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Abstract

Advances in empirical population genetics have made apparent the need for models that simultane-

ously account for selection and demography. To address this need, we here study the Wright-Fisher

diffusion under selection and variable effective population size. In the case of genic selection and

piecewise-constant effective population sizes, we obtain the transition density function by extend-

ing a recently developed method for computing an accurate spectral representation for a constant

population size. Utilizing this extension, we show how to compute the sample frequency spec-

trum (SFS) in the presence of genic selection and an arbitrary number of instantaneous changes

in the effective population size. We also develop an alternate, efficient algorithm for computing

the SFS using a method of moments. We apply these methods to answer the following questions:

If neutrality is incorrectly assumed when there is selection, what effects does it have on demo-

graphic parameter estimation? Can the impact of negative selection be observed in populations

that undergo strong exponential growth?
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Introduction1

Advances in empirical population genetics have pointed out the need for models that simultane-2

ously account for selection and demography. Studies on samples from various species including3

humans (e.g., Williamson et al. 2005; Tennessen et al. 2012) and Drosophila melanogaster (Glinka4

et al. 2003; Duchen et al. 2013) have shown that demographic processes such as population size5

changes shape in large part the patterns of polymorphism among genomes and estimated the im-6

pact of selection on top of such underlying neutral conditions. Thus far, most theoretical papers7

considered selective and demographic forces independently of each other for the sake of simplicity8

(e.g., Stephan and Li 2007).9

Theoretical studies of neutral models of time-varying population size have been accomplished10

within the diffusion and the coalescent frameworks. Kimura (1955a) derived the transition density11

function of the Wright-Fisher (WF) diffusion with a constant population size that characterizes the12

neutral evolution of allele frequencies over time. Shortly thereafter, Kimura (1955b) noted how13

to rescale time to generalize this result to a deterministically changing population size. Nei et al.14

(1975) derived the average heterozygosity under this general condition by applying a differential15

equation method, before studies on time-varying population size started to utilize the coalescent.16

Watterson (1984) derived the probability distribution and the moments of the total number of alle-17

les in a sample using models of one or two sudden changes in population size. Slatkin and Hudson18

(1991) considered the distribution of pairwise differences in exponentially growing populations,19

before Griffiths and Tavaré (1994) provided the coalescent for arbitrary deterministic changes in20

population size. The allele frequency spectrum, which is the distribution of the number of times21

a mutant allele is observed in a sample of DNA sequences, has been utilized in many theoretical22

and empirical studies. It can be further distinguished into the allelic spectrum and the sample fre-23

quency spectrum (SFS) according to whether absolute or relative frequencies are meant. Fu (1995)24

derived the first- and second-order moments of the allelic spectrum for a constant population size,25

which has been generalized to time-varying population size by Griffiths and Tavaré (1998) and26

Živković and Wiehe (2008). Although deterministic fluctuations in population size are commonly27

considered for the interpretation of biological data, studies have also examined stochastic changes28

in population size (e.g., Kaj and Krone 2003).29

The mathematical modeling of natural selection was mostly carried out within the diffusion30

framework, whereas coalescent approaches have proven analytically tedious (e.g., Krone and31
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Neuhauser 1997). Fisher (1930) derived the equilibrium solution for the allelic spectrum of32

a population, which became particularly useful when Sawyer and Hartl (1992) modeled the33

frequencies of mutant sites via a Poisson random field approach. Kimura (1955c) employed a34

perturbation approach to obtain a series representation of the transition density function that is35

accurate for scaled selection coefficients smaller than one. However, as noted in Williamson et al.36

(2005), an appropriate use of this result with respect to the analysis of whole-genome data is even37

difficult for a constant population size. In a recent paper, Song and Steinrücken (2012) devised38

an efficient method to accurately compute the transition density functions of the WF diffusion39

with recurrent mutations and general diploid selection. This nonperturbative approach that can40

be applied to scaled selection coefficients substantially greater than one finds the eigenvalues and41

the eigenfunctions of the diffusion generator and leads to an explicit spectral representation of the42

transition density function. The results for this biallelic case have been extended to an arbitrary43

number of alleles by Steinrücken et al. (2013).44

In recent years, several researchers have started to investigate the combined effect of natural45

selection and demography. The majority of these studies have utilized finite difference schemes to46

make results applicable. Williamson et al. (2005) employed such a scheme to obtain a numerical47

solution for the SFS for a model with genic selection and one instantaneous population size change.48

The authors applied this result within a likelihood-based method to infer population growth and49

purifying selection at non-synonymous sites across the human genome. Evans et al. (2007) investi-50

gated the forward diffusion equation with genic selection and deterministically varying population51

size and incorporated the effect of point mutations via a suitable boundary condition. They derived52

a system of ODEs for the moments of the allelic spectrum, but had to resort to a numerical scheme53

to make their results applicable. Gutenkunst et al. (2009) considered population substructure and54

selection to obtain the joint allele frequency spectrum of up to three populations by approximat-55

ing the associated diffusion equation by a finite difference scheme as well. Lukić and Hey (2012)56

applied spectral methods that even account for a fourth population in the otherwise same setting57

as Gutenkunst et al. (2009). Recently, and again with respect to a single population, Zhao et al.58

(2013) provided a numerical method to solve the diffusion equation for random genetic drift that59

can incorporate the forces of mutation and selection. The authors illustrated the accuracy of their60

discretization approach by determining the probability of fixation in the presence of selection for61

both an instantaneous population size change and a linear increase in population size. In general,62

such methods require an appropriate discretization of grid points, which may depend strongly on63
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the parameters. This makes it difficult, however, to predict if a particular discretization will produce64

accurate results.65

In this study, we use the polynomial approach by Song and Steinrücken (2012) to obtain the66

transition density function for genic selection and instantaneous changes in population size. First,67

we focus on a single time period during which the population has a different size relative to a fixed68

reference population size. We compute the eigenvalues and the eigenfunctions of the diffusion69

operator with respect to the modified drift term of the underlying diffusion equation. Similarly to70

a constant population size, the eigenfunctions are given as a series of orthogonal functions. The71

eigenvalues and eigenfunctions facilitate a spectral representation of the transition density function72

describing the change in allele frequencies across this time period. Such transition densities for73

single time periods can then be folded over various instantaneous population size changes to obtain74

the overall transition density function for such a multi-epoch model with genic selection. After75

illustrating the applicability of this approach, we derive the SFS by means of the transition density76

function. While the transition density function proves useful for the analysis of time-series data that77

are mostly gathered from species with short generation times as bacteria (e.g., Lenski 2011) but78

also from species with long generation times (Steinrücken et al. 2014), the SFS can also be applied79

to whole-genome data collected at a single time point. As an alternative approach to employing the80

transition density function for the SFS, we modify the method of moments by Evans et al. (2007)81

to efficiently compute allele frequency spectra for genic selection, point mutations and piecewise82

changes in population size.83

We then employ a maximum likelihood method to estimate the demographic and selective pa-84

rameters of a given bottleneck model. After examining the accuracy of parameter estimation, we85

discuss how the estimates change when selection is ignored or a simpler demographic model is86

assumed. In this context, we investigate the demography of an African population of Drosophila87

melanogaster (Duchen et al. 2013) by assuming both a selective and a neutral model. Furthermore,88

we answer an other, important question arising in human population genetics (Tennessen et al.89

2012): Can the impact of negative selection be observed in populations that undergo strong expo-90

nential growth? We investigate, how strong selection would have to be to leave a signature in the91

SFS.92
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The transition density function for genic selection and piecewise-constant93

population sizes with K epochs94

Model and notation95

We assume that the diploid effective population size changes deterministically, with N(t) denoting96

the size at time t. Here, time is measured in units of 2Nref generations, where Nref is a fixed97

reference population size. Unless stated otherwise, the initial population size will be used as the98

reference population size in the various numerical examples. In the diffusion limit, the relative99

population size N(t)/Nref converges to a scaling function which we denote by ρ(t).100

We assume the infinitely-many-sites model (Kimura 1969) with A0 and A1 denoting the ances-101

tral and derived allelic types, respectively. The relative fitnesses of A1/A1 and A1/A0 genotypes102

over the A0/A0 genotype are respectively given by 1+2s and 1+s. The population-scaled selection103

coefficient is denoted by σ = 2Nref · s. The frequency of the derived allele A1 at time t is denoted104

by Xt. Let f be a twice continuously differentiable, bounded function over [0, 1]. The backward105

generator of a time-inhomogeneous one-dimensional WF diffusion process on [0, 1] is denoted by106

L , which acts on f as107

L f(x) =
1

2
b(x; t)

∂2

∂x2
{f(x)}+ a(x)

∂

∂x
{f(x)}, (1)

where the diffusion and drift terms are given by b(x; t) = x(1 − x)/ρ(t) and a(x) = σx(1 − x),108

respectively. The dependence of the diffusion term on time introduces considerable challenges109

to obtaining analytic results. To gain insights, we here focus on the case where ρ is piecewise110

constant. In this case, the diffusion and drift terms differ by a constant factor within each piece,111

thus simplifying the analysis.112

Throughout, we assume that ρ has K constant pieces (or epochs) in the time interval [τ0, τ).113

The change points are denoted by t1, . . . , tK−1, and for convenience we define t0 = τ0 and tK = τ .114

Then, for ti ≤ t < ti+1, with 0 ≤ i ≤ K − 1, we assume ρ(t) = ci, where ci is some positive115

constant. For the epoch ti ≤ t < ti+1, the diffusion term is thus given by b(x) = x(1−x)/ci and the116

corresponding generator is denoted by L i. The scale density ξi (Karlin and Taylor 1981, Ch. 15)117

for the epoch is given by118

ξi(x) = exp

[

−
∫ x

0

2a(z)

b(z)
dz

]

= exp(−2ciσx),
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while the speed density πi is given (up to a constant) by119

πi(x) = [b(x)ξi(x)]
−1 =

ci exp(2ciσx)

x(1− x)
. (2)

Given real-valued functions f and g on [0, 1] that satisfy appropriate boundary conditions and120

are square integrable with respect to some real positive density h, we use 〈f, g〉h to denote121

〈f, g〉h =

∫ 1

0
f(x)g(x)h(x)dx.

The transition density within each epoch [ti, ti+1)122

For the epoch [ti, ti+1), let the transition density be denoted by pi(t;x, y), where t ∈ [ti, ti+1),123

Xti = x and Xt = y. Under the initial condition pi(ti;x, y) = δ(x − y), the spectral representation124

of pi(t;x, y) is given by125

pi(t;x, y) =
∞
∑

n=0

exp[−Λi
n(t− ti)]πi(y)Φ

i
n(x)Φ

i
n(y)

1

〈Φi
n,Φ

i
n〉πi

, (3)

where −Λi
n and Φi

n are the eigenvalues and eigenfunctions of L i, respectively. That is,126

L
iΦi

n(x) = −Λi
nΦ

i
n(x).

It can be shown that the eigenvalues are all real and non-positive. Furthermore,127

0 ≤ Λi
0 < Λi

1 < Λi
2 < · · · ,

with Λi
n → ∞ as n → ∞. The associated eigenfunctions {Φi

n(x)}∞n=0 form an orthogonal basis of128

L2([0, 1], πi), the space of real-valued functions on [0, 1] that are square integrable with respect to129

the speed density πi, defined in (2).130

Song and Steinrücken (2012) recently developed a method for finding Λi
n and Φi

n in the case131

of ci = 1. We will give a brief description of their method and modify it accordingly to incorporate132

an arbitrary ci > 0. Let L i
0 denote the diffusion generator under neutrality (i.e., σ = 0). The133

eigenfunctions of L i
0 are modified Gegenbauer polynomials {Gn(x)}∞n=0 (cf. Appendix), and the134
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corresponding eigenvalues are −λi
n, with135

λi
n =

(

n+ 2

2

)

1

ci
. (4)

Similar to Song and Steinrücken (2012), define H i
n(x) as136

H i
n(x) =

exp(−ciσx)√
ci

Gn(x). (5)

Then, {H i
n(x)}∞n=0 form an orthogonal system with respect to the weight function πi(x). By directly137

applying the full generator L i to H i
n(x), we observe that H i

n(x) are not eigenfunctions of L i.138

Instead, we obtain139

LiH
i
n(x) = −[λi

n + ci Q(x;σ)]H i
n(x), (6)

where Q(x;σ) = 1/2 ·σ2x(1−x). However, since both {H i
n(x)}∞n=0 and {Φi

n(x)}∞n=0 are orthogonal140

with respect to the same weight function πi(x), and {H i
n(x)}∞n=0 form a basis of L2([0, 1], πi), we141

can represent Φi
n(x) as a linear combination of H i

m(x):142

Φi
n(x) =

∞
∑

m=0
uin,mH i

m(x). (7)

Furthermore, the fact that Φi
n(x) is an eigenfunction of L i with eigenvalue −Λi

n implies that143

{uin,m}∞m=0 and Λi
n satisfy the following equation:144































λi
0 + cia

(0)
0 0 cia

(−2)
2 0 0 · · ·

0 λi
1 + cia

(0)
1 0 cia

(−2)
3 0 · · ·

cia
(+2)
0 0 λi

2 + cia
(0)
2 0 cia

(−2)
4 · · ·

0 cia
(+2)
1 0 λi

3 + cia
(0)
3 0 · · ·

0 0 cia
(+2)
2 0 λi

4 + cia
(0)
4 · · ·

...
...

...
...

...
. . .





























































uin,0

uin,1

uin,2

uin,3

uin,4
...































= Λi
n































uin,0

uin,1

uin,2

uin,3

uin,4
...































,

(8)

where λi
n is as defined in (4) and a

(−2)
m , a

(0)
m , a

(+2)
m are known constants that depend on σ and m145

(cf. Song and Steinrücken 2012 for details).146

The transition density expansion (3) can be obtained by numerically solving the eigensys-147
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tem (8). Denote the infinite-dimensional matrix on the left hand side of (8) by Wi. The eigenval-148

ues Λi
n of Wi correspond (up to a sign) to the eigenvalues of L i, and the associated eigenvectors149

ui
n =

(

uin,0, u
i
n,1, u

i
n,2, . . .

)T
of Wi determine the eigenfunctions of L i via (7). Let W

[D]
i denote150

the D × D matrix obtained by taking the first D rows and D columns of Wi, and let Λ
i,[D]
n and151

u
i,[D]
n =

(

u
i,[D]
n,0 , u

i,[D]
n,1 , u

i,[D]
n,2 , . . .

)T

denote the eigenvalues and eigenvectors of W
[D]
i , respectively.152

The truncated eigensystem153

W
[D]
i u

i,[D]
n = Λi,[D]

n u
i,[D]
n (9)

can then be used to approximate (8). This finite-dimensional linear system can be easily solved154

numerically. Since the truncated versions of the eigenvalues and eigenvectors converge rapidly as155

D increases, an accurate approximation of the transition density (3) can be efficiently obtained.156

The rapid convergence behavior of the eigenvalues is illustrated in Figure 1. As one would expect,157

the truncation level D required for convergence is higher when modeling a large population (cf.158

Figure 1b) compared to the basic selection model (cf. Figure 1a), while convergence is fast in159

a model with smaller population size (cf. Figure 1c). This is because the necessary truncation160

level correlates with the effective strength of selection, which is higher in large populations and161

lower in small populations. Therefore, for a fixed selection coefficient s, large populations are162

computationally more demanding than small populations.163

The transition density for the entire period [τ0, τ) with K epochs164

Suppose Xτ0 = x and Xτ = y. The transition density p(τ0, τ ;x, y) for the entire period [τ0, τ) is165

obtained by combining the transition densities for the K epochs as follows:166

p(τ0, τ ;x, y) =

∫

[0,1]K−1

p0(t1;x, x1)

[

K−2
∏

i=1

pi(ti+1;xi, xi+1)

]

pK−1(τ ;xK−1, y) dx1 . . . dxK−1, (10)

where xi denotes the allele frequency at the change point ti. Using (3), we can write (10) as167

p(τ0, τ ;x, y) = Φ0(x)
T
E0S0E1S1 · · ·EK−2SK−2EK−1ΦK−1(y)πK−1(y), (11)
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where Φi(x) =
(

Φi
0(x),Φ

i
1(x),Φ

i
2(x), . . .

)T
is an infinite-dimensional column vector, while Ei and168

Si are infinite-dimensional matrices defined as169

Ei = diag

(

e−Λi

0
(ti+1−ti)

〈Φi
0,Φ

i
0〉πi

,
e−Λi

1
(ti+1−ti)

〈Φi
1,Φ

i
1〉πi

, . . .

)

and170

Si =

∫ 1

0
πi(z)Φi(z)Φi+1(z)

T dz.

In general, Si is not a diagonal matrix since Φi
n(z) and Φi+1

m (z) are not orthogonal with respect to171

πi(z) if ci 6= ci+1. In the Appendix, we show that the entry (n,m) of Si is given by172

∫ 1

0
πi(z)Φ

i
n(z)Φ

i+1
m (z)dz =

√

ci
ci+1

∞
∑

k=0

∞
∑

l=0

uin,ku
i+1
m,l

k+l+2
∑

j=1

(−1)j+1 e
σ(ci−ci+1) − (−1)k+l+j

[σ(ci − ci+1)]j+1

×(k + 1)(l + 1)j!

(k + 2)(l + 2)

j−1
∑

r=0

(

k + 2

j − r

)(

k + j − r

j − r − 1

)(

l + r + 2

r + 1

)(

l

r

)

. (12)

Note that the last line of (12) does not depend on n or m, so it needs to be computed only once.173

The overall computational time for evaluating p(τ0, τ ;x, y) scales linearly with the number K of174

epochs.175

To better understand the joint impact of selection and demography on the transition density176

function, we consider two scenarios, where p(0, τ ;x, y) is simply denoted as p(τ ;x, y). Figure 2177

illustrates the density in a scenario in which the selection coefficient is fixed and various K-epoch178

demographic models are considered. In comparison to the case of a constant population size (cf.179

Figure 2a), an instantaneous expansion (cf. Figure 2b) narrows the distribution around the mean,180

whereas an additional phase of a reduced population size (cf. Figure 2c) increases the variance181

relative to a population of a constant size. Figure 3 illustrates the same scenarios with a fixed182

transition time and varying selection coefficients.183

The sample frequency spectrum (SFS)184

The transition density function approach185

The transition density function derived in the previous section can be employed to obtain the SFS186

of a sample. Consider a sample of size n obtained at time t = τ . The probability that the A1 allele187
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with frequency x at time t = τ0 is observed b times in the sample is (Griffiths 2003)188

pn,b(x; τ0, τ) =

1
∫

0

(

n

b

)

yb(1− y)n−bp(τ0, τ ;x, y)dy. (13)

For piecewise-constant population size models with K epochs, a spectral representation of189

p(τ0, τ ;x, y) can be found via (11) and evaluating (13) involves computing the integral190

∫ 1
0 yb(1− y)n−bπK−1(y)ΦK−1(y)dy. For l ≥ 0, using (2), (5), and (7), we obtain191

∫ 1

0
yb(1− y)n−bπK−1(y)Φ

K−1
l (y)dy

=
∞
∑

m=0

√
cK−1u

K−1
l,m

∫ 1

0
yb−1(1− y)n−b−1ecK−1·σyGm(y)dy

=

∞
∑

m=0

√
cK−1u

K−1
l,m

1

b+ 1

m
∑

h=0

(−1)h+1

(

m+1
h+1

)(

h+m+2
h

)

(

n+h+1
b+1

) · 1F1(b+ 1;n + h+ 2; cK−1 · σ), (14)

where 1F1(a; b; z) =
∑

j≥0
a(j)/b(j)z

j/j! is the confluent hypergeometric function of the first kind. The192

descending factorials d(j) are defined in the Appendix.193

The sample frequency spectrum (SFS) qn,b(τ) is the probability distribution on the number b of194

mutant alleles in a sample of size n taken at time τ , conditioned on segregation. For 1 ≤ b ≤ n− 1,195

qn,b(τ) is given by196

qn,b(τ) = lim
x→0

∫ τ

−∞
pn,b(x; τ0, τ)dτ0

∫ τ

−∞

∑n−1
a=1 pn,a(x; τ0, τ)dτ0

. (15)

In (15), the SFS at a single site is obtained by averaging over sample paths. This is equivalent197

to the frequency spectrum distribution over a large number of independent mutant sites in the198

Poisson random field model of Sawyer and Hartl (1992). Using (11), (12), (13) , and (14), we can199

approximate (15) numerically. If it is unknown which allele is derived, a folded version of (15) can200

be obtained as [qn,b + qn,n−b]/(1 + δb,n−b), where δb,n−b denotes the Kronecker delta.201

A method of moment approach202

As detailed above, the transition density function can be employed to obtain the SFS. However,203

the specific solution for the transition density is not required to obtain the less complex and thus204

computationally less demanding SFS. Here, we utilize the work of Evans et al. (2007) to develop205

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2015. ; https://doi.org/10.1101/014639doi: bioRxiv preprint 

https://doi.org/10.1101/014639
http://creativecommons.org/licenses/by-nc-nd/4.0/


an efficient algorithm for computing the allele frequency spectrum in the case of genic selection206

and piecewise-constant population sizes.207

Suppose mutations arise at rate θ/2 (per sequence per 2Nref generations) and according to the208

infinitely-many-sites model (Kimura 1969). Evans et al. (2007) use the forward diffusion equation209

to describe population allele frequency changes and introduce mutations by an appropriate bound-210

ary condition. Slightly modifying their notation, we use f(y, t)dy to denote the expected number of211

sites where the mutant allele has a frequency in (y, y + dy), with 0 < y < 1, at time t. The forward212

equation is213

∂

∂t
f(y, t) =

1

2

∂2

∂y2
{b(y; t)f(y, t)} − ∂

∂y
{a(y)f(y, t)}, (16)

where the diffusion term b(y; t) = y(1−y)/ρ(t), the drift term a(y) = σy(1−y), the scaled selection214

coefficient σ, and the population size function ρ(t) are defined as before. The influx of mutations215

is incorporated into this process via the boundary conditions216

lim
y↓0

yf(y, t) = θρ(t) and lim
y↑1

f(y, t) finite. (17)

The resulting polymorphic sites follow the dynamics of (16) thereafter. Note that this differs from217

the diffusion process studied in the previous section, as the influx of mutations is now explicitly218

modeled.219

Again, it is analytically more practical to consider the corresponding backward equation, which220

is obtained by setting g(y, t) := y(1 − y)f(y, t). This substitution transforms the forward equation221

for f(y, t) into a backward equation for g(y, t), which is essentially given by (1) up to the sign of the222

drift term. Evans et al. (2007) derived a coupled system of ordinary differential equations (ODEs)223

for the moments µj(t) =
∫∞

0 yjg(y, t)dy:224

µ′
0(t) =

θ

2
− 1

ρ(t)
µ0(t) + σ[µ0(t)− 2µ1(t)], (18)

µ′
j(t) =

1

ρ(t)

[

(

j + 1

2

)

µj−1(t)−
(

j + 2

2

)

µj(t)

]

+

σ
[

(j + 1)µj(t)− (j + 2)µj+1(t)
]

, j ≥ 1, (19)

where µ′
j(t) = dµj(t)/dt. A similar system of ODEs was derived and solved by Kimura (1955a) for225

a neutral scenario with a constant population size and without mutations. For σ = 0, the above226
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system is finite and can be solved explicitly (Živković and Stephan 2011). In the case of selection227

(σ 6= 0), on the other hand, the system is infinite and obtaining an explicit solution for an arbitrary228

ρ is a challenging problem, even if the system is truncated by setting µj(t) = 0 for j ≥ D.229

From now on, assume µj(t) ≡ 0 for j ≥ D and rewrite the truncated system of ODEs in matrix230

form as231

M
′(t) =

[

1

ρ(t)
B + σA

]

M(t) +Θ, (20)

where M(t) =
(

µ
[D]
0 (t), µ

[D]
1 (t), . . . , µ

[D]
D−1(t)

)T

, M ′(t) = dM(t)/dt, Θ = (θ/2, 0, . . . , 0)T are D-232

dimensional column vectors, and B = (bkl) and A = (akl) are D ×D matrices with entries233

bkl =



























−
(

k+2
2

)

, if l = k,

(

k+1
2

)

, if l = k − 1,

0, otherwise,

and akl =



























k + 1, if l = k,

−(k + 2), if l = k + 1,

0, otherwise,

for 0 ≤ k, l ≤ D−1. The formal solution of (20) cannot be written in terms of a matrix exponential234

but only as a Peano-Baker series (Baake and Schlägel 2011) for arbitrary ρ, which can be numer-235

ically quite demanding. Therefore, we focus on the case of piecewise constant ρ and develop an236

efficient method to solve the truncated system of ODEs.237

We first consider ρ(t) ≡ c0 (i.e., a constant population size), for which the solution of (20) takes238

the form of a matrix exponential given by239

M(t) = exp

[ t
∫

0

(

B

c0
+ σA

)

ds

]

M(0) +

{ t
∫

0

exp

[ t
∫

s

(

B

c0
+ σA

)

du

]

ds

}

Θ

= exp

[(

B

c0
+ σA

)

t

]

M(0) +

{

exp

[(

B

c0
+ σA

)

t

]

− I

}(

B

c0
+ σA

)−1

Θ. (21)

Let −λk, (lk,0, . . . , lk,D−1), and (r0,k, . . . , rD−1,k)
T respectively denote the eigenvalues, row eigen-240

vectors, and column eigenvectors of B/c0 + σA. Then, (21) implies241

µ
[D]
j (t) =

D−1
∑

i=0

µ
[D]
i (0)

D−1
∑

k=0

rjklkie
−λkt +

θ

2

D−1
∑

k=0

rjklk0
1− e−λkt

λk

. (22)

It is intractable to find closed-form expressions of −λk, lki, and rjk, but, for a given truncation level242
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D, they can be computed numerically. Depending on the details of the model under consideration,243

it might be more efficient to solve (21) numerically rather than applying the more analytic form244

given in (22).245

We now investigate the equilibrium solution of (22), since it can be applied as an initial condi-246

tion in a model in which the population size remains constant over a longer period of time before247

instantaneous population size changes occur. Assuming that all alleles are monomorphic at time248

zero, i.e. µ
[D]
i (0) ≡ 0, and letting t → ∞, we obtain the moments at equilibrium as249

µ̂
[D]
j =

θ

2

D−1
∑

k=0

rjklk0
λk

.

For D sufficiently large, this result is numerically close to the exact solution µ̂j . The latter can also250

be obtained as follows. The equilibrium population frequency spectrum is given by (Fisher 1930)251

f̂(y) =
θc0
[

1− e−2c0σ(1−y)
]

y(1− y)(1− e−2c0σ)
. (23)

The sampled version can be easily found via binomial sampling as in (13):252

f̂n,b = θc0
n

b(n− b)

1− 1F1(b;n; 2c0σ)e
−2c0σ

1− e−2c0σ
. (24)

For σ 6= 0, the moments µ̂j of ĝ(y) = y(1− y)f̂(y) are given by253

µ̂j = θc0
1

1− e−2c0σ

{

e−2c0σ[Γ(j + 1,−2c0σ)− j!]

(−2c0σ)j+1
+

1

j + 1

}

,

where Γ(a, z) =
∫∞

z
ta−1e−tdt is the incomplete gamma function.254

Now, consider the piecewise-constant model with K epochs in the time interval [τ0, τ ] defined255

earlier. For ti ≤ t < ti+1,256

M
′(t) =

(

B

ci
+ σA

)

M(t) +Θ, (25)

which can be solved as in (21). For τ > tK−1,257

M(τ) = exp

[

(

B

cK−1
+ σA

)

(τ − tK−1)

]

M(tK−1) +

{

exp

[

(

B

cK−1
+ σA

)

(τ − tK−1)

]

− I

}

(

B

cK−1
+ σA

)−1
Θ, (26)
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where M(ti), for 1 ≤ i ≤ K − 1, is recursively given by258

M(ti) = exp

[(

B

ci−1
+ σA

)

(ti − ti−1)

]

M(ti−1) +

{

exp

[(

B

ci−1
+ σA

)

(ti − ti−1)

]

− I

}(

B

ci−1
+ σA

)−1

Θ.

The initial condition M(t0) is either chosen as the equilibrium solution described above or the zero259

vector, which corresponds to the case of all loci being monomorphic at time t0 = τ0.260

The accuracy of the above framework depends on how fast the truncated moments µ
[D]
j (τ) con-261

verge to zero as D increases. In general, the truncated moments converge faster for negative than262

for positive σ, and for instantaneous declines compared to instantaneous expansions (cf. Figure 4).263

For a large positive σ, a higher truncation level D may be required to achieve the desired accuracy.264

Finally, the allelic spectrum fn,b(τ), for 1 ≤ b ≤ n − 1, of a sample of size n taken at time τ can be265

obtained from the moments µj(τ) via (26) and by using the relationship266

fn,b(τ) =

(

n

b

) n−b−1
∑

l=0

(−1)l
(

n− b− 1

l

)

µl+b−1(τ). (27)

The SFS qn,b(τ) at time τ is then given by267

qn,b(τ) =
fn,b(τ)

∑n−1
a=1 fn,a(τ)

. (28)

The joint impact of a population bottleneck and selection on the SFS is illustrated in Figure 5268

for various points in time. As expected, negative and positive selection result in a skew of the SFS269

towards low- and high-frequency derived variants, respectively, when compared to a model without270

selection, across all sampling times. Moreover, this skew varies in intensity at different points in271

time. In the neutral demographic model (cf. Figure 5b), the relative frequency of singletons at time272

τ3 is higher than at time τ4, whereas under the same demographic model with negative selection273

(cf. Figure 5c) this relation is inverted. This is because the amount of singletons that is caused274

by demographic forces decreases after the expansion from τ3 to τ4, while negative selection is still275

increasing the low-frequency derived classes in this time interval.276
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Applications277

Here, we discuss some biologically relevant questions that can be addressed using our theoretical278

framework. This section consists of the following three parts:279

1. We first consider models with negative selection and bottlenecks of medium strength at differ-280

ent time points. We examine the SFS under such models and try to estimate the demographic281

parameters while taking selection into account. We also carry out demographic inference282

while ignoring selection. Whereas the former demonstrates how well the demographic and283

selective parameters can be estimated jointly, the latter mimics the common practice of as-284

suming genome-wide polymorphic sites as putatively neutral (due to the difficulty of jointly285

estimating the impact of selection and demography using existing tools). We finally examine286

the consequences of assuming a too simple underlying demography on parameter estimation.287

2. We then analyze an African sample of Drosophila melanogaster to investigate its demographic288

history and possible selective effects.289

3. Lastly, we examine a model of strong exponential population growth (mimicking human evo-290

lution) and superimpose negative selection of various strengths to understand if and when291

selection can be inferred for such a model.292

Throughout, the first population size change will occur after the allele frequencies have reached an293

equilibrium according to (24).294

Joint inference of population bottleneck and purifying selection295

A maximum likelihood approach296

Under the assumption that the considered sites are independent, the log-likelihood of a model297

M given data D is log[L(D;M)] =
∑n−1

i=1 di log(qi) + constant, where di is the observed number298

of sites at which the derived allele occurs i times in the sample, and qi is the probability that the299

derived allele occurs i times in the sample at a segregating site under model M (e.g., Wooding300

and Rogers 2002). Recall that qi can be either obtained via the transition density function or the301

method of moment approach.302

Consider the bottleneck model illustrated in Figure 6. Note that the present relative size cS is303

fixed to 1, i.e., here the present population size is used as the reference population size Nref. First,304

we consider the scenario where the ancestral population size c0 prior to the bottleneck is allowed305
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to vary. In this case, the model has five free parameters: c0, the initial population size; cB , the306

population size during the bottleneck; tB , the duration of the bottleneck; tS = τ − tB, the time307

since recovery from the bottleneck; and σ, the scaled selection coefficient. We then also consider308

the scenario where the ancestral population size is the same as the present population size, i.e.,309

c0 = cS , resulting in a model with four free parameters.310

We adopted a grid search in our estimation procedure, with σ ∈ [−10, 0] and cB , tB , tS ∈311

[0.001, 1]. For the 5-parameter model, c0 was chosen from the range [0.01, 10]. In total, 110,000312

grid points were chosen in the selected case and 10,000 in the neutral case. Note that the grid313

search also accounts for models of one or two successive instantaneous population expansions. For314

the 4-parameter model, 11,000 grid points were chosen in the selected case and 1000 in the neutral315

case. The grid points are summarized in Table 1.316

Estimation of bottleneck and selection parameters317

We first evaluated the SFS for a sample of size n = 50 in the following twelve scenarios, all with318

cS = 1 and σ ∈ {0,−1/2,−2}:319

1. Constant population size (i.e., c0 = cB = cS = 1).320

2. Bottleneck models with c0 = 1/2, cB = 1/10, tB = 1/10, and tS ∈ {1/200, 1/20, 1/2}.321

First, to test how well the demographic and selective parameters can be estimated jointly from322

sampled data, we focused on the bottleneck demography with tS = 1/20 and considered two323

scenarios: The neutral case (σ = 0) and the selected case with σ = −2. To mimic the limited avail-324

ability of independent polymorphic sites across the genome, we sampled 10,000 sites according to325

the SFS for the two chosen scenarios, and repeated this procedure 200 times. For each of these326

200 datasets, we maximized the log-likelihood over the grid of parameter values described earlier,327

assuming (A1) neutrality when the true model has σ = 0, (A2) neutrality when the true model328

has σ = −2, (A3) presence of selection when the true model has σ = −2, and (A4) presence of329

selection when the true model has σ = 0.330

The estimated parameters are shown in Table 2. For inference under correct model assumptions331

(A1 and A3), the median estimates are equal to the true parameters. When selection is ignored332

although present in the dataset (A2), the ancestral population size (ĉ0) and the duration of the bot-333

tleneck (t̂B) are underestimated, whereas the bottleneck size (ĉB) and the time since the bottleneck334

(t̂S) are accurately estimated. When the true model is neutral but the inference procedure allows335

for selection (A4), a neutral demographic model is accurately inferred. We calculated likelihood-336
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ratio statistics for each of the 200 datasets to compare the two nested models of selection and337

neutrality. The null hypothesis of neutrality can be rejected at the 5% significance level with a338

power of 55%.339

We further analyzed all twelve scenarios using the expected SFS directly, assuming that the340

amount of data is sufficiently large such that the observed SFS has converged to the expected341

value. Our goal in this case is to study the effect of model misspecification on parameter estimation;342

specifically, assuming selection when the true model is neutral or assuming neutrality when there343

is selection. In the former case, the maximum likelihood estimates always coincided with the344

true parameters. Therefore, it is useful to allow for selection in an analysis even when putatively345

neutral regions are considered. In the latter case, our results are summarized in Table 3. For a346

constant population size, two rather old instantaneous expansions are estimated. For the bottleneck347

models, ignoring selection leads to the largest errors for the most recent bottleneck and σ = −1/2348

and the least recent bottleneck and σ = −2, for which an instantaneous expansion is estimated.349

Interestingly, the time since the bottleneck was robustly estimated in many cases.350

To assess the impact of assuming a slightly simplified model for parameter estimation, we car-351

ried out an analogous study where the ancestral population size c0 was incorrectly assumed to352

equal the current size cS = 1, while the true model had c0 = 1/2 and cS = 1. For the resampling353

analysis, we considered the same bottleneck scenarios as before with σ = 0 or −2, and maximized354

the log-likelihood values over a grid in the parameter space (as described earlier) for each of the355

200 simulated datasets each containing 10,000 polymorphic sites. The parameter estimates are356

shown in Table 4. The time since the bottleneck (t̂S) is accurately estimated irrespective of correct357

or wrong assumptions regarding selection. Incorrectly assuming c0 = cS results in either an over-358

estimation of the duration of the bottleneck (t̂B) in most of the cases (A1–A3) or an inference of359

selection when σ = 0 (A4). Selection was poorly estimated even under (A3).360

Again, we also analyzed all twelve scenarios under the assumption that the observed SFS has361

converged to the expected value, to study the effect of model misspecification on parameter esti-362

mation. The results are shown in Table 5. The biases caused by incorrectly assuming c0 = cS are363

largest for the scenario that captures the youngest bottleneck (tS = 1/200). Here, not only the364

selection coefficients are strongly misestimated but also the time since the bottleneck (t̂S) is largely365

underestimated. In all the other scenarios, at least the time since the bottleneck (t̂S) is accurately366

estimated. The estimation accuracy of the other demographic parameters and selection coefficient367

increases with bottleneck age and the concomitant decreasing impact of the ancestral population368
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size on the SFS. In summary, we note that assuming a too simplistic demographic model can lead369

to large errors in parameter estimation.370

Testing a dataset of Drosophila melanogaster371

Here, we apply our method to analyze a dataset which has been recently used to estimate the372

joint demographic history of several populations of Drosophila melanogaster (Duchen et al. 2013).373

The dataset consists of 12 sequences from a Zimbabwe population comprising 197 non-coding loci;374

and within each locus there are between 1 and 41 segregating sites (3234 polymorphic sites in375

total). We carry out our analysis based on the bottleneck model of the previous section assuming376

that the current and the ancestral population sizes are allowed to differ, assuming either neutrality377

or selection on the derived variant. Since purifying selection is assumed to be more prevalent than378

positive selection in intronic and intergenic regions of African Drosophila, we focus on a negative379

selection coefficient in our analysis.380

We primarily use all segregating sites in our analysis. However, whereas the loci are scattered381

over the genome with at least tens of thousands of bases apart, the sites within each locus are382

tightly linked and hence are not independent. To study the effect of this discrepancy between the383

theoretical independence assumption underlying our method and the data, we also try using a384

subset of presumably independent sites by sampling one from each locus.385

To begin with, a coarse maximum likelihood estimate of (ĉ0, σ̂, ĉB , t̂B , t̂S) = (1, 0, 0.05, 0.1, 0.1)386

was computed under the selective and the neutral bottleneck model on the parameter grid specified387

earlier. For each model, we investigated the accuracy of this parameter estimate via parametric388

bootstrap, using 200 bootstrap samples each consisting of 3234 polymorphic sites. Quantiles of the389

MLEs from the bootstrap samples are shown in Table 6, and, e.g., the confidence interval of the390

estimate of the ancestral population size (ĉ0) spans nearly the entire given parameter range.391

This suggests to improve the parameter estimates by successively refining the grid. The param-392

eter range of each parameter was adjusted by choosing the respective two outermost parameter393

estimates from the set of the 100 likeliest parameter combinations of the coarse grid. We fixed394

the five possible ancestral population sizes c0 ∈ [0.5, 10] (cf. Table 1) occurring in this set, and395

adopted a grid search for each of them, with σ ∈ [−0.79, 0], cB ∈ [0.001, 0.1], tB/cB ∈ [1, 5] and396

tS ∈ [0.05, 0.224]. Besides zero, 10 values were chosen for σ, 10 values for cB , and 30 values each397

for tB/cB and tS , so that a total of 99,000 grid points were applied for each c0. The ratio of two398

consecutive values in each parameter range is kept constant similarly to above. To focus on rescaled399
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time tB/cB instead of tB relies on the observation that tB and cB correlate strongly and has the400

advantage that unlikely combinations of tB and cB can be omitted. More values were chosen for401

time parameters, since these are more sensitive than the population size parameters.402

This procedure was repeated twice, upon which the maximum likelihood value did barely403

change. Each refined grid was based on the 100 likeliest parameter estimates, and the number404

of different possible ancestral population sizes was also successively raised to further refine the405

parameter c0. The maximum likelihood estimates for a range of parameters c0 and the associated406

likelihoods are given in Table 7. Selection is barely needed to explain the dataset and the estimated407

bottleneck population size (ĉB) has reached the smallest possible value of 0.001 over the various408

grid searches. Choosing even distinctly smaller values for ĉB would barely change the likelihood409

value anymore as long as the scaled bottleneck duration t̂B/ĉB is kept constant. The time since410

the bottleneck (t̂S) is robustly estimated over the various demographies that provide a similar like-411

lihood (L), whereas the estimated bottleneck duration (t̂B) correlates strongly with the ancestral412

population size (c0). Again, for each of the various ancestral population sizes (c0), the set of the413

100 likeliest parameter combinations was used to obtain the parameter and likelihood ranges pre-414

sented in Table 8. As one can see, most parameters were sufficiently pinpointed. In Figure 7, the415

SFS for the most likely neutral and selective parameter estimates, which can be found in the two416

penultimate lines of Table 7, are compared with the observed data.417

Comparing the SFS obtained using our parameter estimates and the ones given in Duchen418

et al. (2013), we obtain an improved goodness-of-fit to the observed SFS from the data. This is not419

surprising, since primarily statistics summarizing the SFS were used in their study. Furthermore, the420

authors allowed for different population sizes before and after the bottleneck as well but restricted421

the duration of the bottleneck to a somewhat arbitrary predefined value. The method in our work422

does not take the mutation rate explicitly into account, and thus cannot estimate the reference423

population size. Thus it would be too speculative to date the bottleneck in calendar time and to424

compare our outcome to the estimate of Duchen et al.425

To investigate the effect of linkage within each of the 197 sequence fragments in the original426

dataset, we sampled one site per fragment to obtain a dataset consisting of 197 polymorphic sites.427

We repeated this procedure 200 times and maximized the log-likelihood for each sample similarly428

as above. Compared to the analysis of the full dataset, the SFS computed from the median pa-429

rameter estimate shows a poorer fit to the data. This is likely due to the strong stochasticity in430

the bootstrap resampling procedure, since the individual parameter estimates for each sample do431
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provide a good fit despite the small number of sites considered.432

It might be tempting to assume that the excess of high-frequency derived variants in the ob-433

served data might be a result of weak positive selection. Therefore, we conducted an equivalent434

analysis as above, starting from the same grid with inverted signs for the selection coefficients.435

However, we did not obtain estimates being plausible from a biological point of view, since the436

estimation procedure favours selection coefficents in the upper range of the chosen interval [0, 10].437

When, as in this example, an excess of low- and high-frequency derived variants is simultaneously438

observed in comparison to a standard neutral model, unrealistically large estimates for σ are needed439

to explain the data. Positive selection on its own (and of some appreciable strength) causes a de-440

cline of low-frequency derived variants and an excess of high-frequency derived alleles, whereas441

an expansion (as embedded in the bottleneck model) acts vice versa. Therefore, both forces have442

to severely counteract each other so that the requirements of both ends of the SFS can be met.443

A model of human exponential population growth444

We now demonstrate the utility of our method to investigate population size histories containing445

epochs of exponential growth in combination with selection. To this end, we adopt the following446

demographic history of a sample of African human exomes that has been estimated by Tennessen447

et al. (2012) as a modification of a model by Gravel et al. (2011). The population had an ancestral448

size of 7310 individuals until 5920 generations ago (assuming a generation time of 25 years),449

when it increased instantaneously in size to 14,474 individuals. After this increase, the population450

remained constant in size until 205 generations ago, when it started to grow exponentially until451

reaching 424,000 individuals at present. The relative population size function for this model can452

be described by453

ρ(t) =



























1, t < 0,

c, 0 ≤ t < te,

c exp[R(t− te)], te ≤ t ≤ τ,

(29)

where c is the ratio of population sizes after and before the instantaneous expansion, which can be454

dated arbitrarily, so we set the time of this expansion to zero. R is the scaled exponential growth455

rate, te is the time at which the expansion started, and τ is the time of sampling (the present).456

Times are given in units of 2Nref, where the reference population size Nref is the initial size before457
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time zero (the ancestral size). Since the theoretical framework presented above assumes a history458

of piecewise constant population sizes, the phase of exponential growth in this model has to be ade-459

quately discretized to obtain a suitable piecewise approximation. The following piecewise function460

can be chosen to approximate the exponential growth phase via a geometric growth function:461

q(t) =



























1, t < 0,

c, 0 ≤ t < t1,

c(1 + δ)i, ti ≤ t < ti+1,

(30)

with times ti = te + log
[

(1 + δ)i−1(2 + δ)/2
]

/R, i = 1, . . . , iτ . Here, the number of population size462

changes during the phase of exponential growth is given by463

iτ :=

⌊

R(τ − te)− log (δ/2 + 1)

log(δ + 1)

⌋

+ 1.

Varying the growth rate δ determines the number of discretization intervals used.464

The SFS (28) of the discretized version is obtained straightforwardly from (26) and (27). For465

the demographic parameters given above, we computed the SFS for various sample sizes up to466

200 and we used δ = 1/4, which was chosen large enough to provide reasonable fast computation467

times but sufficiently small to provide a good approximation of the exponential growth model. In468

the neutral case, the goodness of the approximation can be verified via the explicit solution of469

the SFS (Živković and Stephan 2011), which can be applied to the continuous and the discretized470

model. As shown in Figure 8a, where a sample size of n = 200 is chosen, the spectra of both471

continuous and piecewise-constant models agree very well with each other; the percentage error is472

0.57% based on the l2-norm, while the Kullback-Leibler divergence is about 1.76× 10−7.473

Using our method, selection can then be incorporated into the piecewise-constant population474

size model. The effect of various negative selection coefficients (scaled with respect to the ancestral475

population size) is illustrated again for sample size n = 200 in Figure 8b, and the same trend can476

be observed for smaller sample sizes as well. It is probably not surprising that the resolution in477

distinguishing the selective and the neutral model rises with σ. More interestingly, differences478

between the neutral and the selective models are apparently more pronounced among derived479

alleles in intermediate- to high frequency. Therefore, for large datasets where intermediate to high-480

frequency derived alleles are present in sufficient numbers, one may focus more strongly on these481

allelic classes than on low-frequency derived ones for the statistical analysis of purifying selection.482
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Discussion483

Already in the early days of population genomics, several studies in various species (e.g.,Glinka484

et al. 2003, Williamson et al. 2005) have revealed that both natural selection and demographic485

forces have shaped the patterns of polymorphism in modern samples of DNA sequences. However,486

most inference methods relied on computer simulations and the usage of statistics that have been487

designed to detect deviations from neutrality assuming a constant population size (e.g., Glinka488

et al. 2003). More elaborate approaches utilized the transition density function that describes489

allele frequency changes over time, where most methods solved the underlying diffusion equation490

numerically employing discretization schemes (e.g., Williamson et al. 2005, Zhao et al. 2013).491

Besides several issues that may arise in such purely numerical frameworks, only the simplest models492

of a single population size change have been considered in these studies. Recently, Song and493

Steinrücken (2012) developed a more analytical approach that provides the spectral representation494

of the transition density for a model that includes general diploid selection and recurrent mutations495

under a constant population size.496

In this article, we extended their solution for the case of genic selection to an arbitrary number497

of instantaneous changes in population size. First, we obtained a rescaled version of the spectral498

representation of the transition density function for a single time period during which the popu-499

lation size differs with respect to a reference size. Combining the transition densities for single500

time periods over arbitrarily many time points of instantaneous population size changes yields the501

transition density function for such a multi-epoch model with genic selection.502

The transition density function has been employed to obtain the SFS. However, explicit knowl-503

edge of the transition density function is not required for the computation of the SFS. We revisited504

and simplified a method by Evans et al. (2007) who expressed the allele frequencies in terms of505

their moments. Their method requires that a system of ordinary differential equations is solved nu-506

merically. They employed a finite difference scheme to tackle a model of strong exponential growth507

with genic selection. We simplified this approach starting from a model of a constant population508

size, to which instantaneous population size changes were recursively added. The numerically509

obtained result at the end of a certain epoch is used as the initial condition of the subsequent510

time phase. This simple procedure allows us to consider numerous population size changes and511

offers fast computations with little loss in accuracy. We have shown that even a model of strong512

population growth can be well approximated.513
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The transition density function with variable population size can be incorporated into a hidden514

Markov model framework (cf. Steinrücken et al. 2014 for a constant population size) to analyze515

time series genetic data. However, in this article we focused on several biological questions that can516

be investigated using the SFS, and treat the time series application in a separate paper. We first ad-517

dressed the joint estimation of bottleneck and selection parameters from polymorphism data within518

a maximum likelihood framework. This approach can be applied to simultaneously infer selection519

coefficients and the parameters of a model of instantaneous population size changes. The impor-520

tance of methods that allow to estimate selective and demographic parameters jointly becomes521

particularly apparent in large populations for which the scaled selection coefficient, σ, can take522

considerable values across large regions of the genome, so that demography and selection cannot523

be estimated independently. Although selection is known to act either positively or negatively and524

with different strengths across the genome, a constant selection coefficient has been applied in our525

approach. A constant selection coefficient can either be interpreted as a genome-wide average, or,526

more realistically, as the selection strength of a certain functional class, among which the coeffi-527

cients should not vary greatly. This argument particularly applies to the Drosophila example for528

which intronic and intergenic loci were sequenced and used for the parameter estimation.529

For the first part of Applications, we generated data for the estimation procedure by sampling530

a large number of sites from the SFS of a bottleneck model varying the strength of selection. We531

assumed the same and also a slightly less complex model with five and four free parameters, re-532

spectively, for the parameter estimation. We demonstrated that our method can accurately estimate533

the parameters in the majority of the bottleneck scenarios, but less so, when the simpler model is534

assumed. The time since the bottleneck was retrieved in most of the cases even when assuming the535

simpler model. It is interesting to note that even when the datasets simulated with selection are an-536

alyzed assuming neutrality, the time since the bottleneck was quite robustly inferred except for the537

briefest one being estimated under the simpler 4-parameter model. This result is quite promising538

with respect to the many published demographic estimates that have been obtained assuming neu-539

trality, because the time since the last demographic change might not be subject to major changes.540

However, this result has to be investigated further in more realistic models that also include phases541

of exponential growth, which can be studied based on our results as well. Our results encourage542

the application of rather complex than too simple demographic models anyway.543

In the African Drosophila sample, no or barely any negative selection was inferred, which might544

simply be a result of well chosen neutral markers that barely experienced selection. Furthermore,545
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it turned out to be difficult to pinpoint in particular the ancestral population size and the duration546

of the bottleneck, whereas the time since the bottleneck was robustly estimated. From a theoretical547

point of view, Bhaskar and Song (2014) have recently obtained sufficient conditions for the iden-548

tifiability of piecewise-defined demographic models under neutrality using the expected frequency549

spectrum; the identifiability of demographic models combined with selection is an interesting fu-550

ture research question. However, one has to keep in mind that the estimates were obtained from551

partly linked loci of a small sample of chromosomes and that taking a subset of independent loci to552

meet the theoretical assumptions result in relatively small datasets showing large variance in the553

estimates.554

We finally analyzed an example of exponential human population growth (Tennessen et al.555

2012) to see the effect of purifying selection in the context of this model. As illustrated in Figure 8b556

for a sample of size 200 and various selection coefficients, intermediate- and high-frequency derived557

variants are more affected by exponential growth and negative selection than the low-frequency558

derived ones. A plausible reason is that both exponential growth and negative selection enforce an559

increase of low-frequency derived variants until these classes are saturated and their impact can560

rather be observed in the complimentary high-frequency allelic classes. In general, this example561

illustrates nicely that even more elaborated models that include various phases of exponential562

growth and population declines can be computationally efficiently treated via an appropriate dis-563

cretization of phases of continuous population size change, using the methods presented in this564

paper.565
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Duchen, P., Živković, D., Hutter, S., Stephan, W., Laurent, S., 2013. Demographic inference reveals579

African and European admixture in the North American Drosophila melanogaster population.580

Genetics 191, 291–301.581

Evans, S. N., Shvets, Y., Slatkin, M., 2007. Non-equilibrium theory of the allele frequency spectrum.582

Theoretical Population Biology 71, 109–119.583

Fisher, R. A., 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.584

Fu, Y.-X., 1995. Statistical properties of segregating sites. Theoretical Population Biology 48, 172–585

197.586

Glinka, S., Ometto, L., Mousset, S., Stephan, W., De Lorenzo, D., 2003. Demography and natu-587

ral selection have shaped genetic variation in Drosophila melanogaster: a multi-locus approach.588

Genetics 165, 1269–1278.589

Gravel, S., Henn, B. M., Gutenkunst, R. N., Indap, A. R., Marth, G. T., Clark, A. G., Yu, F., Gibbs,590

R. A., The 1000 Genomes Project, Bustamante, C. D., 2011. Demographic history and rare allele591

sharing among human populations. Proceedings of the National Academy of Sciences of the592

United States of America 108, 11983–11988.593

Griffiths, R. C., 2003. The frequency spectrum of a mutation, and its age, in a general diffusion594

model. Theoretical Population Biology 64, 241–251.595
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Appendix. Derivation of (12)652

Here, we derive the expression shown in (12). Using (2), (5), and (7), note that653

1
∫

0

πi(z)Φ
i
n(z)Φ

i+1
m (z)dz =

1
∫

0

cie
2ciσz

z(1 − z)

∞
∑

k=0

uin,kH
i
k(z)

∞
∑

l=0

ui+1
m,lH

i+1
l (z)dz

=

√

ci
ci+1

∞
∑

k=0

∞
∑

l=0

uin,ku
i+1
m,l

1
∫

0

eσz(ci−ci+1)

z(1− z)
Gk(z)Gl(z)dz. (A.1)

Without loss of generality, assume ci 6= ci+1. (If ci = ci+1, the integral in (A.1) is trivial to evaluate654

using orthogonality.) Since z−1(1 − z)−1Gk(z)Gl(z) is a polynomial of order k + l + 2, its jth655

derivative vanishes for j ≥ k + l + 3. Using integration by parts recursively k + l + 2 times, we656

obtain657

1
∫

0

eσz(ci−ci+1)

z(1− z)
Gk(z)Gl(z)dz =

k+l+2
∑

j=0

(−1)j

[

eσz(ci−ci+1)

[σ(ci − ci+1)]j+1

∂j

∂zj

{

Gk(z)Gl(z)

z(1 − z)

}

]1

0

.

Note that the summand for j = 0 in the previous equation is equal to zero and will be omitted in658

the remainder. Since Gk(1− z) = (−1)kGk(z), we have659

∂j

∂zj

{

Gk(z)Gl(z)

z(1 − z)

}∣

∣

∣

∣

z=0

= (−1)k+l+j ∂j

∂zj

{

Gk(z)Gl(z)

z(1 − z)

}∣

∣

∣

∣

z=1

,

so that660

1
∫

0

eσz(ci−ci+1)
Gk(z)Gl(z)

z(1− z)
dz =

k+l+2
∑

j=1

(−1)j
eσ(ci−ci+1) − (−1)k+l+j

{σ(ci − ci+1)}j+1

∂j

∂zj

{

Gk(z)Gl(z)

z(1− z)

}∣

∣

∣

∣

z=1

. (A.2)

The modified Gegenbauer polynomials are defined as661

Gn(x) = −x(1− x)(n+ 1) · 2F1(−n, n+ 3; 2; 1 − x),

where 2F1(a, b; c; z) =
∑

j≥0
a(j)b(j)/c(j)z

j/j! is the Gauss hypergeometric function,662

d(0) = 1, and d(j) = d(d+ 1) · · · (d+ j − 1), j ≥ 1. Applying this definition, we obtain663
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∂j

∂zj
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∣
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.

Note that the sums are finite, since (−a)(b) = 0 for integers a < b. It is simple to show that664

∂j

∂zj
{

z(1− z)u+v+1
}

∣

∣

∣

z=1
=



























(−1)jj!, j = u+ v + 1,

(−1)j−1j!, j = u+ v + 2,

0, otherwise.

By applying this result we obtain, after some algebra,665

∂j

∂zj

{

Gk(z)Gl(z)

z(1− z)

}∣

∣

∣

∣

z=1

= (k + 1)(k + 1)(k + 2)(l + 1)

×(−1)j+1
j−1
∑

r=0

(

j

r

)

(−k)(j−r−2)(k + 3)(j−r−2)

2(j−r−2)

(−l)(r)(l + 3)(r)

2(r)

= −k + 1

l+ 2

j−1
∑

r=0

j!(l + r + 2)!(k + j − r)!

r!(r + 1)!(j − r)!(j − r − 1)!(l − r)!(k − (j − r − 2))!

= −(k + 1)(l + 1)j!

(k + 2)(l + 2)

j−1
∑

r=0

(

k + 2

j − r

)(

k + j − r

j − r − 1

)(

l + r + 2

r + 1

)(

l

r

)

. (A.3)

Finally, combining (A.3), (A.2), and (A.1) yields the desired result.666
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Figure 1 Convergence of the eigenvalues Λ
i,[D]
n with increasing truncation level D for (a) a constant popu-

lation size (ci = 1), (b) a large population (ci = 10) and (c) a small population (ci = 1/10). The eigenvalues

are plotted for three values of n and a scaled selection coefficient of σ = 100 in each panel.
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Figure 2 Transition densities for various transition times τ and a fixed selection coefficient σ = −1. In all
cases, we set x = 1/2 and D = 100. (a) A single-epoch model (K = 1), a constant population size with

c0 = 1 (b) A two-epoch model (K = 2), with an instantaneous expansion (c0 = 1, c1 = 10, t1 = τ/2). (c)

A three-epoch model (K = 3), with a population bottleneck followed by an expansion (c0 = 1, c1 = 1/10,
c2 = 10, t1 = τ/4, t2 = τ/2).
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Figure 3 Transition densities for various selection coefficients σ and a fixed transition time τ = 1/2. In all

cases, we set x = 1/3 and D = 100. (a) A single-epoch model (K = 1), a constant population size with

c0 = 1. (b) A two-epoch model (K = 2), with an instantaneous expansion (c0 = 1, c1 = 10, t1 = τ/2). (c)
A three-epoch model (K = 3), with a population bottleneck followed by an expansion (c0 = 1, c1 = 1/10,

c2 = 10, t1 = τ/4, t2 = τ/2).
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Figure 4 Convergence of the moments µ
[D]
j (τ) as j increases, with D = 500, τ = 1/4 and σ = 10. The

moments are in equilibrium until time zero, when the population size is either kept constant to c = 1 or

instantaneously changed to c = 10 or c = 1/10.

33

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2015. ; https://doi.org/10.1101/014639doi: bioRxiv preprint 

https://doi.org/10.1101/014639
http://creativecommons.org/licenses/by-nc-nd/4.0/


Τ1=0.5 Τ2=0.8 Τ3=1.1 Τ4=1.4
t

1

2

3

4

ΡHtL

(a)

b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Τ1=0.5

Τ2=0.8

Τ3=1.1

Τ4=1.4

0.0

0.2

0.4

0.6

0.8

qn,bHΤL

(b)

b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Τ1=0.5

Τ2=0.8

Τ3=1.1

Τ4=1.4

0.0

0.2

0.4

0.6

0.8

qn,bHΤL

(c)

b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Τ1=0.5

Τ2=0.8

Τ3=1.1

Τ4=1.4

0.0

0.2

0.4

0.6

0.8

qn,bHΤL

(d)

Figure 5 (a) The relative population size, ρ(t), is initially 1 and changes instantaneously to 1/10 and 5 at
times 6/10 and 9/10, respectively. The SFS of a sample of size 20 are plotted for this demography (b) without

selection, (c) negative selection of σ = −2 and (d) positive selection of σ = 10. The times of sampling are

illustrated in (a) and the bars are accordingly displayed from the left to the right.
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0 tB τ = tB + tS

c0
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Figure 6 The population is constant in size before being instantaneously changed to relative size cB at time

zero. Then, another jump to relative population size cS follows at time tB , before a sample is taken at time

τ = tB + tS .

35

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 2, 2015. ; https://doi.org/10.1101/014639doi: bioRxiv preprint 

https://doi.org/10.1101/014639
http://creativecommons.org/licenses/by-nc-nd/4.0/


b
1 2 3 4 5 6 7 8 9 10 11

observed

selective

neutral

0

0.1

0.2

0.3

0.4

0.5

qn,bHΤL

Figure 7 (a) SFS for the observed data and the most likely selective and neutral parameter estimates from

left to right.
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Figure 8 (a) Log-log plots for the SFS of the continuous and the discretized version of the estimated human
African demography and neutral evolution. (b) Log-log plots for the SFS of the discretized version under

various selection coefficients. The selection coefficients in the legend are ordered from top to bottom accord-

ing to the function values of the high-frequency derived alleles. The sample size is given by n = 200 in both
subfigures.
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Table 1 Grid values chosen for each parameter in our optimization procedure

c0 0.011 0.023 0.05 0.1 0.224 0.5 1 2.154 4.642 10

σ −10 −5.848 −3.420 −2 −1.260 −0.79 −0.5 −0.292 −0.171 −0.1 0

cB 0.001 0.0022 0.005 0.011 0.023 0.05 0.1 0.224 0.5 1

tB 0.001 0.0022 0.005 0.011 0.023 0.05 0.1 0.224 0.5 1

tS 0.001 0.0022 0.005 0.011 0.023 0.05 0.1 0.224 0.5 1

The underlying bottleneck model is illustrated in Figure 6. Grid values c0 ≥ cB are considered for the 5-

parameter model, whereas c0 = cS in the 4-parameter model. The grid values for the remaining parameters
are applied in both scenarios. The ratio of two consecutive values remains constant between (and including

the) two subsequent bold entries.
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Table 2 Parameter estimation results based on 10,000 sampled sites

ĉ0 σ̂ ĉB t̂B t̂S

True parameters 0.5 0 or −2 0.1 0.1 0.05

5% 0.5 0.1 0.1 0.05
(A1) Median 0.5 0.1 0.1 0.05

95% 0.5 0.1 0.1 0.05

5% 0.22 0.02 0.005 0.05
(A2) Median 0.22 0.1 0.05 0.05

95% 0.22 0.1 0.05 0.05

5% 0.22 −2 0.05 0.01 0.05
(A3) Median 0.5 −2 0.1 0.1 0.05

95% 0.5 0 0.1 0.1 0.05

5% 0.5 −0.5 0.1 0.001 0.05
(A4) Median 0.5 0 0.1 0.1 0.05

95% 2.15 0 0.1 0.1 0.05

SFS were computed for the true parameters and the demography illustrated in Figure 6 (c0 = 1/2, cS = 1).

Then, 10,000 sites were sampled according to the SFS of the neutral and the selective scenario, and this
procedure was repeated 200 times each. The log-likelihood values were maximized over the parameter

spaces as specified in the main text, and the table reports the median, the 0.05 and the 0.95 quantiles. The
four cases correspond to assuming (A1) neutrality when σ = 0, (A2) neutrality when σ = −2, (A3) presence

of selection when σ = −2, and (A4) presence of selection when σ = 0.
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Table 3 Parameter estimation results based on the expected SFS assuming neutrality when the true model

is under selection

Selection coefficient σ = −1/2 σ = −2

Demographic model (ĉ0, ĉB, t̂B, t̂S) (ĉ0, ĉB, t̂B, t̂S)

Constant population size (0.500, 1.00, 1.10− t̂S , t̂S ) (0.100, 1.000, 0.523− t̂S , t̂S )

Bottleneck with tS = 1/200 (0.224, 0.05, 0.05 , 0.002) (0.224, 0.100, 0.050 , 0.005)

Bottleneck with tS = 1/20 (0.500, 0.10, 0.10 , 0.050) (0.224, 0.100, 0.050 , 0.050)

Bottleneck with tS = 1/2 (1.000, 0.05, 0.10 , 0.500) (0.100, 1.000, 0.324− t̂S , t̂S )

SFS were computed for the following demographic scenarios and selection coefficients. In terms of the

demography, either a constant population size was assumed, or a bottleneck model according to Figure 6
with parameters c0 = 1/2, cB = 1/10, cS = 1, tB = 1/10 and tS = 1/200, 1/20 or 1/2. The selection

coefficients are σ = −1/2 and −2. The parameter estimates were obtained according to the procedure and
the parameter spaces described in the main text and by assuming neutrality in each case. In the first row,

and in the forth row, second column, we obtained ĉB = 1, i.e. an instantaneous expansion occurs as the only

size change t̂B + t̂S before sampling.
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Table 4 Parameter estimation results based on 10,000 sampled sites when the ancestral population size c0
is incorrectly assumed to equal the current size cS , while the true model has c0 = 1/2 and cS = 1.

c0 σ̂ ĉB t̂B t̂S

True parameters 0.5 0 or −2 0.1 0.1 0.05

5% 0.1 0.22 0.02
(A1) Median 0.1 0.22 0.05

95% 0.22 0.5 0.05

5% 0.1 0.22 0.05
(A2) Median 0.1 0.22 0.05

95% 0.22 1 0.05

5% −0.79 0.1 0.22 0.05
(A3) Median −0.79 0.1 0.22 0.05

95% −0.5 0.1 0.22 0.05

5% −1.26 0.01 0.01 0.05
(A4) Median −1.26 0.05 0.05 0.05

95% −0.79 0.1 0.1 0.1

SFS were computed for the true parameters and the demography illustrated in Figure 6 (c0 = 1/2, cS = 1).
Then, 10,000 sites were sampled according to the SFS of the neutral and the selective scenario, and this

procedure was repeated 200 times each. The log-likelihood values were maximized over the 4-parameter

space (where c0 = cS is assumed), and the table reports the median, the 0.05 and the 0.95 quantiles. The
four cases correspond to assuming (A1) neutrality when σ = 0, (A2) neutrality when σ = −2, (A3) presence

of selection when σ = −2, and (A4) presence of selection when σ = 0.
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Table 6 Parametric bootstrap results for the Drosophila melanogaster data

σ̂ c0 ĉB t̂B t̂S

MLE 0 1 0.05 0.1 0.1

5%
−0.794 0.5 0.002 0.002 0.1

0.5 0.023 0.023 0.1

Median
−0.171 1 0.050 0.100 0.1

1 0.050 0.100 0.1

95%
0 10 0.050 0.224 0.1

10 0.100 0.224 0.1

The demographic history was estimated with and without selection for the demographic model illustrated in

Figure 6 for the entire dataset of 3234 polymorphic sites. The estimation procedure is described in the main

text. The estimated parameters given at the top of the table were used to generate 200 frequency spectra
consisting of 3234 polymorphic sites each for the neutral and the selective model, respectively. We estimated

the neutral demography for each neutral subsample and the demography with selection for each selective

dataset, before the median, the 0.05 and the 0.95 quantiles were evaluated.
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Table 7 Estimated parameters and their likelihoods for the Drosophila melanogaster data for fixed values

of c0

c0 σ̂ ĉB t̂B t̂S L

1.00 0 0.001 0.0015 0.1566 −5963.888

1.67 0 0.001 0.0020 0.1614 −5963.208

2.45 0 0.001 0.0024 0.1647 −5963.027

3.59 0 0.001 0.0028 0.1614 −5962.965

4.08 0 0.001 0.0029 0.1638 −5962.924

5.99 −0.007 0.001 0.0032 0.1655 −5962.913

6.81 −0.005 0.001 0.0034 0.1655 −5962.902

7.74 −0.002 0.001 0.0035 0.1655 −5962.890

8.80 0 0.001 0.0037 0.1638 −5962.884

10.0 −0.007 0.001 0.0038 0.1647 −5962.894

The demographic history was analyzed with and without selection for the demographic model illustrated

in Figure 6 for the entire dataset of 3234 polymorphic sites. The maximum likelihood estimates and their

likelihood values L were obtained for various predefined ancestral population sizes and based on a gradually
refined grid as described in the main text.
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Table 8 Parameter ranges of the most likely estimates for the Drosophila melanogaster data for fixed values
of c0

c0 σ̂ ĉB t̂B/ĉB t̂S L

1.00 [−0.010, 0] [0.001, 0.0026] [1.49, 1.49] [0.1541, 0.1591] [−5963.926,−5963.888]

1.67 [−0.007, 0] [0.001, 0.0021] [2.00, 2.00] [0.1598, 0.1630] [−5963.233,−5963.208]

2.45 [−0.010, 0] [0.001, 0.0018] [2.37, 2.37] [0.1622, 0.1663] [−5963.050,−5963.027]

3.59 [−0.015, 0] [0.001, 0.0026] [2.74, 2.77] [0.1598, 0.1680] [−5962.981,−5962.965]

4.08 [−0.007, 0] [0.001, 0.0021] [2.89, 2.89] [0.1622, 0.1663] [−5962.949,−5962.924]

5.99 [−0.015, 0] [0.001, 0.0021] [3.25, 3.25] [0.1622, 0.1688] [−5962.939,−5962.913]

6.81 [−0.010, 0] [0.001, 0.0021] [3.38, 3.38] [0.1622, 0.1688] [−5962.926,−5962.902]

7.74 [−0.007, 0] [0.001, 0.0018] [3.52, 3.52] [0.1622, 0.1680] [−5962.912,−5962.890]

8.80 [−0.003, 0] [0.001, 0.0026] [3.66, 3.66] [0.1614, 0.1655] [−5962.914,−5962.884]

10.0 [−0.022, 0] [0.001, 0.0026] [3.71, 3.75] [0.1614, 0.1688] [−5962.927,−5962.894]

The demographic history was analyzed with and without selection for the demographic model illustrated in

Figure 6 for the entire dataset of 3234 polymorphic sites. The set of the 100 likeliest parameter combinations

was respectively estimated for various predefined ancestral population sizes and based on a gradually refined
grid as described in the main text. From this set, the two outermost estimates were chosen for each single

parameter and for the likelihood value L to obtain the outlined parameter ranges.
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