commonly considered to represent this bias [4]. However, these sites were not primarily181

defined based on actual immunological data, and they have not been re-validated since the late182

1990s even though more experimental data is now available. (See Discussion for details on the183

history of the historical epitope sites.) Before we could generate a combined evolutionary model,184

we therefore considered it essential to validate the antigenic groups with available immunological185

data. As it turns out, the majority of antigenic data available did not agree with the historical186

epitope sites (Supporting Text S1). Therefore, we used both the historical epitope sites and a187

set of experimentally re-defined epitopes for further modeling.188

A detailed explanation of our re-grouping based on experimental data is available in the189

Supplementary Text S1. It is important to note that these groups are not intended to represent190

a new canonical set of hemagglutinin epitopes. Indeed, the data from which they were derived191

is limited and relatively poorly annotated. However, considering the magnitude of the difference192

between the historical epitopes and the available experimental data we considered it imperative193

to include experimentally derived epitopes in our analysis.194

Thus, we considered both the historical epitope groups (Bush 1999) and the experimentally195

derived epitopes 1–4, defined in the Supplementary Text. Because a site’s epitope status is a196

categorical variable, we calculated variance explained as the coefficient of determination (R2) in197

a linear model with dN/dS as the response variable and epitope status as the predictor variable.198

We found that experimental epitopes explained 15% of the variation in dN/dS, comparable to199

RSA and proximity. In comparison, the historical epitopes alone explained nearly 18% of the200

variation in dN/dS, outperforming all other individual predictor variables considered here (Fig. 2201

and Table 1). However, as discussed in the Supplementary Text S1, the available experimental202

data suggest that not all of the historical sites may be actual immune epitope sites. Therefore,203

we suspected that some of the predictive power of historical sites was due to these sites simply204
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being solvent-exposed sites near the receptor-binding region. We similarly wondered to what205

extent the predictive power of the experimental epitope sites was attributable to the same cause,206

since, in fact, both historical and experimental epitope sites showed comparable enrichment in207

sites near the sialic acid-binding region and in solvent-exposed sites (Fig. S2). Therefore, we208

analyzed how the variance explained increased as we combined epitope sites (experimental or209

historical) with either RSA or proximity or both.210

We found that epitope status, under either definition (experimental/historical), led to in-211

creased predictive power of the model when combined with either RSA or proximity (Fig. 2).212

However, a model consisting of just the two predictors RSA and proximity, not including any213

information about epitope status of any sites, performed even better than any of the other one-214

or two-predictor models, explaining 32% of the variation in dN/dS (Fig. 2). Adding epitope sta-215

tus to this best-performing two-predictor model resulted in only minor improvement, from 32%216

to 34% variance explained in the case of experimental epitopes and from 32% to 37% variance217

explained in the case of historical epitope sites (Fig. 2 and Table 1).218

Predicting sites under selection and comparisons to other work219

The geometrical constraints RSA and proximity explained more variance in dN/dS than did220

epitope sites, but were they also better at predicting sites of interest? Because dN/dS can221

measure purifying as well as positive diversifying selection, the percent variance in dN/dS that222

a model explains may not necessarily accurately reflect how useful that model is in predicting223

specific sites, e.g. sites under positive selection. For example, one could imagine a scenario224

in which a model does exceptionally well on sites under purifying selection (dN/dS � 1) but225

fails entirely on sites under positive selection (dN/dS > 1). Such a model might explain a226

large proportion of variance but be considered less useful than a model that overall predicts227

less variation in dN/dS but accurately pinpoints site under positive selection. Therefore, we228

wondered whether epitope sites might do a poor job predicting background purifying selection229

but might still be useful in predicting sites with dN/dS > 1. We found, to the contrary,230

that neither the historical nor the experimental epitope sites could reliably predict sites with231

dN/dS > 1, alone or in combination with RSA (Fig. 3A–D). Proximity to the receptor-binding232

site, on the other hand, correctly predicted four sites with dN/dS > 1, even in the absence of233

any other predictors. Notably, all models we considered here were robust to cross-validation.234

The cross-validated residual standard error was virtually unchanged from its non-cross-validated235

value in all cases (Table 1). Because proximity clearly identified four points with high dN/dS,236

we also verified that the proximity–dN/dS correlation was not caused just by these four points.237

We removed from our data set the four points that had both predicted and observed dN/dS >238

1, and found that a significant proximity–dN/dS correlation remained nonetheless (r = 0.17,239

p = 0.00001).240

Finally, we compared the predictions from the geometrical model of hemagglutinin evolution241

to results from a recent study of antigenic cluster transitions; that study found seven sites near242

the receptor-binding region which were critical for cluster transitions according to hemagglutinin243

inhibition (HI) assays with ferret antisera [21]. The sites identified in Ref. [21] were 145, 155,244

156, 158, 159, 189, and 193. For comparison, our geometric model (with predictors RSA and245

1/Distance) predicted none of these sites to be under positive selection. Sites predicted to246
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have dN/dS > 1 were instead 96, 137, 138, 143, 222, 223, 225, and 226. Moreover, out of the247

seven sites from Ref. [21], only one (site 145) had an observed dN/dS significantly above 1. By248

contrast, four of the eight sites predicted under the geometric model to have dN/dS > 1 did249

indeed have dN/dS significantly above 1. Thus, the sites that determine the major antigenic250

changes in the virus did not at all overlap with the sites expected and observed to be under the251

greatest evolutionary pressure. When investigating the location of these sites in detail, we found252

that all of the sites we predicted to have dN/dS > 1 were located just basal to the receptor-253

binding site, whereas nearly all of the sites from [21] (with the exception of 145, the site with254

dN/dS > 1) were located on the apical side of the receptor-binding site (Fig. 4).255

In summary, we have found that two simple geometric measures of a site’s location in the 3D256

protein structure, solvent exposure and proximity to the receptor-binding region, jointly out-257

performed, by a wide margin, any previously considered predictor of evolutionary variation in258

hemagglutinin, including immune epitope groups. In fact, the vast majority of the variation in259

evolutionary rate that was explained by the historical epitope sites was likely due to these sites260

simply being located near the receptor-binding region on the surface of the protein. However,261

historical epitope sites, in combination with solvent exposure and proximity, had some resid-262

ual explanatory power beyond even a three-predictor model that combined the two geometric263

measures with experimental immune-epitope data. We suspect that this residual explanatory264

power reflects the sequence-based origin of the historical epitope sites. To our knowledge, the265

historical epitope sites were at least partially identified by observed sequence variation, so that,266

to some extent, these sites are simply the sites that have been observed to evolve rapidly in267

hemagglutinin.268

Discussion269

We have conducted a thorough analysis of the determinants of site-specific hemagglutinin evo-270

lution. Most importantly, we have found that host immune bias (as currently measured by271

experimental and historical epitopes) accounts for a very small but significant portion of the272

evolutionary pressure on influenza hemagglutinin. In addition, we have found that epitope sta-273

tus cannot predict hemagglutinin sites under positive selection. By contrast, a simple geometric274

measure, receptor-binding proximity, is both a combined strong predictor of evolutionary rate275

and is the only quantity that can predict sites with dN/dS > 1. In addition, we have showed276

that a simple linear model containing three predictors, solvent accessibility, proximity to the277

receptor-binding region, and experimental epitopes, explains nearly 35% of the evolutionary278

rate variation in hemagglutinin H3. Therefore, our analysis suggests that one of two possible279

explanations must be true. First, it is possible that hemagglutinin antigenicity is not a strong280

direct driver of influenza adaptive evolution; rather, it is possible that influenza escapes the hu-281

man host immune system by indirect means [23]. Second, alternatively, the current experimental282

data and historical epitopes may simply be insufficient and/or incorrect. Such a situation would283

explain why neither epitope definition can explain much evolutionary rate variation beyond284

the geometric constraints, and why neither epitope definition can predict sites under positive285

selection.286
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History of epitopes in hemagglutinin H3287

Efforts to define immune epitope sites in H3 hemagglutinin go back to the early 1980’s [10].288

Initially, epitope sites were identified primarily by speculating about the chemical neutrality of289

amino acid substitutions between 1968 (the year H3N2 emerged) and 1977, though some limited290

experimental data on neutralizing antibodies was also considered [10, 11]. In 1981, the initial291

four epitope groups were defined by non-neutrality (amino-acid substitutions that the authors292

believed changed the chemical nature of the side chain) and relative location, and given the293

names A through D [10]. Since that original study in 1981, the names and general locations of294

H3 epitopes have remained largely unchanged [4,16]. The sites were slightly revised in 1987 by295

the same authors and an additional epitope named E was defined [11]. From that point forward296

until 1999 there were essentially no revisions to the codified epitope sites. In addition, while297

epitopes have since been redefined by adding or removing sites, no other epitope groups have298

been added [3,16,18]; epitopes are still named A–E. In 1999, the epitopes were redefined by more299

than doubling the total number of sites and expanding all of the epitope groups [4]. At that300

time, the redefinition consisted almost entirely of adding sites; very few sites were eliminated301

from the epitope groups. Although this set of sites and their groupings remain by far the most302

cited epitope sites, it is not particularly clear what data justified this definition. Moreover, when303

the immune epitope database (IEDB) summarized the publicly available data for influenza in304

2007, it only included one experimental B cell epitope in humans (Table 2 in [36]). Although305

there were a substantial number of putative T cell epitopes in the database, a priori there is306

no reason to expect a T cell epitope to show preference to hemagglutinin as opposed to any307

other influenza protein; yet it is known that several other influenza proteins show almost no308

sites under positive selection. Moreover, it is known that the B cell response plays the biggest309

role is maintaining immunological memory to influenza, and thus it is the most important arm310

of the adaptive immune system for influenza to avoid.311

The historical H3 epitope sites have played a crucial role in molecular evolution research.312

Since 1987, an enormous number of methods have been developed to analyze the molecular313

evolution of proteins, and specifically, to identify positive selection. The vast majority of these314

methods have either used hemagglutinin for testing, have used the epitopes for validation, or315

have at some point been applied to hemagglutinin. Most importantly, in all this work, the316

epitope definitions have been considered fixed. Most investigators simply conclude that their317

methods work as expected because they recover some portion of the epitope sites. Yet virtually318

all of these studies identify many sites that appear to be positively selected but are not part of319

the epitopes. Likewise, there is no single study that has ever found all of the epitope sites to320

be important. Even if the identified sites from all available studies were aggregated, we would321

likely not find every site among the historical epitopes in that aggregated set of sites.322

Implications of historical epitope groups for current research323

Given all of this research activity, it seems that the meaning of an immune epitope has been324

muddled. Strictly speaking, an immune epitope is a site to which the immune system reacts.325

There is no a priori reason why an immune epitope needs to be under positive selection, needs326

to be a site that has some number or chemical type of amino acid substitutions, or needs to327
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be predictive of influenza whole-genome or hemagglutinin-specific sequence cluster transitions.328

Yet, from the beginning of the effort to define hemagglutinin immune epitopes, such features329

have been used to identify epitope sites, resulting in a set of sites that may not accurately reflect330

the sites against which the human immune system produces antibodies.331

Ironically, this methodological confusion has actually been largely beneficial to the field of332

hemagglutinin evolution. As our data indicate, if the field had been strict in its pursuit of333

immune epitopes sites, it would have been much harder to produce predictive models with those334

sites, in particular given that experimental data on non-linear epitopes have been sparse until335

very recently. By contrast, the historical epitope sites have been used quite successfully in several336

predictive models of the episodic nature of influenza sequence evolution. In fact, in our analysis,337

historical epitopes displayed the highest amount of variance explained among all individual338

predictors (Fig. 2). We argue here that the success of historical epitope sites likely stems from339

the fact that they were produced by disparate analyses each of which accounted for a different340

portion of the evolutionary pressures on hemagglutinin. Of course, it is important to realize341

that some of this success is likely the result of circular reasoning, since the sites themselves were342

identified at least partially from sequence analysis that included the clustered, episodic nature343

of influenza hemagglutinin sequence evolution.344

Despite the success of historical epitope groups, they only predict about 18% of the evolu-345

tionary rate-variation of hemagglutinin for the entire phylogenetic tree. Since many of these sites346

likely are not true immune epitopes (and therefore not host dependent), one might ask which347

features of the historical epitope sites make them good predictors. We suspect that they perform348

well primarily because they are a collection of solvent-exposed sites near the sialic acid-binding349

region (see Fig. S2). We had shown previously that sites within 8 Å of the sialic acid-binding site350

are enriched in sites under positive selection, compared to the rest of the protein [20]. A similar351

result was found in the original paper by Bush et al. [4]. However, the related metric of distance352

from the sialic acid-binding site has not previously been considered as a predictor of evolution353

in hemagglutinin. Furthermore, before 1999, most researchers thought the opposite should be354

true; that receptor-binding sites should have depressed evolutionary rates [4]. Even today the355

field seems split on the matter [21]. As we have shown here, the inverse of the distance from356

sialic acid is a relatively strong quantitative predictor of hemagglutinin evolution; by itself this357

distance metric can account for 16% of evolutionary rate-variation. Moreover, by combining this358

one metric with another to control for solvent exposure, we can account for more than a third359

of the evolutionary rate variation in hemagglutinin. For reference, this number is larger than360

the variation one could predict by collecting and analyzing all of the hemagglutinin sequences361

that infect birds (another group of animals with large numbers of natural influenza infections),362

and using those rates to predict human influenza hemagglutinin evolutionary rates [20].363

In terms of re-grouping experimental immune data, it is important to note that the IEDB364

has major limitations; not all existing (not to mention all possible) immunological data have365

been added. Further, the extent to which certain epitopes (e.g., stalk epitopes) have been366

mapped may be more reflective of a bias in research interests among influenza researchers than367

a bias in the human immune system. Also, until recently, the ability to generate unbiased368

high-affinity antibodies to influenza has been limited [37, 38]. Therefore, in our re-derivation of369

epitope groupings, we are certainly missing sites or may be incorrectly grouping the ones that we370

have. Our analysis of epitope sites will likely have to be redone as more data become available.371
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However, we expect that as more non-linear data become available, they will broadly follow the372

trend observed in the linear epitope data, that is, the more antibodies are mapped, the more373

sites in the hemagglutinin protein appear in at least one mapping, until virtually every site in the374

entire hemagglutinin protein is represented. Under this scenario, the ability to predict evolution375

from immunological data would become worse, not better, as more data are accumulated.376

One additional caveat comes from any potential effect of glycosylation on influenza immune377

escape. It is known that glycosylations on hemagglutinin can have a major effect on antibody378

binding [13]. In addition, the number of glycosylations in H3 hemagglutinin has increased since379

initial introduction of pandemic H3N2 in 1968 [13]. However, a priori there is no reason to380

believe that glycosylation will either increase or decrease dN/dS at individual sites or groups381

of sites; it could affect dN/dS in either direction, in particular if direct antibody escape is not382

the primary driver of hemagglutinin evolution. Moreover, there is no clear way to incorporate383

glycosylation into our regression model. In the future, investigating changing glycosylation pat-384

terns throughout the evolution of H3 hemagglutinin may yield important insights into influenza385

adaptation and immune escape.386

Geometric constraints likely dominate adaptive evolution in hemagglutinin387

Why do geometric constraints (solvent exposure and proximity to receptor-binding site) do a388

good job predicting hemagglutinin evolutionary rates? Hemagglutinin falls into a class of pro-389

teins known collectively as viral spike glycoproteins (GP). In general, the function of these390

proteins is to bind a host receptor to initiate and carry out uptake or fusion with the host391

cell. Therefore, a priori one might expect that the receptor-binding region would be the most392

conserved part of the protein, since binding is required for viral entry. Yet, in hemagglutinin393

sites near the binding region are the most variable in the entire protein. There are at least two394

possible models that might explain this observation. First, conventional wisdom says that in395

terms of host immune evasion, antibodies that bind near the receptor-binding region may be396

the most inhibitory, and hence mutations in this region the most effective in allowing immune397

escape. Viral spike GPs have a surface that is both critical for viral survival and is sufficiently398

long lived that a host immune response is easily generated against it. There are likely many399

other viral protein surfaces that are comparatively less important or sufficiently short lived dur-400

ing a conformational change that antibody neutralization is impractical. Thus, the virions that401

survive to the next generation are those with substantial variation at the surface or surfaces402

with high fitness consequences and a long half-life in vivo. Evolutionary variation at surfaces403

with low or no fitness consequences, or at short-lived surfaces, should behave mostly like neu-404

tral variation and hence appear as random noise, not producing a consistent signal of positive405

selection. Second, according to the avidity modulation model of Hensley et al. [23], it is possible406

that antibody inhibition is not overcome by escaping the antibody directly. Rather, a single or a407

few relatively rare mutations may increase the avidity of hemagglutinin for its receptor so as to408

out-compete partial antibody inhibition. Subsequently, once the partial inhibition is overcome409

in a competent host, passage to an incompetent host allows genetic drift to bring the avidity410

back down to baseline. Considering the fact that neither historical nor experimental immune411

epitopes vastly out-performed our simple distance metric, we think that our results support the412

avidity modulation model [23], which does not predict a bias based on antibody binding sites.413
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However, it remains a possibility that the historical epitopes and current experimental data are414

simply wrong about which sites and groups of sites the human immune system attacks. Either415

way, our work highlights the need for a paradigm shift in the field.416

We also need to consider that actual epitope sites, i.e., sites toward which the immune417

system has a bias, may not be that important for the evolution of viruses. An epitope is simply418

a part of a viral protein to which the immune system reacts. Therefore, it represents a host-419

centered biological bias. The virus may experience stronger selection at regions with high fitness420

consequences but that generate a relatively moderate host response compared to other sites with421

low fitness consequences that generate a relatively strong host response. Moreover, there is little422

reason to believe that influenza must escape an antibody by directly reducing the binding of423

that antibody. There are many other possible scenarios for immune evasion. Thus, we expect424

that the geometric constraints we have identified here will be more useful in future modeling425

work than the experimental epitope groups we have defined. Moreover, we expect that similar426

geometrical constraints will exist in other viral spike glycoproteins, and in particular in other427

hemagglutinin variants.428

By contrast to the clear geometric constraints we observed for the pre-fusion structure,429

we found no comparable result for the post-fusion structure. There are perhaps several good430

reasons to expect this result. First, the transition state is likely very short-lived, such that the431

human immune system is not able to generate antibodies against it. Second, due to the short-432

lived functional nature of the transition state, there is likely relatively little selection for folding433

stability. Therefore, for the post-fusion structure we do not expect to observe the RSA–rate434

correlation that exists in the pre-fusion structure and in most other proteins. Third, models435

describing the transition from the pre-fusion to the post-fusion state show that the HA1 chain436

dissociates from the HA2 chain [39]. Subsequently, the HA2 chain carries out virtually all of437

the fusogenic functions. Thus, the HA1 chain is likely the functional unit in the first step of438

entry and the HA2 chain is likely the functional unit in the second. However, there is almost no439

rapid evolution happening in the HA2 chain, i.e., the HA2 chain does not seem to experience440

any positive diversifying selection.441

Remarkably, the sites we found that experienced the most positive selection showed mini-442

mal overlap with the sites found to be minimally sufficient for explaining the major antigenic443

transitions in H3N2, as determined by HI assays with ferret antisera [21]. While both groups444

of sites lie near the sialic-acid binding region, the vast majority of positively selected sites are445

located basally to sialic acid whereas sites identified by HI assays lie predominantly on the api-446

cal side (Fig. 4). This finding suggests that HI assays and positive selection analyses reflect447

distinct biological mechanisms. For example, HI assays might not accurately reflect selection448

pressures in vivo. Such a result would suggest that influenza is not under pressure to directly449

escape antibody binding. Alternatively, HI assays may correctly identify mutations that lead to450

antigenic cluster transitions whereas positive selection analyses may identify sites that mediate451

avidity [23] or antigenic drift within a cluster. Yet another alternative is that the standard man-452

ner for obtaining ferret antisera simply may not represent a good proxy for the cyclical nature of453

human influenza infections [40]. Indeed, recent evidence suggests that, at least for the pandemic454

H1N1 strain, cyclical infections can shift the antibody response toward the receptor-binding455

region [41]. In future work, disentangling the different mechanisms reflected by HI assays and456

by positive-selection analyses will likely be crucial for improved prediction of HA evolution and457
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of optimal vaccine strains.458

Materials and Methods459

Obtaining influenza data and preparing sequences460

All of the data we analyzed were taken from the Influenza Research Database (IRD) [42]. The461

IRD provides experimental immune epitope data curated from the data available in the Immune462

Epitope Database (IEDB) [43].463

We used sequences that had been collected since the 1991–1992 influenza season. Any season464

before the 1991–1992 season had an insufficient number of sequences to contribute much to the465

selection analysis. The sequences were filtered to remove redundant sequences and laboratory466

strains. The sequences were then aligned with MAFFT [44]. Since it is known that there have467

been no insertions or deletions since the introduction of the H3N2 strain, we imposed a strict468

opening penalty and removed any sequences that had intragenic gaps. In addition, we manually469

curated the entire set to remove any sequence that obviously did not align to the vast majority470

of the set; in total the final step only removed about 10 sequences from the final set of 3854471

sequences. For the subsequent evolutionary rate calculations, we built a tree with FastTree472

2.0 [45].473

Computing evolutionary rates and relative solvent accessibilities474

To compute evolutionary rates, we used a fixed effects likelihood (FEL) approach with the MG94475

substitution model [24,46,47]. We used the FEL provided with the HyPhy package [24]. For the476

full setup see the linked GitHub repository (https://github.com/wilkelab/influenza HA evolution).477

As is the case for all FEL models, an independent evolutionary rate is fit to each site using only478

the data from that column of the alignment. Because our data set consisted of nearly 4000479

sequences, almost every site in our alignment had a statistically significant posterior probability480

of being either positively or negatively selected after adjusting via the false discovery rate (FDR)481

method. As shown in Figure 3, all evolutionary rates fall into a range between dN/dS = 0 and482

dN/dS = 4.483

We computed RSA values as described previously [28]. Briefly, we used DSSP [48] to compute484

the solvent accessibility of each amino acid in the hemagglutinin protein. Then, we used the485

maximum solvent accessibilities [49] for each amino acid to normalized the solvent accessibilities486

to relative values between 0 and 1. We found that RSA calculated in the trimeric state produced487

better predictions than RSA calculated in the monomeric state. Thus, we used multimeric488

RSA in all models in this study. Both multimeric and monomeric RSA are included in the489

supplementary data.490

Evolutionary rate-distance correlations491

To create the structural heat map of correlations shown in Fig. 1B, we first needed to calculate492

the correlations between evolutionary rates and pairwise distances, calculated in turn for each493

location in the protein structure as the reference point for the distance calculations. Concep-494

tually, we can think of this analysis as overlaying a grid on the entire protein structure, where495
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we first calculate the distance to various grid points from every Cα in the entire protein, and496

then compute the correlation between the set of distances to the sites on the grid and the evolu-497

tionary rate at those sites. In practice, we calculated the distance from each Cα to every other498

Cα. We then colored each residue by the correlation obtained between evolutionary rates and499

all distances to its Cα.500

Statistical analysis and data availability501

All statistical analyses were performed using R [50]. We built the linear models with both the502

lm() and glm() functions. For cross validation, we used the cv.glm() function within the boot503

package. Residual standard error values were computed by taking the square root of the delta504

value from cv.glm(). With the exception of graph visualizations, all figures in this manuscript505

were created using ggplot2 [51].506

A complete data set including evolutionary rates, epitope assignments, RSA, and proximity507

to the receptor-binding site is available as Table S1. Raw data and analysis scripts are avail-508

able at https://github.com/wilkelab/influenza HA evolution. In the repository, we have509

included all human H3 sequences from the 1991–1992 season to present combined into a single510

alignment. We have cleaned the combined data to only include sequences with canonical bases,511

non-repetitive sequences, and we have hand filtered the data to ensure all included sequences512

align appropriately to the 566 known amino acid sites. In addition, we have built a tree and513

visually verified that there were no outlying sequences on the tree for the combined set.514

Technical considerations for analysis515

The site-wise numbering for the H3 hemagglutinin protein reflects the numbering of the mature516

protein; this numbering scheme requires the removal of the first 16 amino acids in the full-517

length gene. Thus, for protein numbering purposes, site number 1 is actually the 17th codon518

in full-length gene numbering. The complete length of the H3 hemagglutinin gene is 566 sites519

while the total length of the protein is 550 sites. It is important to point out that the mature520

H3 protein has two chains (HA1 and HA2) that are produced by cutting the presursor (HA0)521

protein between sites 329 and 330 in protein numbering. In addition, as a result of cloning and522

experimental diffraction limitations, most (or likely all) hemagglutinin structures do not include523

some portion of the first or last few amino acids of either chain of the mature protein, and524

crystallographers always remove the C-terminal transmembrane span from HA2. For example,525

the structure we used (PDBID: 4FNK) in this study does not include the first 8 amino acids526

of HA1, the last 3 amino acids of HA1, or the last 48 amino acids of HA2. As a result,527

HA1 includes sites 9–326 and HA2 includes sites 330–502. The complete data table in the528

project repository lists the gene sequence from one of the three original H3N2 (Hong Kong flu)529

hemagglutinin (A/Aichi/2/1968), the gene numbering, the protein numbering, the numbering530

of one H3N2 crystal structure, historical immune epitope sites from 1981, 1987 and 1999, and531

every calculated parameter used (and many others than were not used) in this study. In general,532

the most common epitope definitions in use today are those employed by Bush et. al 1999 [4].533

Throughout this work, we refer to the Bush et. al 1999 epitopes as the“historical epitope sites”.534
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Supporting Information Legends656

Data Table S1: Complete data set including evolutionary rates, solvent accessibili-657

ties, proximities to the receptor-binding region, and epitope status for all sites.658

Text S1: Analysis of available experimental human epitope data.659
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Tables660

Table 1. Predictive performance of each linear model considered. R2 is the
proportion of variation in dN/dS explained by the specified model. RSE is the residual
standard error of the linear model. cvRSE10 is the cross validated residual standard error
calculated by 10-fold cross validation. cvRSEloo is the cross validated residual standard error
calculated by leave-one-out cross validation.

Predictors in the linear model R2 RSE cvRSE10 cvRSEloo

RSA 0.14 0.41 0.41 0.41
Experimental epitopes 0.15 0.41 0.42 0.42
1 / Distance 0.16 0.40 0.41 0.41
Bush 1999 0.18 0.40 0.41 0.41
RSA + Experimental epitopes 0.23 0.39 0.41 0.40
RSA + Bush 1999 0.24 0.39 0.39 0.39
1 / Distance + Experimental epitopes 0.23 0.39 0.40 0.40
1 / Distance + Bush 1999 0.28 0.38 0.39 0.39
RSA + 1 / Distance 0.32 0.37 0.37 0.37
RSA + 1 / Distance + Experimental epitopes 0.34 0.36 0.39 0.38
RSA + 1 / Distance + Bush 1999 0.37 0.35 0.37 0.37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2015. ; https://doi.org/10.1101/014183doi: bioRxiv preprint 

https://doi.org/10.1101/014183
http://creativecommons.org/licenses/by/4.0/


20

Figures661

Figure 1. Evolutionary-rate variation along the hemagglutinin structure. (A) Each
site in the protein structure is colored according to its evolutionary rate dN/dS. Hot colors
represent high dN/dS (positive selection) while cool colors represent low dN/dS (purifying
selection). (B) Each site in the protein structure is colored according to the dN/dS–distance
correlation obtained when distances are calculated relative to that site. Hot colors represent
positive correlations while cool colors represent negative correlations. Thus, distances from
sites that are redder are better positive predictors of the evolutionary rates in the protein than
are distances from bluer sites; distances from blue sites are actually anti-correlated with
evolutionary rate. Distances from sites that are colored green have essentially no predictive
ability.
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Figure 2. Proportion of variance in dN/dS explained by different linear models.
The height of each bar represents the coefficient of determination (R2) for a linear model
consisting of the stated predictor variables. The historical epitope sites from Bush 1999 [4]
(yellow bar on the left) are the single best predictor of evolutionary rate variation. However, a
model using two predictors that each have a clear biophysical meaning (solvent exposure,
proximity to receptor-binding region) explains almost twice the variation in dN/dS (yellow bar
on the right).
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Figure 3. Observed dN/dS vs. predicted dN/dS for different predictive linear
models. (A) Only epitope status according to the historical definition is used as predictor
variable. (B) Historical epitope sites and RSA are used as predictor variables. (C) Only
epitope status according to the experimental non-linear epitope data is used as predictor
variable. (D) Experimental epitope sites and RSA are used as predictor variables. (E) Only
proximity to the sialic acid-binding region (measured as 1/Distance to Residue 224) is used as
predictor variable. (F) Proximity and RSA are used as predictor variables. Individual sites
with dN/dS > 1 are predicted correctly only if the linear model includes the 1/Distance
predictor. However, in all cases, adding the RSA predictor significantly improves the model
predictions.
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Figure 4. Sites identified by Koel et al. 2013 and those predicted to have
dN/dS > 1. The sites shown in purple are those identified by Koel et al. 2013 [21] to be
critical for antigenic cluster transitions. Only one of these sites has a dN/dS significantly
above one, site 145. The sites shown in red are those that our geometrical model predicts to
have dN/dS > 1. (Half of those sites have observed dN/dS > 1.) Note that our model predicts
only sites on the basal side of sialic acid to be under positive selection, since our reference
point for proximity is site 224. Site 145, the only purple site under positive selection, is also
the only purple site on the basal side of sialic acid.
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Supplementary Figures662
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Figure S1: Dependence of dN/dS on solvent exposure and proximity to the receptor-664

binding region. (A) dN/dS vs. RSA. The size of the dots represents 1/Distance. (B) dN/dS665

vs. 1/Distance. The coloring of the dots represents RSA. The distance to the sialic acid-binding666

region is the single strongest quantitative predictor of evolutionary rate ratio in hemagglutinin.667
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Figure S2: Distance to receptor-binding site and solvent exposure for epitope and669

non-epitope sites. (A) Distribution of distances to residue 224, for historical epitope and non-670

epitope sites. (B) Distribution of distances to residue 224, for experimental non-linear epitope671

and non-epitope sites. (C) Distribution of relative solvent accessibilities, for historical epitope672

and non-epitope sites. (D) Distribution of relative solvent accessibilities, for experimental non-673

linear epitope and non-epitope sites. Under both historical and experimental epitope definitions,674

epitope sites are closer to the sialic acid-binding region and have higher RSA than non-epitope675

sites.676
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