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Abstract

Epidemiological observations and molecular-level experiments have indicated that brain
disorders in the realm of psychiatry may be influenced by immune dysregulation.
However, the degree of genetic overlap between immune disorders and psychiatric
disorders has not been well established. We investigated this issue by integrative analysis
of genome-wide association studies (GWAS) of 18 complex human traits/diseases (five
psychiatric disorders, seven autoimmune disorders, and others) and multiple genome-
wide annotation resources (Central nervous system genes, immune-related expression-
quantitative trait loci (eQTL) and DNase I hypertensive sites from 98 cell-lines). We
detected pleiotropy in 24 of the 35 psychiatric-autoimmune disorder pairs, with statistical
significance as strong as p=3.9e-285 (schizophrenia-rheumatoid arthritis). Strong
enrichment (>1.4 fold) of immune-related eQTL was observed in four psychiatric
disorders. Genomic regions responsible for pleiotropy between psychiatric disorders and
autoimmune disorders were detected. The MHC region on chromosome 6 appears to be
the most important (and it was indeed previously noted (1-3) as a confluence between
schizophrenia and immune disorder risk regions), with many other regions, such as
cytoband 1p13.2. We also found that most alleles shared between schizophrenia and
Crohn’s disease have the same effect direction, with similar trend found for other
disorder pairs, such as bipolar-Crohn’s disease. Our results offer a novel bird’s-eye view
of the genetic relationship and demonstrate strong evidence for mediated pleiotropy
between psychiatric disorders and autoimmune disorders. Our findings might open new
routes for prevention and treatment strategies for these disorders based on a new
appreciation of the importance of immunological mechanisms in mediating risk.

\body

Significance Statement

Co-occurrence of psychiatric disorders and autoimmune disorders has long been recorded
while their shared genetic factors are less well explored and remain controversial. We
performed comprehensive genome-level analysis on those two classes of disorders by
integrating both disorder-specific genome-wide association studies (GWAS) and genomic
annotations, in search of common genetic liability. Our results confirmed previously
reported genetic regions affecting disease risk for both psychiatric and autoimmune
disorders, and also implicated many novel shared genes and pathways. Our work offers
insights on pleiotropic mechanisms and a better understanding of pathophysiology, which
may lead to improved prevention and treatment strategies for these two classes of
disorders via immunological mechanisms.
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Introduction

Psychiatric disorders are often associated with significant morbidity and mortality (4).
The estimated heritability for most psychiatric disorders is moderate to high (40%-80%),
so genetic factors play a critical role in their etiology (5-7). In the past few years, many
genome-wide association studies (GWAS) have been conducted to identify genetic risk
variants that underlying psychiatric disorders (8). Despite recent progress, there still exist
major challenges, and there is much yet to be discovered regarding the genetic
architecture of psychiatric disorders (9).

The relationship between psychiatric disorders and autoimmune disorders has intrigued
researchers for decades (Fig. S1). There is a moderately large body of evidence that
supports a role for autoimmune dysfunction in the development of several psychiatric
disorders, including early hypothesis like the “macrophage theory of depression” (10),
and recent findings such as the epidemiological observation of co-occurrence of
rheumatoid arthritis (RA) and depression (11, 12) and cross-disorder drug effects, for
example some drug for psychiatric disorders have anti-inflammatory properties (13, 14).
The genetic liability underlying these observed correlations has not been well studied,
with the exception that recent GWAS have repeatedly identified association between
SCZ and genetic variants at the major histocompatibility locus (MHC), which also plays
an important role in the immune system (1-3). However, no strong evidence of shared
liability was observed between Crohn’s disease (CD) and multiple psychiatric disorders
in another study (15). In genetics, the term “pleiotropy” is commonly used to describe a
one-to-many relationship between a gene or mutation and phenotypes (16). In the GWAS
era, pleiotropy could explain correlations among disorders, and may also boost statistical
power to detect genetic associations (15, 17-21). To date, pervasive pleiotropic effects
have been discovered in autoimmune disorders (22) and in psychiatric disorders (9, 15),
as separate classes.

Given the public health significance of these two classes of disorders and the treatment
implications of any etiological overlap, it is important to resolve the nature of any genetic
pleiotropy between them, to understand the underlying mechanisms of the pleiotropy, and
to identify specific genes and pathways driving such pleiotropy. These inquiries can only
now be carried out because of the large amounts of genomic data that have become
available in recent years. Large consortia have been formed to study many psychiatric
disorders and autoimmune disorders (15, 21, 23-30). For example, the analysis results
from a well-powered GWAS of schizophrenia (1) provided strong supporting evidence
for the link between schizophrenia and the immune system. Undoubtedly, the availability
of high-quality “omics” data offers us an unprecedented opportunity to revisit the nature
of the genetic connections between psychiatric disorders and immune-mediated disorders.
The analysis results can deepen our understanding of the genetic architecture of complex
human diseases.
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Our current study takes advantage of multiple “omics” data resources to obtain a bird’s-
eye view of the shared genetic components between psychiatric disorders and
autoimmune disorders. To better represent those two disorder categories while taking the
data availability into account, we considered five psychiatric disorders, including
schizophrenia (SCZ), bipolar affective disorder (BPD), autism spectrum disorder (ASD),
attention deficit-hyperactivity (ADHD), and major depressive disorder (MDD). For
immune-mediated disorders, we considered two inflammatory bowel diseases (IBDs),
Crohn’s disease (CD) and ulcerative colitis (UC), and five other autoimmune disorders,
including multiple sclerosis (MS), psoriasis (PS), rheumatoid arthritis (RA), systemic
lupus erythematosis (SLE), and insulin-dependent diabetes mellitus (T1D). For
comparisons, we also included a central nervous system degenerative disease,
Parkinson’s disease (PD), and five traits related to education, height, and weight.
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Results

Pervasive pleiotropic effects between psychiatric disorders and immune system disorders

Previous studies have shown extensive shared genetic effects among many of the five
psychiatric disorders studied by the Psychiatric Genomics Consortium (PGC) (15, 21)
and among multiple autoimmune disorders (22), separately. Consistent with those
studies, we also observed pervasive pleiotropic effects among psychiatric disorders and
among immune-related disorders (Table S1). Pleiotropic effects are significant
(Bonferroni-adjusted p<0.05) for all 21 pairs of autoimmune disorders, and for seven of
the 10 pairs of psychiatric disorders (the exceptions being ASD-ADHD, MDD-ADHD,
and MDD-ASD).

We then tested pleiotropic effects between psychiatric and autoimmune disorders. We
first considered SCZ with seven immune-mediated disorders. The stratified-QQplots
(Fig. 1, Fig. S2) suggest that all seven immune-mediated disorders share genetic liability
components with SCZ, driving the conditional observed-expected curves substantially
above the baseline.

QQplots, while simple and intuitive, suffer from arbitrary cutoffs, e.g. le-4, and do not
offer statistical assessment of pleiotropy. GPA, a statistically rigorous approach recently
developed by us (31), permits statistical inference regarding the genetic architecture of
multiple traits (detailed in SI). We used GPA to test the cross-class enrichment of GWAS
signals between five Psychiatric Genomics Consortium (21) (PGC) traits (SCZ, BPD,
MDD, ASD, ADHD) and seven immune-mediated disorders (CD, UC, MS, PS, SLE,
RA, T1D), resulting in 35 disorder pairs. Twenty-four of the 35 pairs were significant at
Bonferroni-adjusted p value <0.05 (Table S1), indicating pervasive pleiotropic effects
between psychiatric disorders and immune mediated disorders. Of the 11 pairs that were
not significant, seven included ADHD, which had relatively weak GWAS signals —
relatively strong GWAS signals are necessary to provide adequate information to identify
pleiotropic effects; while the other four disorder pairs were ASD-SLE, BPD-MS, BPD-
PS, and MDD-CD. Consistent with previous studies (32), we observed strong pleiotropy
between SCZ-MS (p=1.3e-20), but no significant pleiotropy between BPD-MS (p=0.26).

For each pair of disorders, we estimated the proportion of single nucleotide
polymorphisms (SNPs) associated with both disorders vs. those associated with only one
disorder. Fig. 2 shows the results among SCZ, BPD, UC and CD (Fig. 2). Consistent with
previous studies (33, 34), most of the SCZ-associated SNPs and BPD-associated SNPs
were estimated to be shared between these two disorders. Similarly, most UC-associated
SNPs and CD-associated SNPs were shared between them. The proportions of SNPs
shared by cross-class disorders were: SCZ-CD 0.063 (se=0.0021); SCZ-UC 0.053
(se=0.0018); BPD-CD 0.05 (se=0.0034); and BPD-UC 0.039 (se=0.0025), respectively.
Proportions of shared SNPs for other disease pairs can be found in Table S1.
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Enrichment of immune-related annotations in multiple psychiatric disorders

Having observed extensive pleiotropy between psychiatric and immune disorders, we
then explored functional enrichment for the shared genes to begin to understand the
biology underlying the statistical association. We used central nervous system (CNS)
SNPs and immune related eQTLs (see Materials and Methods) to represent the
functional sites relevant to the CNS and immune system, respectively, and tested their
enrichments in various psychiatric disorders and immune-mediated disorders. Because
12.5% of CNS SNPs overlap immune eQTLs, we also tested enrichments excluding those
overlapping SNPs.

We first tested for enrichment of CNS SNPs in all 18 traits (Fig. 3). As expected, all
psychiatric disorders had modest enrichment for CNS SNPs (>1.3-fold, except for MDD,
1.09-fold). The enrichment effects could still be observed (and were even stronger for
ADHD) with immune related eQTLs excluded. Only three autoimmune disorders (MS,
PS and RA) showed modest enrichment for CNS SNPs (1.5,1.2, and 1.2-fold,
respectively), but not with immune eQTLs excluded (0.9, 0.4, 0.5-folds, respectively).
This suggests that enrichment of CNS SNPs in autoimmune traits was driven by
overlapping immune eQTLs. We also observed enrichment of CNS SNPs for education
years (1.25-fold), college completion status (1.29-fold), and BMI (1.55-fold), but neither
waist-to-hip-adjusted BMI nor height showed enrichment of CNS SNPs.

Next, we tested enrichment of immune eQTLs in the same set of 18 traits (Fig. 4). The
seven immune-mediated disorders consistently had the strongest enrichment (ranging
from 2.0 to 8.5-fold). We also observed enrichment of immune eQTLs in four psychiatric
disorders (SCZ, BPD, ASD, and MDD; 2.0, 2.0, 1.4, 1.6-fold, respectively), and
Parkinson’s disease (1.4-fold). Those enrichment effects still persisted with CNS SNPs
removed, suggesting the enrichment was not solely due to overlapped CNS SNPs also
being immune eQTLs. We also observed immune eQTL enrichment in two education
traits, college completion (1.39-fold) and year of education (1.46-fold), and in three
physical features, BMI (1.99-fold), obesity measured by waist-to-hip ratio adjusted BMI
(2.90-fold), and height (2.97-fold).

There was even stronger enrichment of immune eQTLs among SNPs shared between five
psychiatric traits (SCZ, BPD, ASD, MDD, ADHD) and CD (Fig. S3 and SI). Next we
tested enrichment of DNase-peak located SNPs in SCZ GWAS signals from 98
ENCODE tissues (Table S7), and found the top cell lines were from blood elements
having important roles in immune response, with the top two cell lines being CD20+ B
cells and Th2 cells (CD4+ T cells)(Fig. S4).
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Trend of consistent effect direction between psychiatric disorders and immune system
disorders

To explore the mechanism of these pleiotropic effects further, we examined effect
directions for SNPs having high posterior probabilities of being associated with both
disorders. For each SNP, the same allele may increase or reduce susceptibility for the two
disorders (same direction) or have opposite effects (different directions). The SCZ QQ
plot (Fig. S6) shows a rise of the curve conditional on having the same effect direction
with CD. We then considered four disorder pairs showing strong pleiotropy: SCZ-CD
(p=1.9¢-109), BPD-CD (p=1.5e-13), SCZ-Height (p=2.0e-122), and BPD-Height
(p=5.4e-150). For each of these four pairs, there is no correlation in effect direction when
all genotyped SNPs are considered (Table S3). This is expected because most SNPs are
not associated with either trait. However, trends emerged after we partitioned the SNPs
according to their posterior probabilities of being associated with both traits into 10
groups, and calculated the proportions of SNPs having the same effect directions for each
group. There are clear patterns for SCZ-CD and BPD-CD, but not for SCZ-height nor
BPD-height as shown in Fig. 5.

In general, the higher the posterior probability of a SNP being associated with SCZ (or
BPD) and CD, the more likely that the SNP had the same effect direction for the pair. For
SCZ-CD, among the 85 top SNPs with posterior probabilities of association with both
SCZ and CD higher than 0.9 (Table S4), 97.6% of SNPs had the same effect directions
(an allele either increases or reduces both SCZ and CD risks), with the only two opposite-
direction SNPs near gene GALNT?3. Similarly, for BPD-CD, in the SNP group with
posterior probabilities higher than 0.8, 83% of SNPs had the same effect direction, and in
the SNP group with posterior probabilities between 0.7 and 0.8, 95% of SNPs had the
same effect direction for two disorders (Fig. §). Similar patterns were also observed for
SCZ-RA and BPD-RA pairs (Fig. S7). In contrast, for the SCZ-height pair, among the
top SNPs with posterior probabilities of association with both SCZ and height higher than
0.9, 44% of the height-increasing alleles were SCZ risk alleles and the other 56% were
SCZ protective alleles. In fact, the proportion of alleles that were associated with lower
height and increased SCZ risk simultaneously was ~50% for all SNP groups, regardless
of their posterior probabilities of being associated with both SCZ and height. Effect
direction distributions across 10 posterior groups for the BPD-height pair behaved
similarly.
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Genome region enrichment analysis

To identify molecular pathways and networks underlying the connections between
psychiatric disorders and immune-mediated disorders, we performed a series of genome
region enrichment analysis. For each of the 28 disorder pairs (four psychiatric disorders
and seven autoimmune disorders, with ADHD excluded due to its weak GWAS signals),
we calculated the posterior probability of each SNP being associated with both traits, and
plotted the posterior probabilities against genome positions (Fig. S8). A consistent peak
in the chromosome 6 MHC region was observed for most trait pairs. There were also
multiple additional recurrent or sporadic regions. To specify these regions and genes,
next we performed cytoband enrichment analysis, protein-protein interaction (PPI) sub-
network detection, and gene ontology (GO) enrichment analysis.

Cytoband enrichments of SNPs with posterior probability > 0.5 were evaluated for each
of the 28 disorder pairs using Fisher’s exact test. Table S2 shows enriched cytobands
with odds ratio (OR) > 5 and Bonferroni-adjusted p < 0.001. Under these stringent
cutoffs, we found that the MHC region (6p22.1-21.3) was shared by psychiatric and
autoimmune disorders (23 out of 28 pairs, SI). Apart from the MHC region, we also
identified other shared regions (Table S2). For example, 1p13.2 was significantly
enriched for the eight disorder pairs between [SCZ, BPD, MDD, and ASD] and [T1D and
RA], with Bonferroni-adjusted p-values ranging from 6.8e-26 to 2.7e-78, with top SNPs
located in genes AP4B1, PTPN22, and PHTF1 (Fig S9).

With the hypothesis that there might be a common mechanism underlying the shared
genetic liability between different psychiatric disorder-autoimmune disorder pairs in
general, we selected SNPs with high confidence of affecting both classes of disorders
(SI) and performed enrichment analysis for Gene Ontology (35) (GO) terms, KEGG
pathways, and PPI networks. PPI can provide independent information for prioritization
of genetic findings (36-39), and thus we constructed PPI sub-networks via DAPPLE (40)
in which PPI edges are overrepresented in top SNPs (SNPs with posterior > 0.8 in at least
6 disorder pairs, Fig. S5). The sub-networks (Fig. 7) highlighted include the HLA-D
subfamily; a transcription activation related sub-network including multiple histones,
BRD2,TUBB and ABT1; and HLA-E, HLA-F, TAPI and TAP2. Genome annotation
enrichment was performed via DAVID (41, 42) on GO (35) terms and KEGG pathways
(43, 44), with gene lists constructed with genes containing SNPs having posterior > 0.8 in
at least three disorder pairs (Fig. S5). The identified top terms of enrichment included
“antigen processing and presentation,” “MHC protein complex,” “allograft rejection,”
and “NF-kappaB binding” (Table S§), which further suggests the enrichment of immune
system function in shared genetic factors between psychiatric and autoimmune disorders.
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Discussion

Our results demonstrate extensive shared genetic factors between psychiatric and
autoimmune disorders. First, 24 of 35 psychiatric disorder-autoimmune disorder pairs we
considered yielded significant evidence for pleiotropy based on GPA analysis of
summary statistics from GWAS results. Second, enrichment of immune related eQTLs in
multiple psychiatric disorder GWAS signals was observed, including SCZ, BPD, ASD,
and MDD. Third, much higher enrichment of immune related eQTLs in SNPs shared by
psychiatric disorders and CD was observed. Fourth, enrichment of psychiatric disorder
GWAS signal was observed in DNase | hypersensitivity sites in cell lines based on
cellular elements with important roles in immune response. Fifth, there was a clear trend
of shared SNPs having the same effect direction for SCZ-CD, SCZ-RA, BPD-CD, and
BPD-RA. Finally, analyses based on posterior probabilities of SNPs being associated
with both psychiatric and autoimmune disorders yielded reoccurring genomic regions,
with significantly enriched cytobands and pathways. All these different lines of evidence
indicate that psychiatric disorders are rather strongly genetically related to autoimmune
disorders.

Beyond the evidence of pleiotropy, our results suggest how psychiatric disorders and
autoimmune disorders are related genetically. Consistent with previous research, we
observed a major role of MHC region for both classes of disorders, which repeatedly
stood out among multiple analyses. Specific proteins in MHC regions were prioritized via
constructing overrepresented protein-protein interaction sub-networks. Specifically, those
protein-protein interaction clusters most responsible for shared genetic components
between psychiatric disorders and autoimmune disorders in these data were: (1) three
minor gene subunits HLA-E, HLA-F, and HLA-G, but not the three major gene subunits,
interacting with TAPI, TAP2. TAPI and TAP2 are transporters associated with antigen
processing, which cooperate with MHC class I to present antigens (45); (2) Interaction
between HLA DO, DM, and DR proteins; and (3) a set of genes with important roles in
transcriptional activation, including BRD2, TUBB, ABT1, and multiple histone coding
genes.

The MHC is not the only genomic region contributing to the connection between
psychiatric disorders and autoimmune disorders. First, we observed enrichment of
immune eQTLs even after the whole MHC region was removed (Fig. S10). Second,
cytoband enrichment results indicate roles played by other specific genomic regions, such
as 1p13.2, harboring gene PTPN22 (“Protein Tyrosine Phosphatase, Non-Receptor Type
22 (Lymphoid)”), which was also prioritized in our PPI analysis.

Our work pinpoints these specific genetic regions, genes, proteins, and pathways, which
potentially connect psychiatric disorders and immune disorders genetically and therefore
etiologically. These specific genes might be considered as starting points for follow-up
experiments concerning the etiological linkage of those two classes of disorders.
Furthermore, our findings might be used in developing novel drugs that treat psychiatric
disorders by modulating immune system function, which would nicely complement the
limited existing treatment options for these psychiatric disorders.
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The observation of a tendency of the same effect direction for SNPs associated with
either SCZ and BPD paired with CD gives some insight concerning the underlying
mechanism of their shared genetic factors. Pleiotropy has been extensively reviewed (16,
46-48), but is still not well understood in terms of its extent, mechanisms, and
consequences. The Weak Hypothesis of Universal Pleiotropy (WHUP) advocated by
Fisher (49) and Wright (50) is based on two assumptions that, in general, a phenotype
might be influenced by many variants, and a variant might cause changes to many
phenotypes. This basic idea finds considerable support in GWAS findings, and fits the
Common-Disease Common-Variant (CDCV) hypothesis. Under WHUP, extensive
pleiotropy should be detected between phenotypes. In this case though, the effect
directions of shared genetic variants should be about random. Therefore, our results
suggest that it is unlikely that the shared genetic factors between psychiatric and
autoimmune disorders originate from universal pleiotropy (or a tendency of GWAS to
identify SNPs that are functional and for SNPs that are functional to be those that are
most likely to influence various traits); rather, our observation supports a closer genetic
relationship between those two types of disorders. Various molecular mechanisms could
result in pleiotropy (48). There are biological pleiotropy, mediated pleiotropy, and
spurious pleiotropy. Biological pleiotropy has separate causal paths for different
phenotypes, while mediated pleiotropy has one phenotype lying on another phenotype’s
causal path; thus by this mechanism, one phenotype might lead to another (48). Our
results, the striking trend of shared SNPs for SCZ and CD acting in the same direction,
can be best explained by mediated pleiotropy. This, together with our observation of
pervasive enrichment of immune eQTLs in psychiatric disorders, and the lack of
enrichment of CNS SNPs (immune eQTLs excluded) in immune-mediated disorders
(except MS, which is characterized by CNS pathology), suggest that autoimmune
disorders might mediate psychiatric disorder risk, i.e. some downstream autoimmune
dysfunctions might be a trigger to some psychiatric disorders (or subtypes).

We observed considerable enrichment of immune-related eQTLs in traits of body
features (height, BMI, and WHR-adjusted BMI), which are consistent with previous
experiments that BMI is correlated with immune parameters (51), and that height is
associated with immune response in young men (52). Therefore, our results further
confirm the relationship between body somatic features (BMI and height) and immune
system from a genomics perspective. The enrichment of CNS SNPs in two educational
traits is consistent with the notion that educational attainment is related to CNS
development.

Although our analyses were based on results from GWAS consortia, the statistical power
remains limited to identify the majority of disease associated variants for these disorders.
GWAS results from larger studies and improved statistical and bioinformatics approaches
will enable us to identify more shared genetic pathways between these classes of
disorders, and as always — despite the very high significance levels we observed for some
relationships — independent replication of our results is called for.
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Materials and Methods
Genome-wide Association Study (GWAS) Data Sources

We made use of GWAS summary statistics from a set of diverse and representative traits,
including major psychiatric disorders, various immune system disorders, multiple
metabolic diseases and metabolism related traits, body morphological features, and some
socioeconomic measures (Table 1). The p-values were available for all traits, but only
some of them have available specified alleles and their corresponding beta or odds ratios
indicating effect direction.

Genomic Annotation Data Sources

Central nervous system (CNS) genes were identified in a previous study (53), comprising
preferentially brain-expressed genes (53), neuronal-activity genes (54), learning-related
genes (55), and synapse genes, defined by Gene Ontology (35). A complete list of these
genes is given in Table S6. CNS SNPs were defined as SNPs located within CNS genes
with 50kb extension at each end. To investigate immune system influence, we used
context-specific eQTLs upon triggering immune response as detected by Fairfax et al.
(56), where interferon- y and lipopolysaccharide (LPS) were used as inflammatory
proxies to stimulate innate immune effects in monocytes from volunteers of European
ancestry. We used a union of eQTLs detected in different contexts as a set of immune-
related eQTLs in our study. In total, we have 94,674 immune eQTLs and 199,202 CNS
SNPs, of which 24,860 CNS SNPs are also immune eQTLs. To investigate the impact of
chromatin state, we used DNase I hypersensitivity sites extracted from ENCODE (57)
DNase-seq peaks and signal of open chromatin from 125 cell lines.

Statistical Methods

Pleiotropy analysis was performed via the GPA R package (31), which uses a statistical
approach to exploring the genetic architecture of complex traits by integrating pleiotropy
and functional annotation information, including prioritizing risk genetic variants,
evaluating annotation enrichment and pleiotropy by hypothesis testing. GPA does not
need individual level genotype-phenotype data, making it particularly useful for large-
scale integrative analysis. We briefly describe the parameters and their interpretations in
the GPA model in Supporting Information, and more details can be found in (31).

Genome annotation enrichment was carried out using DAVID (41, 42); PPI sub-networks
were generated using DAPPLE(40). Cytoband position information was downloaded
from the UCSC Table Browser(58). Cytoband enrichment was tested using Fisher’s exact
test, with p-values adjusted using Bonferroni correction Dunn (59).
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Figure 1. QQ plot showing pervasive pleiotropic effects between SCZ and seven
immune mediated disorders. Black dots represent all 1,219,805 SCZ GWAS SNPs
while the other 7 colored dots represent different subsets of SNPs selected from the
corresponding autoimmune disorder GWAS whose p values were < 0.0001, with the
number of SNPs in each subset shown in brackets.
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Figure 2. GPA results showing pleiotropic effects among SCZ, BPD, UC and CD.
Purple, red, green and blue represent SCZ, BPD, UC and CD; grey represents the
proportion of SNPs associated with both disorders, and white represents the
proportion of SNPs associated with neither disorder. Upper triangle: pie charts
show proportion of SNPs associated with only one disorder, both disorders (grey),
and neither disorder (white). Lower triangle: bar plots contrasting proportions of
associated SNPs for each disorder when analyzed separately (1st, 37 bar in deeper
color), and proportion of associated SNPs when two disorders are jointly analyzed
(2rdand 4t bar for proportion of SNPs associated with only one disorder, and 5t
grey bar for proportion of SNPs associated with both disorders). Error bars indicate
one standard error.
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Figure 3. Enrichment of CNS SNPs in 18 traits. Enrichment of CNS SNPs
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disorders or CNS related disorder (red), immune system related disorders (blue),
and body somatic features (black). For each trait, the first bar (darker color)
excludes immune eQTLs from CNS SNPs, and the second bar (light color) is for all
CNS SNPs (comprising 21.4% of all SNPs).
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Figure 4: Enrichment of immune eQTLs in 18 traits. Enrichment of immune
eQTLs (comprising 7.5% of all SNPs) in 18 traits from three categories: psychiatric
disorders or CNS related disorder (red), immune system related disorders (blue),
and other body somatic features (black). For each trait, the first bar (darker color)
excluded CNS SNPs from immune eQTLs, and the second bar (light color) is for all
immune eQTLs (comprising 10.1% of all SNPs).
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Figure 5. Trend of consistent effect directions for SCZ/BPD-CD across
posterior probability groups. Proportion of SNPs having the same effect direction
for trait pairs, in each of the 10 posterior probability groups (darker colors indicate
higher posterior probability), where SNPs were grouped based on posterior of being
associated with both traits into 10 equal bins. Four pairs of traits: SCZ-CD, SCZ-
height, BPD-CD, and BPD-height.
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Figure 6. Protein-protein interaction enrichment. Constructed using the top
1000 SNPs, with color indicating significance level.
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GPA method description

GPA (1) is a statistical approach to exploring the genetic architecture of complex traits by
integrating pleiotropy and functional annotation information, including prioritizing risk
genetic variants, evaluating annotation enrichment and pleiotropy by hypothesis testing.
Instead of relying on genotype-phenotype data at the individual level, it only requires the
summary statistics from GWAS, which makes it useful for integrative analysis of
genomic data. For completeness, we briefly introduce the GPA model here.

Consider the p-values {py, ..., py} Obtained by performing hypothesis testing of genome-
wide SNPs from one GWAS, where M is the number of SNPs. In the GPA model, these
p-values are assumed to come from a mixture of null (un-associated) and non-null
(associated), with probability my and m; = 1 — @, respectively. GPA uses the Uniform
distribution on [0,1] and the Beta distribution with parameters (a, 1) to model the p-
values from the null and non-null groups, respectively. Let Z; € {0,1} be the latent
variable indicating whether the j-th SNP is from the null or non-null group, where Z; = 0
means null and Z; = 1 means non-null. Then the GPA model for one GWAS without
annotation can be written as:

my = Pr(Z; =0): p;~U[01], ifZ =0, 1)

M) = Pr(Zj = 1): pj~Beta(a,1),if Z; = 0.

GPA further incorporates functional annotation as follows. Let an M-dimensional vector
A collect functional information from an annotation source, where A; € {0, 1} indicates
whether the j-th SNP is a functional unit according to the annotation source. For example,
given an eQTL data, if the j-th SNP is an eQTL, then A; = 1, otherwise 4; = 0. The
relationship between Z; and 4; is described as:

2

Clearly, g, can be interpreted as the proportion of null SNPs being annotated, g,
corresponds to the proportion of non-null SNPs being annotated, and q; > ¢, implies
that there exists enrichment in this annotation. In our study, the ratio q;/q,is define as
enrichment fold measuring the strength of enrichment in various annotations.

An efficient Expectation-Maximization (EM) algorithm has been developed to adaptively
estimate the model parameters {m, 75, qo 97 a}. After that, SNPs can be prioritized based
on their local false discovery rates (FDR). When there is no annotation data, the local
FDR is defined as the probability that the j-th SNP belongs to the null group given its p-
value, ie., fdr(p;) = Pr(Z; = O|p;). With annotation data, the FDR can be calculated
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as fdr(p;,A;) = Pr(Z; = O|pj,A;). We can use the likelihood ratio test to assess the
significance of its enrichment. Specifically, the significance of enrichment of an
annotation for GWAS can be assessed by testing Hy : qo = qq versus Hy . qo # q1.
Standard errors of all the parameters can also be calculated.

The extension of the above model to handle two GWAS is straightforward. Suppose the
p-values from two GWAS have been collected in an M X 2 matrix p = [p,, ], where py
denotes the p-value of the j-th SNP in the k-th GWAS,k = 1,2. Let

Z; € {00,10,01, 11} indicate the association between the j-th SNP and the two
phenotypes: Z; = 00 means the j-th SNP is associated with neither of them, Z; = 10
means it is only associated with the first one, Z; = 01 means it is only associated with
the second one, and Z; = 11 means it is associated with both. Then the two-groups
model (1) can be extended to the following four-groups model:

oo = Pr(Z; = 00): p,, ~Ulo1], p, ~Ulo1], if Z; = 00,
my = Pr(Z; = 10): pj; ~ Beta(ay,1),pj; ~ U[0,1], if Z; = 10, 3)
mo1 = Pr(Z; = 01): pj, ~ U[01],  pj; ~ Beta(ay 1),if Z; = 01,

my, = Pr(z; = 11): p,, ~ Beta(ay,1),p;, ~ Beta(ay, 1),if Z; = 11.

Similarly, functional annotation information can be incorporated into the multiple GWAS
model (3) in the following way:

Qoo = Pr(4; = 1]z; = 00),

1z, = 10),

10 = Pr(4; j

Qo1 = Pr(4; = 1]z; = 01),

q11 = Pr(4; = 1|Z; = 11),
where ¢, is the probability of a null SNP being annotated, g, is the probability of the
first phenotype associated-SNP being annotated, q,; is the probability of the second
phenotype associated-SNP being annotated, and g, is the probability of jointly
associated-SNP being annotated. For joint analysis of two GWAS data sets, the local
FDR calculation and enrichment assessment can be done in a similar way. In addition, the
pleiotropy between two phenotypes can be tested in a statistically rigorous way. When
there is no pleiotropy, i.e., the signals from the two GWAS are independent of each other,
testing pleiotropy can be formulated by testing the following hypothesis:

HO ¢ M1 = Tq4TTyq, V.S. H1 ¢ not Ho,

where m;, = my + my; andw,; = my; + 1y, The likelihood ratio test statistic
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asymptotically follows X2 distribution with df = 1 under the null.

More details about the GPA approach have been discussed in (1).

Enrichment of immune-eQTLs in SNPs shared by psychiatric
disorders and autoimmune disorders

To explore this hypothesis further, we tested levels of enrichment of immune related
eQTLs in SNPs associated with both psychiatric disorders and Crohn’s disease, and
observed large enrichment ratios. Our result shows that, among the immune related
eQTLs, the ratios (q11/qo0) of the group of SNPs associated with both diseases and the
group of SNPs associated with neither diseases are SCZ-CD 3.9 (s.e.=0.06), BPD-CD

4 4(s.e.=0.09), ASD-CD 3 .4(s.e.=0.2), MDD-CD 4.6(s.e.=0.18), and ADHD-CD
2.1(s.e.=0.45) (Fig. S3). The ratios with respect to SNPs associated with only one disease
(910/900 and qo1/q00) are much lower, suggesting that the shared genetic components
between the 5 psychiatric disorders and CD are closely related to immune function.

Enrichment of DNase-Peak SNPs in schizophrenia GWAS

DNase-Peak dataset was downloaded from ENCODE for 125 cell lines, and there were
98 cell lines after removing 27 cancer cell lines (Table S7). Although limited in cell lines
from brain regions, those 98 cell lines have great coverage for various blood cells,
making it suitable for studying whether there is enrichment of functional genomic regions
in SCZ GWAS tissues implicated with important immune functions. DNase-Peak SNPs
are SNPs located in or within 1kb from DNase-Peaks. A cluster of blood originated cell
lines is the top cell lines in our analysis (Fig. S4).
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Cytoband enrichment test based on posterior probability

Cytoband position was downloaded from the UCSC Table Browser(2), with 862 entries
of cytobands in total. Enrichment tests were carried out on 28 pairs of disease pairs,
between seven autoimmune disorders (CD, UC, MS, PS, RA, SLE, and T1D) and four
psychiatric disorders (SCZ, BPD, MDD, and ASD). For each disease pair, potential
shared SNPs were selected based on posterior of being associated with both diseases
Pr(Z; = 1)>0.5. Numbers of potential shared SNPs vary from disease to disease, ranging
from 0 to 4,505 (for SCZ-CD). For each cytoband, we calculated {x;1, X109, X01, X00 } >
with x;, being the number SNPs in cytoband that are potential shared SNPs, x;, being
the number of SNPs in cytoband that are not potential shared SNPs, x,; being the number
of potential shared SNPs not in cytoband, and x,, being the number of SNPs not in
cytoband and are not potential shared SNPs. We then tested the deviation from null
hypothesis that {x;1, X109, X01, Xo0  follows hypergeometic distribution using Fisher’s
exact test and adjust p-values for multiple testing using Bonferroni correction Dunn (3).
A complete list of all cytobands with enrichment odds ratio (OR) >5 and Bonferroni-
adjusted p-value<0.001 in at least one disease pair were reported (Table S2). Some
cytobands have significant enrichment in more than one disease pairs, such as MHC
region and 1p13.2, indicating their role in affecting both psychiatric disorders and
autoimmune disorders.

For example, we observed very strong evidence of MHC region implicated in affecting
both classes of disorders. In eight psychiatric disorder-IBD pairs (between SCZ, BPD,
MDD, and ASD; and UC and CD), four pairs have significant enrichment for 6p22.1 and
6p21.32, and 3 pairs for 6p21.33. In 20 psychiatric disorder-autoimmune disorder pairs
(between SCZ, BPD, MDD, and ASD; and MS, PS,RA, T1D, and SLE), 19 pairs have
significant (OR>5 and Bonferroni adjusted p-value<0.001) enrichment for 6p22.1,
6p21.33, 6p21.32, eight pairs have significant enrichment for 6p21.31, and 6 pairs for
6p22.2.
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Supplementary Figures

Figure S1. Number of publications from PubMed search of “Psychiatric disorders AND
autoimmune diseases” until Oct. 2014 per year.
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Figure S2. QQ plot showing pervasive pleiotropic effects between SCZ and
seven immune mediated diseases. Black dots represent all 1,219,805 SCZ GWAS
SNPs while the other 7 colored dots represent different subsets of SNPs selected
from the corresponding autoimmune disorder GWAS whose p values were < 0.001,
with the number of SNPs of each subset shown in brackets.
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Figure S3. Enrichment of immune-eQTLs in SNPs shared between five psychiatric
disorders and CD. Red bars represent the enrichment ratio of immune related eQTLs in
5 PGC traits specific SNPs respectively, blue bars represent the enrichment ratio of
immune related eQTLs in SNPs associated only with CD, grey bars shows the enrichment
ratio of immune related eQTLs in SNPs associated with both CD and the corresponding

PGC disorder.
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Figure S4. Enrichment of DNase-peak located SNPs in SCZ GWAS signal from 98
ENCODE cell lines. 98 cell lines ordered by enrichment ratios; cell lines from blood
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Fig SS. The frequencies of top SNPs (posterior>0.8) appearing in 35 disease pairs. A
total of 4,149 SNPs have posterior probability>0.8 of being associated with at least one
disease pair. Histogram showing the number of disease pairs that these 4,149 SNPs are
associated with (with posterior probability>0.8).
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Figure S6. QQ plot showing enrichment of SNPs having same effect direction
between SCZ and CD. Black dots for all 928.987 SNPs, and the other three lines are
different subsets of SNPs, selected by: blue for 472,165 SNPs that have same effect
direction for SCZ and CD; red for 7,414 SNPs with p<0.001 in CD GWAS; green for the
intersection of blue and red.
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Figure S7. Trend of consistent effect directions for shared SNPs of SCZ-RA and
BPD-RA disease pairs. For each disease pair, SNPs are assigned to 10 groups based on
their posterior probability of being associated with both diseases, and then the proportion
of alleles having the same effect direction for the disease pair was calculated within each
of the ten SNP groups. Left, SCZ-RA; right, BPD-RA. Blue represents the same effect
direction, and red represents the opposite direction, x-axis represents proportion of SNPs.
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Figure S8. Posterior of SNPs being associated with both diseases for 28 disease
pairs. Posterior of all shared SNPs of a disease pair is plotted against 22 genomic
positions. Red line indicates posterior=0.8.
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Figure S9. LocusZoom showing distribution of posterior probability in cytoband
1p13.2. Posterior probability of being associated with both diseases in eight disease pairs
between SCZ, BPD, MDD, ASD, and RA, T1D, are shown separately. Only region
1p13.2 is shown. SNP with the highest posterior is labeled, and SNPs in LD with it are
colored. Figures plotted using LocusZoom (4).
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Figure S10. Enrichment of CNS SNPs and immune eQTL with and without MHC
region. Red bars are enrichment ratios estimated using all SNPs genome-wide, blue bars
are enrichment ratios estimated with SNPs in MHC region excluded.
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Supplementary Tables
Table S1 (Separate Excel File)

Strength of pleiotropy within and across two disorder classes: 5 psychiatric disorders and
7 autoimmune disorders.

Table S2 (Separate Excel File)
Cross-disorder cytoband enrichment results.

Table S3
Number of SNPs in analysis and proportions of SNPs in direction combination categories

Table S3 Number of SNPs in analysis and proportions of SNPs in direction combination categories

Name (Dis1-Dis2) Dis1 Dis2 Intersect Concordant +-/-+ ++/--
SCZ-Height 1,237,958 2,469,635 1,069,211 1,069,197 531,616 537,581
(49.7%) (50.3%)
SCZ-BMI 1,237,958 2471,516 1,069,867 1,069,829 533,585 536,244
(49.9%) (50.1%)
BPD-Height 1,233,533 2,469,635 1,069,141 1,069,126 535,817 533,309
(50.1%) (49.9%)
BPD-BMI 1,233,533 2471,516 1,069,801 1,069,762 534,358 535,404
(50.0%) (50.0%)
SCZ-CD 1,237,958 953,241 952,785 952,785 463,544 489,241
(48.7%) (51.3%)
BPD-CD 1,233,533 953,241 952,785 952,785 453,708 499,077
47.6%) (52.4%)

* Dis1: Number of SNPs genotyped for Dis1; Dis2: Number of SNPs genotyped for Dis2; Intersect:
Number of SNPs genotyped for both Dis1 and Dis2; Concordant: Number of SNPs have consistent two
allele structure for Dis1 and Dis2; ++/+-: Number and proportion of SNPs fall into each categories, thus
proportion(++)=proportion(--), and proportion(-+)=proportion(+-).

* Meaning of +/- for each disorder:

Disorder/Disease + -

SCZ Protective; OR<1; beta<0 Risk; OR>1; beta>0
CD Protective; OR<1; beta<0 Risk; OR>1; beta>0
Height Increasing Decreasing

BMI Increasing Decreasing
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Table S4 (Separate Excel File)
A list of 85 SNPs with posterior probability of being associated with both SCZ and CD

above 0.9.

Table S5

Genome Annotation Enrichment Results (adjusted p-value<0.05)

Table S4 Genome Annotation Enrichment Results (p-adjusted<0.05)
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Category

Term

Fold.Enrichment

Bonferroni

KEGG_PATHWAY
GOTERM_BP_FAT

GOTERM_CC_FAT
KEGG_PATHWAY
GOTERM_MF_FAT
KEGG_PATHWAY

GOTERM_CC_FAT
KEGG_PATHWAY

KEGG_PATHWAY

GOTERM_BP_FAT

GOTERM_CC_FAT
GOTERM_BP_FAT

GOTERM_MF_FAT

GOTERM_MF_FAT

KEGG_PATHWAY

GOTERM_BP_FAT
GOTERM_CC_FAT
KEGG_PATHWAY
KEGG_PATHWAY

GOTERM_CC_FAT
GOTERM_BP_FAT

GOTERM_MF_FAT

GOTERM_CC_FAT

Allograft rejection

antigen processing and
presentation
MHC protein complex

Type I diabetes mellitus
NF-kappaB binding

Autoimmune thyroid
disease
flotillin complex

Systemic lupus
erythematosus

Antigen processing and
presentation

antigen processing and
presentation of peptide
antigen

nucleosome

response to unfolded
protein

thyroid hormone
receptor activator
activity

thyroid hormone
receptor coactivator
activity
Graft-versus-host
disease

defense response

chromatin

Viral myocarditis

Cell adhesion molecules
(CAMs)

protein-DNA complex
response to protein
stimulus

retinoid-X receptor
activity

MHC class I protein

16
11

14
14
20
12

48

21

12
11

37

37

13

AN 0 &N W

oo O

39

18

5.46E-09
1.16E-08

2.28E-08
3.52E-08
2.61E-07
3.37E-07

3.59E-07
7.40E-07

741E-07

7.76E-07

1.18E-06
3.39E-06

3.40E-06

3.40E-06

5.22E-06

6.10E-06
6.46E-06
1.29E-05
3.08E-05

3.39E-05
4.57E-05

5.68E-05

6.19E-05
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GOTERM_MF_FAT

GOTERM_BP_FAT
GOTERM_MF_FAT

GOTERM_BP_FAT

GOTERM_BP_FAT
GOTERM_BP_FAT

GOTERM_CC_FAT
GOTERM_MF_FAT

GOTERM_BP_FAT

GOTERM_CC_FAT
GOTERM_BP_FAT
GOTERM_CC_FAT
KEGG_PATHWAY
GOTERM_CC_FAT

GOTERM_BP_FAT
GOTERM_MF_FAT
GOTERM_MF_FAT
GOTERM_MF_FAT
GOTERM_MF_FAT

GOTERM_MF_FAT

GOTERM_BP_FAT
GOTERM_MF_FAT
GOTERM_MF_FAT

GOTERM_BP_FAT
GOTERM_CC_FAT
GOTERM_MF_FAT

GOTERM_MF_FAT

GOTERM_CC_FAT
GOTERM_BP_FAT

complex

receptor activator
activity

nucleosome assembly
retinoic acid receptor
activity

antigen processing and
presentation of peptide
antigen via MHC class I
chromatin assembly

protein-DNA complex
assembly
TAP complex

transcription factor
binding
nucleosome
organization
plasma membrane

immune response
chromosomal part
Asthma

MHC class I peptide
loading complex
chromatin assembly or
disassembly

MHC class I receptor
activity

retinoic acid receptor
binding

receptor regulator
activity

transcription regulator
activity

protein
heterodimerization
activity

positive regulation of
immune system process
MHC class II receptor
activity

advanced glycation end-
product receptor activity
DNA packaging
plasma membrane part

ligand-dependent
nuclear receptor
transcription coactivator
activity

vitamin D receptor
binding

chromosome

response to nutrient

24

29

24

44

34

21

21

14

19

59

15

8.36E-05

0.000247
0.000343

0.000351

0.000356
0.000567

0.000603
0.000705

0.000709

0.00072
0.00101
0.00117
0.00196
0.00211

0.00246

0.00249

0.00249

0.00333

0.00393

0.00438

0.00453

0.00456

0.00675

0.00704
0.00809
0.01

0.0124

0.0147
0.0385



https://doi.org/10.1101/014530

bioRxiv preprint doi: https://doi.org/10.1101/014530; this version posted January 29, 2015. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

GOTERM_MF_FAT
KEGG_PATHWAY

GOTERM_MF_FAT
GOTERM_MF_FAT

GOTERM_CC_FAT

DNA binding

Intestinal immune
network for IgA
production
hormone receptor
binding

MHC class I protein
binding

caveola

18

0.0389
0.0408

0.042

0.0434

0.0477

Table S6 (Separate Excel File)

A complete list of central nervous system (CNS) genes.

Table S7 (Separate Excel File)

A list of description of 98 ENCODE cell lines.
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