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ABSTRACT
Motivation: There are many different forms of genomic structural
variation that can be broadly classified into two groups as copy
number variation (CNV) and balanced rearrangements. Although
many algorithms are now available in the literature that aim
to characterize CNVs, discovery of balanced rearrangements
(inversions and translocations) remains an open problem. This is
mainly because the breakpoints of such events typically lie within
segmental duplications and common repeats, which reduce the
mappability of short reads. The 1000 Genomes Project spearheaded
the development of several methods to identify inversions, however,
they are limited to relatively short inversions, and there are currently
no available algorithms to discover large inversions using high
throughput sequencing technologies (HTS).
Results: Here we propose to use a sequencing method (Kitzman
et al., 2011) originally developed to improve haplotype phasing
to characterize large genomic inversions. This method, called
pooled clone sequencing, merges the advantages of clone based
sequencing approaches with the speed and cost efficiency of HTS
technologies. Using data generated with pooled clone sequencing
method, we developed a novel algorithm, dipSeq, to discover large
inversions (>500 Kbp). We show the power of dipSeq first on
simulated data, and then apply it to the genome of a HapMap
individual (NA12878). We were able to accurately discover all
previously known and experimentally validated large inversions in the
same genome. We also identified a novel inversion, and confirmed
using fluorescent in situ hybridization.
Availability: Implementation of the dipSeq algorithm is available at
https://github.com/BilkentCompGen/dipseq
Contact: calkan@cs.bilkent.edu.tr, francesca.antonacci@uniba.it

1 INTRODUCTION
Genomic structural variants are defined as alterations in the DNA
that affect >50 bp that may delete, insert, duplicate, invert, or
move genomic sequence (Alkan et al., 2011). Structural variation
(SV) is shown to be common in human genomes (Iafrate et al.,
2004; Sebat et al., 2004), which caused increased interest in the
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characterization of both normal (Tuzun et al., 2005; Kidd et al.,
2008; Mills et al., 2011), and disease-causing large variants (Sharp
et al., 2006; Antonacci et al., 2010). Furthermore, SVs are known to
be one of the driving forces of creation of new haplotypes (Steinberg
et al., 2012), and evolution (Ventura et al., 2011).

Copy number variations (CNVs) were initially identified using
BAC (bacterial artificial chromosome) and oligo array comparative
genomic hybridization (CGH) (Iafrate et al., 2004; Sebat et al.,
2004; Redon et al., 2006; Conrad et al., 2010), and SNP genotyping
arrays (Redon et al., 2006; McCarroll et al., 2006). A more detailed
map of SV was made possible using fosmid end sequencing (Tuzun
et al., 2005; Kidd et al., 2008), however this method was too
expensive and time-consuming since it involved creating and plating
of fosmid libraries followed with Sanger sequencing. Introduction
of high throughput sequencing (HTS) finally made it possible to
screen the genomes of many (Korbel et al., 2007; Alkan et al., 2009;
Hormozdiari et al., 2009; Yoon et al., 2009) to thousands (Mills
et al., 2011) of individuals.

Although there are now many algorithms to discover and
genotype SV using HTS data (Medvedev et al., 2009; Alkan
et al., 2011), they mainly focus on CNVs, which change the
amount of DNA, such as deletions, duplications, insertions, and
transpositions. Other types of SV, namely balanced rearrangements
such as inversions and translocations are harder to detect due to
the fact that their breakpoints usually lie within complex repeats,
reducing mappability. Balanced rearrangements also do not alter the
read depth, which makes the use of read depth signature (Medvedev
et al., 2009; Yoon et al., 2009; Alkan et al., 2009) irrelevant for their
detection. Therefore, very few attempts to characterize inversions
are reliable only for small inversions (∼10-50 Kbp) (Hormozdiari
et al., 2009; Rausch et al., 2012; Layer et al., 2014; Chaisson et al.,
2015), and exhibit high false discovery rates in translocation call
sets (Talkowski et al., 2011). Another algorithm, GASVPro (Sindi
et al., 2012) is also able to detect inversions with a size limit up to
500 Kbp, however its sensitivity and specificity for large inversions
are yet untested. Characterization of larger genomic inversions using
HTS remains an open problem.

2 BACKGROUND AND MOTIVATION
Most known examples of large inversions have come indirectly
from studies on human disease where inversions have no detectable
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effect in parents, but increase the risk of a disease-associated
rearrangement in the offspring. In the Williams-Beuren syndrome,
for example, 25-30% of transmitting parents have a 1.5 Mbp
inversion encompassing the commonly deleted region, whereas
the same inversion is present in only 6% of the general
population (Osborne et al., 2001). Similarly, a polymorphic
inversion has been reported at 15q11-q13 and is seen more
frequently in mothers who transmit de novo deletions resulting
in the Angelman syndrome (Gimelli et al., 2003). Two more
striking examples are found in the Sotos syndrome (Visser et al.,
2005) and the 17q21.31 microdeletion syndrome (Stefansson et al.,
2005; Sharp et al., 2006; Koolen et al., 2006; Zody et al., 2008;
Steinberg et al., 2012). In each of these disorders, every parent
studied to date in which a de novo microdeletion arises carries
an inversion of the same region. All these inversions are enriched
in segmental duplications at their breakpoints, leading to an
increased susceptibility to non-allelic homologous recombination
(NAHR) and risk for disease-causing rearrangements to occur in
the offspring. The typical presence of duplicated sequences at
the inversion boundaries is also the major challenge for inversion
detection.

The development of a map of inversion polymorphisms will
provide valuable information regarding their distribution and
frequency in the human genome and will be important for
future studies aimed to unravel how inversions and the segmental
duplications architecture associated with inverted haplotypes
contribute to genomic susceptibility to disease rearrangements.

The common method to discover inversions is to analyze the read
pair signature (Medvedev et al., 2009; Alkan et al., 2011), where the
mapping strand of the read pairs spanning the inversion breakpoints
will be different from what is expected (Figure 1). For example,
the Illumina platform generates read pairs from opposing strands,
however, if the DNA fragment spans an inversion breakpoint, they
will both be mapped to the same strand. They will also be separated
from each other by a distance approximately same with the inversion
size. When the inversion is large, the real mapping distance between
pairs also increases, therefore increasing the chance of incorrect
mapping due to the common repeats that lie in between.

The HTS platforms generate data at very high rates with
minimal cost. However, since both the HTS reads (100-150 bp
for Illumina), and the DNA fragments are very short (350-500
bp), the mappability of the HTS data is dramatically reduced in
repeat-rich regions that harbor most of the inversion breakpoints. On
the contrary, the now-largely-abandoned method of clone-by-clone
sequencing (International Human Genome Sequencing Consortium,
2001) enables data observation from much larger genomic intervals
(40-to-200 Kbp), but the associated costs are substantially higher.
A sequencing method, called pooled clone sequencing (PCS) aims
to combine the advantages of clone-by-clone sequencing, with the
cost and time efficiency offered by the HTS platforms (Kitzman
et al., 2011) (see Methods). Although pooled clone sequencing
was developed to improve haplotype phasing and to characterize
large haplotype blocks, we propose a novel algorithm, dipSeq, that
utilizes PCS to discover large genomic inversions (>500 Kbp).

3 OBSERVATION AND APPROACH
Pooled clone sequencing. Kitzman et al. (2011) developed the
pooled clone sequencing (PCS) method to improve haplotype
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Fig. 1. Sequence signatures used by the dipSeq algorithm. In the presence
of an inverted haplotype in the sequenced genome, we look for both read
pair and split clone signatures. Paired-end reads that span the inversion
breakpoints will be mapped to the same strand with a large distance
between them, instead of the concordant read pairs that map to opposing
strands (Medvedev et al., 2009; Alkan et al., 2011). Large insert clones will
show mapping properties similar to the split read sequence signature (Ye
et al., 2009), but since we do not have the full clone sequence, or sufficient
coverage to assemble clones, we interrogate lengths of contiguous read
mapping (Methods).

phasing. Basically, genomic DNA is cloned into cloning vectors
(fosmids, or BACs), which are then diluted to approximately 3%
coverage of the diploid genome, and randomly placed into several
number of pools (Methods). Next, the pools are barcoded, and
sequenced using the Illumina platform. Note that, due to dilution
and random generation of pools, it is expected that pools will not
harbor overlapping clones within themselves (Kitzman et al., 2011).
We provide a method to approximately calculate the probability of
having overlapping clones within a pool in the Supplementary Note.

Our approach to discover large (>500 Kbp) genomic inversion
using PCS follows from the observation that, clones (BAC or
fosmid) that span the inversion breakpoint will be split into two
sections when mapped to the reference genome, also separated by
a distance approximately the size of the inversion. We call this
sequence signature as split clones (Figure 1, which is similar to
the split read sequence signature used by several SV discovery
tools such as DELLY (Rausch et al., 2012) and Pindel (Ye
et al., 2009). Based on these observations, we developed a
novel combinatorial algorithm and statistical heuristics called
dipSeq (discover inversions using pooled Sequencing). Briefly,
dipSeq searches for both read pair and split clone sequence
signatures using the mapping locations of pooled clone sequencing
reads, and requires split clones from different pools to cluster
at the same putative inversion breakpoints (Methods). Ambiguity
due to multiple possible pairings of split clones are resolved
using an approximation algorithm for the maximal quasi clique
problem (Brunato et al., 2008), and paired-end read support further
assigns confidence score for the predicted inversion calls.

dipSeq proves its potential when tested on simulated data, and it
is able to discover previously characterized large inversions (>500
Kbp) in the genome of a human individual (NA12878), using pooled
BAC sequence data. dipSeq is theoretically compatible with all
similarly constructed pooled sequence data, such as the TruSeq
Synthetic Long-Reads (Moleculo) (Kuleshov et al., 2014), or the
Complete Genomics LFR Technology (Peters et al., 2012), provided
that the pooled large DNA fragment sizes follow a Gaussian
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distribution. However, it should be noted that, large clone size is
required to span segmental duplication blocks, and smaller clones
such as fosmids may not be sufficient to detect inversions around
segmental duplications (Kitzman et al., 2011). Therefore, the
theoretical minimum inversion size detectable by dipSeq is limited
by clone length, i.e. 150 Kbp when BACs are used.

4 METHODS
4.1 Building pooled clone libraries
We first generate a single whole-genome BAC library with long
inserts (∼140 Kbp). This procedure is a modification of the original
haplotyping method previously described by Kitzman et al. (2011),
that generates fosmid libraries with ∼40 Kbp inserts. Here we
use BAC clones, since long inserts are required to span the large
duplication blocks where inversion breakpoints typically map (Kidd
et al., 2008; Kitzman et al., 2011). We then randomly partition
the library into pools such that each pool is essentially a haploid
mixture of clones derived from either the maternal or paternal DNA
at each genomic location. High-throughput sequencing of each pool
provides haplotype information for each clone in that pool.

We used genomic DNA from a HapMap Project individual
(NA12878) to construct the BAC library. High molecular weight
DNA was isolated, partially EcoRI digested, and subcloned into
pCC1BAC vector (Epicentre) to create a ∼140 Kbp insert library
using previously described protocols (Smith et al., 2010). We then
split a portion of this library to 3 sets of 96 pools each, with
230 clones per pool for set 1, 389 clones per pool for set 2 and
153 clones per pool for set 3. Each pool was expanded by direct
liquid outgrowth after infection. We next construct 96 barcoded
sequencing libraries per each set, for a total of 288 sequencing
libraries (Adey et al., 2010). Libraries from each set were indexed
with barcodes, combined and sequenced using the Illumina HiSeq
platform (101 bp paired-end reads). Upon sequencing a total of
74,112 clones (22,080 in Set 1, 37,344 in Set 2 and 14,688 in Set
3) we obtained 3.38X expected physical depth of coverage. After
read mapping and clone reconstruction (Section 4.3), 87.58% of the
genome was covered by one or more clones.

4.2 Read mapping
We first map the paired-end reads generated for each pool separately
to the human reference genome assembly (GRCh37). Our dipSeq
algorithm does not depend on any specific aligner, but in this study
we used both BWA (Li and Durbin, 2009), and mrFAST (Xin
et al., 2013). We then separate the read pairs that map in the same
orientation (i.e. read pair signature for inversions using Illumina),
and those that map concordantly (within 4 standard deviations of
the average fragment span size) into separate files to facilitate
clone reconstruction (Section 4.3), and read pair support calculation
(Section 4.4).

4.3 Reconstructing clones
We use only the concordantly mapped read pairs to infer the
locations of clones. However, due to the low depth and breadth
of coverage, it is not always possible to observe a continuous
mapping of read pairs that collectively span genomic intervals
within expected size of BAC clones. To overcome this issue, we
apply several heuristics to identify clone locations. Scanning from
the beginning to end of each chromosome’s reads, we first identify
windows of 2 times the maximum fragment size that are covered by
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Fig. 2. Clustering split clones to detect inversions. (A) We first identify
clone locations that are shorter than the expected clone size, but when
paired with another short clone found in the same pool, the total length
sums up to a full clone length. We refer to such clones as “split clones”.
(B) We then cluster pairs of split clones that are mapped to approximately
the same breakpoints. Note that due to read mapping errors and our clone
reconstruction heuristics, a split clone may be identified as spanning a
breakpoint. (C) Finally we cluster multiples of split clones from different
pools if they agree on breakpoint location and the size of the inversion. gap:
size of the region between the start and end locations of split clones from
different pools. overlap: size of the overlapping region of split clones from
different pools.

at least 50%. We use such regions as seeds and then extend these
seed windows using any read pairs that map to its flanking regions
with a distance of at most 1.5 Kbp. Although the parameters we used
here may seem arbitrary, in fact they were obtained by applying
an optimization grid on simulated BAC data (Section 5.1, and
Supplementary Note). This algorithm runs in O(n logn) time for
sorting the reads, and amortized run time ofO(n) for reconstructing
the clones, where n is the number of reads.

4.4 Inversion Discovery
After the identification of read pairs with inversion signature (i.e.
mapping to same strand), and the predicted clone locations, we then
look for potential split clones in each pool by pairing clones that the
summation of their lengths is within an expected size range (µclone±
3σclone, where µclone is the mean clone size and σclone is the standard
deviation).

We also require the distance between the split clones to be within
the inversion size limits we are trying to discover. In this study we
set this parameter to 500 Kbp–10 Mbp (Figure 2). Therefore, two
regions rk and rl are predicted to be a split clone, denoted as SCrk,rl

if:
µclone − 3σclone ≤ |rk|+ |rl| ≤ µclone + 3σclone

min inv size ≤ |rk.start− rl.start| ≤ max inv size

Assuming the inferred clone locations are sorted by mapping
locations, our algorithm can detect split clones in O(n) amortized
run time, where n is the number of inferred clones. However, the
constant coefficient increases with the increase of average sequence
coverage.

We build inversion clusters by identifying two split clone pairs
from different pools that are compatible (i.e. same breakpoint
locations and inversion size). We denote such compatible pairs as
a pair of split clones (PSC). Due to both mapping errors and biases
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caused by our sliding window approach we permit a gap or overlap
between the split clones to be paired (Figure 2b). We expect the
inversion breakpoints to lie between these gaps. Two split clones
SCrk,rl and SCrk′ ,rl′ are compatible to be in the same paired split
clone (PSC) set, assuming rk/rk′ are located upstream of rl/rl′ , if:

−max overlap < |rk′ .start− rk.start| < max gap

−max overlap < |rl′ .start− rl.start| < max gap

Here we set the max gap = −1 × max overlap = µclone. Note
that adding more split clones to the same cluster will narrow down
the gap size in breakpoint estimate. However, not all of the split
clones we identify signal an inversion event. In an ideal case, where
there are no mapping errors, other forms of structural variation, or
areas with low mappability may also show themselves as split clone
signature for inversions. To ensure only split clones that signal a
true inversion are detected, we also require read pair support for
inversions (Medvedev et al., 2009; Alkan et al., 2011), and we
discard any split clones that are not supported by read pairs. This
step of the algorithm runs in O(m + n), where m is the number
of read pairs with inversion signature and n is the number of split
clones.

Each pair of split clones gives a hint about the existence of an
inverted haplotype. There may be many incorrectly identified split
clone inversion signatures, or a short clone may have multiple
potential “mate”s with similar properties. Therefore, clustering
multiple split clone pairs that share inversion breakpoint locations
and inversion lengths can help resolve the inversion breakpoints
more accurately (Figure 2c). To both resolve ambiguities from
multiple possible split clone pairings, and unambiguously identify
inversions, we construct an undirected graph, where each PSC is a
node, and an edge between two nodes indicates that share predicted
breakpoints.

We initially formulated the inversion detection using split clones
as a SET-COVER problem similar to VariationHunter, however, we
observed in both simulation and real data sets that due to segmental
duplications and deletions around the breakpoints, SET-COVER

approximation selected only one of the inversion breakpoints
correctly (Supplementary Note). We therefore formulate the
problem as finding maximal quasi cliques in the inversion cluster
graph. This formulation allows existence of incomplete clusters,
and tolerates some split clones to be included in a true cluster, and
as a result, increases flexibility and avoids getting stuck in a local
optimum.

We construct a graph G = (V,E) as follows. Each node in
the graph denotes a PSC, as explained above, and each PSC will
therefore represent a potential pair of inversion breakpoints. We
put an edge between two nodes if the two representative PSCs
agree with breakpoint locations through simple intersection (they
are compatible with each other). Formally,

V = {vi | vi denotes a paired split clone}

E = {(vm, vn) | breakpoints(vm) ∩ breakpoints(vn)}

To find an approximate solution for the maximal quasi clique
problem, we use an approximation algorithm previously suggested
by Brunato et al. (2008), and we set the tabu, γ, and λ parameters
to |graph|/10 rounds, 50%, and 60%, respectively. We obtained

the values for these parameters by another grid optimization on
experimental graphs depicting worst case scenarios (Supplementary
Note).

When a quasi clique is found, the nodes within the clique denote
a set of PSCs that are clustered together to mark an inversion.
The breakpoint of this cluster is obtained by intersecting its split
clones using a heuristic based on read pair support and the gap size.
Next, the read pair support for the breakpoints within a distance is
recalculated using the discordant read pairs. All clusters are then
checked for any overlap on one side of the breakpoints and only
the one with larger read support to split clone support ratio is kept
and the rest are discarded. We propose to use this ratio to ensure
fairness for less covered regions due to either random mapping
or repeated regions. We report the final clusters after removing
those that intersect with duplications and assembly gaps (>40%).
A flowchart summarizing the dipSeq algorithm is available in the
Supplementary Note.

4.5 Experimental validation
We tested the presence of an inversion in the cell line of the
NA12878 individual predicted to carry an inverted haplotype. For
this purpose, we used metaphase fluorescent in situ hybridization
(FISH) validation for inversions larger than 2 Mbp using two probes
located inside of the inversion. Similarly, we used interphase triple-
color FISH to validate inversions smaller than 2 Mbp and larger than
500 Kbp using two probes inside and one outside the inversion.

5 RESULTS
We applied our algorithm to discover large inversions using three
simulated and one real data set. The first simulation aims to both
estimate the minimum read coverage requirements for accurate
reconstruction of clones, and the effectiveness of our algorithms
in large inversion discovery. We designed the second simulation
to understand how dipSeq behaves in the presence of other
structural variants that may have similar split clone signature. The
third simulation depicts the robustness of dipSeq to segmental
duplications. We finally used dipSeq to discover large inversions
in the genome of an individual of Northern European descent
(NA12878). For the real data, we compared our results with
the InvFEST database of known inversions (Martı́nez-Fundichely
et al., 2014), and we applied experimental validation for the novel
inversion calls.

5.1 Simulation Experiments
We designed three simulation experiments to test and demonstrate
the power of dipSeq for inversion discovery. The details of each
experiment and results are given in the Supplementary Note.

Simulation 1. In order to test the correctness of dipSeq, first, we
randomly implanted 8 large inversions (500 Kbp to 10 Mbp) to the
human reference genome (GRCh37) chromosome 1. Half of the
simulated inversions were homozygous, and the remaining were
heterozygous. We then randomly selected BAC-sized intervals (µ
= 150 Kbp, σ = 40 Kbp) from both chromosome 1 homologs at
∼3X physical coverage, which we randomly placed into 288 pools
and simulated paired-end reads of length 100 bp (fragment size µ
= 600 bp, σ = 60 bp) using wgsim1. We generated three different

1 https://github.com/lh3/wgsim
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data sets at 3X, 5X, and 10X depth of coverage to investigate the
effect of read depth on our inversion calls. We mapped the reads to
the reference genome using both BWA and mrFAST aligners and
applied our clone reconstruction method. We were able to correctly
infer 87.18% and 86.40% of the clones that were not located on the
breakpoints using the BWA and mrFAST alignments, respectively
(Supplementary Note). Using the inferred clones, dipSeq could find
all 8 inversions. It performed similarly in terms of sensitivity at all
levels of depth of coverage, and returned no false positives.

Simulation 2. As a second simulation test, we explored dipSeq’s
performance when there are other forms of structural variation close
to or intersecting the inversion breakpoints, therefore emulating
complex rearrangements. We used the same simulated inversions,
and we additionally implanted deletions and duplications. We also
inserted two additional inverted duplications to test whether dipSeq
would predict them as normal inversions. We then repeated our
clone and paired-end read simulation as explained above. However,
due to random simulation, one of the inversion breakpoints was
not “detectable” i.e. no clones spanned the breakpoint. After clone
reconstruction, dipSeq was able to find all remaining 7 inversions
correctly even at 3X sequence coverage. In addition, dipSeq did not
incorrectly identify inverted duplications as bona fide inversions.

We further tested the efficacy of using whole genome sequencing
(WGS) based inversion discovery algorithms on this data. For this
purpose, we simulated WGS data sets, again using wgsim, at
3X, 5X, and 10X from the same chromosome homologs with the
implanted inversions and SVs. We mapped the simulated reads
to the reference human genome (GRCh37) with both BWA and
mrFAST, to test the detection performance of three algorithms:
INVY (Rausch et al., 2012), LUMPY (Layer et al., 2014), and
VariationHunter (Hormozdiari et al., 2009). We used the BWA
alignments for INVY and LUMPY, and mrFAST alignments for
VariationHunter, as per each tool’s usage recommendations. As
expected, INVY and LUMPY failed to discover any of the
implanted inversion events, as they are mainly designed for finding
shorter inversions. VariationHunter was able to identify only one
inversion out of 8, which may be due to VariationHunter’s ability to
incorporate all map locations, and a higher maximum inversion size
threshold.

Simulation 3. In the third experiment, we tested the robustness of
dipSeq to segmental duplications, by implanting 4 large inversions
(100 Kbp to 5 Mbp) to human chromosome 22, where the
breakpoints intersect with segmental duplications. Two of the
simulated inversions were homozygous, and the remaining were
heterozygous. In addition, one of the inversions was placed near
an assembly gap. We then randomly selected both BAC size (µ =
150 Kbp, σ = 40 Kbp) and fosmid size (µ = 40 Kbp, σ = 10 Kbp)
intervals from both chromosome 22 homologs at ∼4X physical
coverage, which we then randomly placed into 288 pools ensuring
that the clones do not span the unmapped areas.

We then simulated paired-end reads of length 100 bp (fragment
size µ = 600 bp, σ = 60 bp) using wgsim and generated three
different data sets at 3X, 5X, and 10X depth of coverage, for
both BAC and fosmid simulations. Next, we mapped the reads to
the entire reference genome using the BWA aligner, and finally
applied dipSeq. Our algorithm was able to precisely detect all
four inversions in each experiment, and returned no false positive

predictions. We noticed that increasing the sequence coverage did
not improve the results, however, when the physical coverage
was reduced to 3X, some inversions became undetectable since no
clones spanned their breakpoints.

5.2 Real data set from NA12878
Next, we tested dipSeq using a real pooled clone sequencing data
set generated from the genome of NA12878. We mapped paired-
end reads from a total of 288 pools (Methods) using both BWA and
mrFAST to the reference genome. Average fragment length of the
paired-end reads was ∼450 bp, with a standard deviation of ∼98
bp. Using our algorithms, we reconstructed the clone locations,
which showed an average clone length of ∼140 Kbp and a standard
deviation of ∼40 Kbp.

For inversion discovery, we set the minimum and maximum
inversion size thresholds as 500 Kbp and 10 Mbp, respectively.
Although it is theoretically possible to detect inversions as small
as a typical clone size (150-200 Kbp), we chose the minimum
size as 500 Kbp due to the limitations of the FISH method we
used for validation (Methods). After the initial split clone clustering
and maximal quasi clique approximation (Methods), we filtered
those inversion clusters without read pair signature support. We
generated two main callsets using BWA and mrFAST, where
>83% of the calls were shared. We then randomly selected a
total of 11 inversions for experimental validation (Table 1). We
then compared our predictions with the known inversions reported
in the InvFEST database (Martı́nez-Fundichely et al., 2014), and
found that dipSeq could correctly identify all three inversions that
are previously validated in the genome of the same individual;
a 5 Mbp inversion in 8p23.1 (Antonacci et al., 2009), a 1.5
Mbp inversion in 17q12 (Antonacci et al., 2009), and a 2 Mbp
inversion in 15q13.3 (Antonacci et al., 2014) (Table 1). Out of
the remaining 8 inversion predictions, 2 could not be tested due
to the segmental duplications around the breakpoints. We tested
the remaining using FISH experiments (Methods), and validated
a novel inversion in the 15q25 locus (Figure 3a,b). We also show
the visualization of a previously characterized 15q13.3 inversion
(InvFEST ID: HsInv1049) using the SAVANT browser (Fiume et al.,
2012) in Figure 3c. We used dipSeq with different parameters and
generated two more data sets, which are not extensively tested
(Supplementary Section 1.14).

6 DISCUSSION
In this paper, we presented a novel algorithm, dipSeq, to
characterize large genomic inversions using a new sequencing
method initially developed to improve haplotype phasing. Although
it suffers from high false positive rate using real data (Table 1),
dipSeq was able to identify all previously validated inversion events,
and also discover a novel variant. Furthermore, dipSeq performed
better with simulated data, suggesting that the relatively poor
performance with the NA12878 genome may be improved with
higher depth of coverage.

There are multiple directions that we can take to further improve
dipSeq. First, to reduce the false discovery rate, we can incorporate
split read sequence signature (Ye et al., 2009), and we can perform
local de novo assembly around the predicted breakpoint intervals
with an approach similar to TIGRA (Chen et al., 2014). However,
since both of these methods need high sequence coverage, they
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Fig. 3. Inversions discovered by dipSeq in the NA12878 genome. (A) Novel inversion found at chr15:83,089,659-84,865,500 (inner coordinates). We show
the locations of split clones and the supporting read pairs using the SAVANT browser (Fiume et al., 2012). (B) Experimental validation of the novel
inversion discovered using interphase FISH (green-red-blue: direct, green-blue-red:inverted). (C) SAVANT browser view of the previously known inversion at
chr15:30,433,406-32,898,559. SAVANT read pair colors are as follows. Light blue: concordant, red: discordant by length, dark blue: one end inverted, yellow:
everted (tandem duplication), gray: one end unmapped.

Table 1. Summary of validation of inversions predicted in the genome of NA12878 using dipSeq.

InvFEST ID chrom start end size status dipSeqBWA dipSeqmrFAST

chr5 69,080,890 70,004,538 4,214,658 not tested yes yes
HsInv0501 chr8 6,922,489 12,573,597 4,695,489 confirmed (Antonacci et al., 2009) yes yes

chr14 19,369,507 20,154,427 1,336,417 not tested yes yes
chr15 22,667,129 28,772,134 2,464,234 not confirmed yes yes

HsInv1049 chr15 30,370,112 32,899,708 2,032,351 confirmed (Antonacci et al., 2014) yes yes
HsInv0547∗ chr15 83,290,936 84,688,129 923,648 confirmed (novel) yes yes

chr16 21,847,556 30,283,910 883,731 not confirmed yes yes
HsInv0364 chr16 32,277,947 33,295,746 1,090,400 not tested no yes

chr17 15,544,928 18,621,866 835,790 not confirmed yes yes
HsInv1048 chr17 34,725,850 36,295,000 1,512,198 confirmed (Antonacci et al., 2009) yes yes

chr18 10,668,776 12,210,270 4,391,829 probe failure yes yes
dipSeq returns four coordinates for each inversion for the two breakpoint estimations. The coordinates above are the inner breakpoint predictions, and
are from the GRCh37 reference genome. The InvFEST database reports inversions in NCBI build 36 coordinates, however, we converted the coordinates
using the liftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). We randomly selected inversions for validation. dipSeqBWA: predictions using BWA
alignments, dipSeqmrFAST: predictions using mrFAST alignments (edit distance ≤ 4) and all possible map locations for read pairs. We tested dipSeq using two
other mapping parameters which returned slightly different results (Supplementary Notes). probe failure: the FISH probes mapped to another chromosome and
thus the experiment could not be performed. ∗We note that the novel inversion we predicted and confirmed is listed in the InvFEST database (ID: HsInv0547)
as “unreliable prediction”.

might not be suitable to directly apply to the low-coverage data set
we used. Instead, it will be better to simultaneously use WGS data
generated from the genome of the same individual. Since the PCS
method also requires WGS data for haplotype phasing, it can be
expected to generate matching PCS-WGS data sets from the same
genomes.

Another future research on dipSeq will be testing and improving
its abilities to discover smaller, yet still large inversions (>100

Kbp). In this paper, we focused on inversions larger than 500
Kbp, because the upper size limit for GASVPro (Sindi et al., 2012)
algorithm is 500 Kbp, and only such large inversions can be reliably
tested using FISH. Note that validating smaller inversions is a more
difficult task, using fiber FISH, or PCR if the breakpoints lie within
unique regions. In addition, the clone size distribution should be
tighter to ensure clone reconstruction method does not artificially
“merge” split clones into a single interval. Alternatively, we can
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try to use smaller clones such as fosmids, despite their limitations.
We still would like to investigate dipSeq’s performance using real
fosmid data, however, this may require additional algorithmic
enhancements especially in the presence of nearby segmental
duplications (Kitzman et al., 2011). In this paper we present fosmid
simulation experiments, and there is currently only one pooled
fosmid sequencing dataset (Kitzman et al., 2011) generated from
the genome of a Gujarati Indian individual (NA20847). We would
like to apply dipSeq to the NA20847 dataset and evaluate its
performance with experimental validation.

dipSeq can also be extended to characterize other forms of
large structural variation, including deletions, insertions, direct
and inverted duplications. Each of these types of SV present
themselves with different split clone signatures that we summarize
in Supplementary Figure 6. We also note that, determining the
location of a segmental duplication event is yet a largely unsolved
problem, even when long reads are used (Chaisson et al., 2015). It
may also be possible to discover translocations using split clones,
however, chance of finding incorrect split clones will also increase,
causing a reduction in the performance of maximal quasi clique
approximation.

In summary, dipSeq is the first algorithm that can discover large
genomic inversions using high throughput sequencing technologies.
Our understanding of the phenotypic effects of inversions is still
limited, and one of the reasons of this is the lack of reliable and
cost effective methods to characterize such events. This is also
true for other complex rearrangements such as duplications and
translocations. Improvements in characterization of large complex
rearrangements will help us better understand the biological
mechanisms that lead to phenotypic difference, disease, and
evolution.
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