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Abstract

Background Differential expression analysis of RNA sequencing (RNA-seq) data typically relies on

reconstructing transcripts or counting reads that overlap known gene structures. Previously we

introduced an intermediate approach called differentially expressed region (DER) finder that seeks

to identify contiguous regions of the genome showing differential expression signal at single base

resolution that does not rely on existing annotation or potentially inaccurate transcript discovery.

However, there were computational challenges involved with performing base-resolution analyses

in large numbers of samples at genome scale.

Results Here we describe a new version of the derfinder software that allows for: (1) genome-

scale analyses in a large number of samples, (2) flexible statistical modeling, including multi-group

and time course analyses, and (3) a new, computationally efficient approach to re-analysis at base

resolution called expressed-region analysis. We also introduce functionality for annotating and

plotting base-resolution data to identify artifacts and confirm results. We apply this approach
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to public RNA-seq data from the developing human brain to illustrate the types of analyses and

results possible using derfinder.

Conclusions Single-base and expressed-region RNA-sequencing analysis provides compromise be-

tween full transcript reconstruction and gene-level analysis. derfinder is software designed to

identify, visualize, and interpret differentially expressed regions. The package is available from

Bioconductor at www.bioconductor.org/packages/release/bioc/html/derfinder.html.

Key words: RNA sequencing, differential expression analysis, coverage, gene annotation, gene

expression

1 Introduction

The increased flexibility of RNA sequencing (RNA-seq) has made it possible to characterize the

transcriptomes of a diverse range of experimental systems, including human tissues (Farrell et al.

2014; GTEx Consortium 2013), cell lines (ENCODE Project Consortium et al. 2012; Lappalainen

et al. 2013) and model organisms (Daines et al. 2011; Dillman et al. 2013). The goal of many

experiments involves identifying differential expression with respect to disease, development, or

treatment. In experiments using RNA-seq, messenger RNA (mRNA) is sequenced to generate short

“reads” (36-200+ base pairs). These reads are aligned to genome, and this alignment information is

used to quantify the transcriptional activity of both annotated (existing in databases like Ensembl)

and novel transcripts and genes.

The ability to quantitatively measure expression levels in regions not previously annotated

in gene databases, particularly in tissues or cell types that are difficult to ascertain, is one key

advantage of RNA-seq over hybridization-based assays like microarray technologies. As complicated

transcript structures are difficult to completely characterize using short read sequencing technologies

(Steijger et al. 2013), the most mature statistical methods used for RNA-seq analysis rely on existing

annotation for defining regions of interest - such as genes or exons - and counting reads that overlap

those regions (Anders, Pyl, and Huber 2014). These counts are then used as measures of gene

expression abundance for downstream differential expression analysis (Anders and Huber 2010;

Robinson, McCarthy, and Smyth 2010). Unfortunately, the gene annotation may be incorrect or

incomplete, which can affect downstream modeling of the number of reads that cross these defined
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features.

We proposed an alternative approach for finding differentially expressed regions (DERs) that

first identifies regions that show differential expression signal and then annotates these regions using

previously annotated genomic features (Frazee et al. 2014a). The approach uses coverage-level data

(i.e. the number of reads aligned to each base in the genome) to identify differential expression

signal at each individual base and our previous implementation merged adjacent bases with similar

signal into candidate regions using a Hidden Markov Model (HMM). Using Y-chromosome and

simulated data, we showed that this approach maintains power when compared to the feature-

level approaches while allowing for discovery of novel transcriptional events, without incurring the

potential inaccuracies of transcript assembly. However, the original software was inefficient for

handling large RNA-seq data sets across the entire genome.

The largest limitation to RNA-seq is arguably handling the vast amounts of data generated

in a single experiment, as there are tens to hundreds of millions of reads per sample. RNA-seq

experiments can therefore generate terabytes of data across billions of measurements in a single

experiment involving dozens of samples. The original implementation was statistically rigorous,

but it was difficult to apply the approach genome-wide. We seek to extend this general approach

allowing the base-level differential expression analysis on hundreds of samples at the genome-scale.

Here we describe an extended framework and corresponding R/Bioconductor software package

called derfinder that performs differential expression analysis at single-base and expressed-region

levels across the entire genome, all within the R statistical environment (R Core Team 2014). We

first introduce the new analysis framework at the single-base and expressed-region levels using

publicly-available RNA-seq data measured in the developing human brain (BrainSpan 2011) as

motivation, which extends our recently published work limited to the frontal cortex (Jaffe et al.

2014). We subsequently apply derfinder to this BrainSpan data and showcase the types of results

possible using derfinder. Next using data simulated from differentially expressed transcripts, we

demonstrate that approach has high sensitivity and specificity. Finally, we close with computational

considerations for performing derfinder on RNA-seq data. Our method offers a powerful approach

for leveraging biological insight from new and existing RNA-seq data sets.
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2 Results

We present the results of implementing derfinder at single-base and expressed-region levels on

the publicly-available BrainSpan (BrainSpan 2011) data set, as well as simulated data. We explain

different analyses and visualizations on the resulting DERs, and describe the differential expression

in the developing human brain. We demonstrate that the derfinder approach controls the family-

wise error rate while retaining sufficient power to detect differential expression at base resolution.

Finally, we describe the computational considerations for using derfinder.

2.1 Overview of the derfinder approaches

The idea behind derfinder is to identify regions of the genome that are differentially expressed

with respect to a qualitative or quantitative outcome. Conceptually this approach is a middle

ground between gene counting based on previously annotated gene regions and full assembly of

transcripts (Frazee et al. 2014a). The approach is to map reads to the genome, calculate coverage

at base resolution, and identify regions that show differential coverage profiles between conditions.

The first step is to map reads using a splicing aware alignment tool such as Tophat2 (Kim

et al. 2013). Then we calculate the number of reads in each sample that cover each genomic base.

The result is a genome-length coverage vector for each sample. At this stage derfinder permits

two separate strategies for identifying regions that show differential coverage between conditions:

single-base and expressed-region analyses.

Single-base analysis

A single-base resolution analysis in derfinder first filters out bases that show low levels of

expression across all samples. This typically reduces the number of bases that must be analyzed by

up to 90%, reducing both CPU and memory usage (Supplementary Section 1.2). Next, a standard

differential expression analysis is performed at each base by comparing nested null and alternative

linear models using an F-statistic. The statistical models may include adjustments for confounders

such as library size (Mortazavi et al. 2008), demographic variables, and batch effects (Leek et al.

2010).

Once an F-statistic is calculated at each base, we identify differentially expressed regions (DERs)

using a “bump hunting” approach (Jaffe et al. 2012a). First we find candidate DERs by identifying
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Figure 1: Finding DERs on chromosome 3 with BrainSpan data set (see Methods) using six groups:
Neocortical regions (NCX: DFC, VFC, MFC, OFC, M1C, S1C, IPC, A1C, STC, ITC, V1C), Non-neocortical
regions (NonNCX: HIP, AMY, STR, MD), and cerebellum (CBC) split by whether the sample is from a fetal
(F) or postnatal (P) subject. A Boxplots for three specific bases. B F-statistics curve with regions passing
the F-stat cutoff marked as candidate DERs. C Raw coverage curves superimposed with the candidate
DERs. D Known exons (dark blue) and introns (light blue) by strand. The third DER matches the shorter
version of the second exon shown in the Tx track.

regions of the genome where the base-level F-statistics pass a genome-wide threshold (Figure 1

with BrainSpan data set, see Methods). We then calculate a summary statistic for each candidate

region based on the length of the region and the size of the statistics within the region. To

evaluate the statistical significance of these candidate regions, we permute the sample labels and

recompute candidate regions and summary statistics. The result is a region-level p-value, which can

be adjusted to control the family-wise error rate (FWER). Alternatively, the region-level p-values
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can be adjusted for multiple testing using standard false discovery rate techniques (Dabney and

Storey 2014; Storey and Tibshirani 2003).

Expressed-region analysis

In our original work describing derfinder, we introduced a general single-base resolution frame-

work for differential expression analysis (Frazee et al. 2014a). However, performing region-level

analyses can potentially be a more flexible and computationally attractive solution. This type of

analysis starts with read alignment and coverage calculation like the single-base level analysis. In

the expressed-region approach, rather than calculating a test statistic at each base, we instead

identify contiguous regions in the genome where the average coverage across samples passes a per-

missive threshold (Leśniewska and Okoniewski 2011) as shown in Figure 2 with the BrainSpan

data set (see Methods). Similar to the gene counting approach, we summarize these expressed

regions by counting the number of reads (including fractions of reads) that overlap the region. We

then analyze the resulting coverage matrix using statistical models that have been developed for

gene counts such as limma (Smyth 2005), voom (Law et al. 2014), edgeR (Robinson, McCarthy, and

Smyth 2010), or DESeq (Anders and Huber 2010). The difference between an expressed-region anal-

ysis and standard gene counting approaches is that the expressed regions are annotation-agnostic,

defined entirely using the observed data.

While both the single-base and expressed-region level analyses are annotation-agnostic, there

are several key differences between the two approaches. The single-base approach directly identifies

DERs without first explicitly defining what constitutes expressed sequence beyond very liberal

filtering, but permits only a single biological question posed via a single pair of full and nested

linear models per application. Searching for differential expression in a subset of data or for a

different effect of interest requires rerunning the entire derfinder approach, including potentially

resource-intensive permutations. As the expressed-region approach first identifies expressed regions,

secondary analyses on subsets of the data, or sensitivity analyses including additional covariates,

are simple. However, the region-level analysis loses spatial resolution, particularly when exonic and

intronic sequence are contained in the same expressed region, but only the exon is differentially

expressed. We revisit considerations for implementation of these complementary approaches in the

Discussion section.
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Figure 2: Finding regions via expressed-region approach on chromosome 5 with BrainSpan data set (see
Methods). A Mean coverage with segments passing the mean cutoff (0.25) marked as regions. B Raw
coverage curves superimposed with the candidate regions. Coverage curves are colored by brain region and
developmental stage (NCX: Neocortex: Non-NCX: Non-neocortex, CBC: cerebellum, F: fetal, P: postnatal).
C Known exons (dark blue) and introns (light blue) by strand for genes and subsequent transcripts in the
locus.)

2.2 Visualizing and analyzing DERs

For both types of approaches, derfinder produces a set of DERs (as a GRanges object (Lawrence

et al. 2013), format details in Supplementary Website) with several summary statistics per region.

For example, the mean and overall sum of the F-statistics is stored for single-base analyses, and the

mean and total base-level coverage are saved for region-level analyses. The DERs can be grouped

into larger regions by distance (that can contain many nearby DERs), which can be useful to

identify artifacts such as coverage dips (Figure 3). The DERs can be annotated to their nearest

gene or known feature using bumphunter (Jaffe et al. 2012a). Using this information, visualizing

the location of the DERs can be easily made with different software tools such as ggbio (Yin, Cook,

and Lawrence 2012). With the results from derfinder, it is straightforward to make ”MA” plots

comparing pairs of sample groups post hoc within the DERs. It is important to note that in the

case of the single-base level approach, MA and p-value plots used to identify potential artifacts are
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biased towards regions that have differential expression signal due to the nature of the analysis.

Figure 3: Example of a coverage dip from BrainSpan single-base analysis from cluster number 16 in terms
of overall signal. ggbio plot with tracks showing: ideogram, base level coverage by sample, mean base level
coverage by sample group, and known transcripts. Other examples are shown in the Supplementary Section
1.3 and the Supplementary Website.

The sets of DERs from both approaches can also be compared to each other using the number,

width, and/or proportion overlapping (Supplementary Website). With both approaches, candidate

DERs can further be compared to known gene annotation tables to identify candidate novel tran-

scription events (regions overlapping known intergenic parts of the genome), run-off transcription,

and other events. The regions can be exported to CSV files or other biologist-friendly file formats

for followup and downstream analyses.

2.3 Differential expression in the developing human brain

We wanted to detect regions that were differentially expressed across the lifespan in human brains.

To achieve this, we applied both the single-base and expressed-region derfinder approaches to

the BrainSpan RNA-seq coverage data (see Methods), a publicly available data set consisting of

487 samples on 40 unique individuals across the lifespan across 16 brain regions (BrainSpan 2011).

At the single-base level, we identified 115,658 genome-wide significant DERs (at family-wise error

rate, FWER < 5%) where expression levels were associated with developmental stage (fetal versus

postnatal) and/or brain region (see Methods section 4.5.1). These resulting single-base level DERs

largely distinguished the fetal and postnatal samples representing the first principal component

and 49.1% of the variance of the mean coverage levels within the DERs (Figure 4). The most

significant DERs map to genes previously implicated in development (see Supplementary Website),
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and contained many of the DERs we previously identified in the frontal cortex in 36 independent

subjects (Jaffe et al. 2014). For example, 59.2% of our previously published 50,650 developmental

DERs (and 72.6% in the 10,000 most significant) in the frontal cortex overlapped these DERs

identified in the BrainSpan data set. The potential lack of overlap may be explained by unmodeled

artifacts as there appear to be clusters in the principal components calculated on the base resolution

data (Figure 4, left panel).

Figure 4: (Left) First two principal components (PCs) with samples colored by brain region and sample
type (F: Fetal or P: Postnatal). (Right) Boxplots for PCs 1 and 2 by brain region (NCX: neocortex, HIP:
hippocampus, AMY: amygdala, STR: striatum, MD: thalamus, CBC: cerebellum) and sample type with
non-neocortex brain decomposed into its specific regions.

While the majority (67.4%) of single-base level DERs overlap exclusively exonic sequence in the

latest Ensembl database (v75), we find that a fraction (22.5%) of the single-base level DERs map to

sequence previously annotated as non-exonic (e.g. solely intronic or intergenic). The proportion of

exonic sequence is higher than our previous analyses in the frontal cortex (Jaffe et al. 2014). When

the single-base DERs are stratified by brain region and developmental period with the highest

expression levels (Table 1), we find the highest degree of unannotated regulation in the cerebellum,

the brain region with the largest degree of region-specific genes in a previous analyses (Kang et al.

2011). The majority of DERs, regardless of their annotation, are most highly expressed in fetal life,
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particularly within the neocortex, hippocampus, and amygdala. Non-exonic expression might be

due to incomplete transcript annotation in reference databases, backround expression, or previously

undetected artifacts.

Table 1: Classification of single-base level DERs in the BrainSpan project. For each statistically significant
DER, we identified the developmental period and region with the highest average expression levels, stratified
by annotation relative to the Ensembl gene database. NCX: neocortex, HIP: hippocampus, AMY: amygdala,
STR: striatum, MD: thalamus, CBC: cerebellum.

Group Exonic Intergenic Intronic Total

NCX
Fetal 14035 1813 1115 16963

Postnatal 2869 911 418 4198

HIP
Fetal 13036 934 553 14523

Postnatal 1047 248 149 1444

AMY
Fetal 15364 1240 762 17366

Postnatal 1234 232 162 1628

STR
Fetal 7327 1800 1261 10388

Postnatal 4840 1112 916 6868

MD
Fetal 4865 928 452 6245

Postnatal 3049 437 356 3842

CBC
Fetal 10298 1901 1169 13368

Postnatal 11661 3086 4078 18825

We then assessed differential expression using the complementary expressed-region level ap-

proach with the same statistical models, and first identified 174,639 contiguously expressed regions

across the 487 samples (with mean across-sample normalized coverage > 0.25) constituting 34.52

megabases of expressed sequence. The majority (80.3%) of these expressed regions were strictly

exonic while only a small subset (5.4%) were strictly non-exonic by Ensembl annotation. Using

the same statistical models as the single-base level analysis (see Methods section 4.5.1), we found

that 128,345 (73.5%) were differentially expressed by brain region and/or developmental stage at

the region-level. These differentially expressed regions overlapped a total of 17,458 Ensembl genes

(12,979 with gene symbols), representing a large portion of the known transcriptome. Of the signif-

icant expressed-region level DERs, 93,622 (72.9%) overlapped at least 1 significant single-base level

DER (previously described). Lack of overlap results from almost half (45.8%) of single-base level

DERs having an average coverage lower than the expression level determining expressed regions

(0.25). For example, there was high expression only in the samples from a few brain regions, or only

one development period. Decreasing the cutoff that defines the expressed regions from 0.25 to 0.1
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results in a larger number of regions (217,178) that have a higher proportion of non-exonic sequence

(12.2%), suggesting that the choice of this expression cutoff requires some initial exploratory data

analysis.

Lastly, we highlight the utility of the expressed-region level analysis (using the original 0.25

cutoff) to identify regions differentially expressed within subsets of the data, for example across

brain regions within a single developmental period. We identified that 1,176 expressed regions were

differentially expressed comparing striatum versus hippocampus samples in the fetal developmental

stage. These DERs mapped to 302 unique genes. Genes more highly expressed in the striatum

include ARPP-21, previously shown to localize in the basal ganglia (Ouimet, Hemmings, and

Greengard 1989), and dopamine receptor genes DRD1 and DRD2 (Cachope and Cheer 2014).

Genes more highly expressed in the hippocampus in fetal life were strongly enriched for neuro-

developmental genes including FZD7 (Melchior et al. 2008), ZBTB18 (Tatard et al. 2010), and

NEUROD1 (Poulin, Turgeon, and Drouin 1997). The expressed-region level analysis therefore

permits subgroup analysis without the need to rerun the full derfinder single-base level pipeline.

2.4 Simulation results

We next performed a simulation to assess the ability of derfinder to identify true differential

expression signal at both the single-base and expressed-sequence levels. We simulated data for

60 genes from chromosome 22 using the polyester framework (Frazee et al. 2014b). We used a

3 group design with 10 samples per group, used 40x read depth for the control/reference group,

and then induced differential expression by inserting fold changes of 2x and 1
2x for high and low

expression, respectively, in certain transcripts. From the 60 selected genes, 24 genes have a single

transcript, and we set half of them (12) to be differentially expressed. The remaining 36 genes have

two transcripts - 12 genes have both transcripts differentially expressed, 12 have a single transcript

differentially expressed, and the remaining 12 have neither transcript differentially expressed. Then,

for each strand we divided the exons belonging to these transcripts into non-overlapping segments

to determine the sensitivity and specificity of the derfinder approach. This resulted in 280 non-

overlapping strand-specific exonic segments, where 169 were generated to be differentially expressed.

The single-base analysis resulted in 469 candidate DERs, of which 126 were significant when

controlling the family-wise error rate (FWER adjusted p-value < 0.05). Table 2 (Left) shows
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Table 2: Comparison between the 280 strand-specific exonic segments and the 126 and 125 significant
single-base (Left) and expressed-region level DERs (Right), respectively.

Single-base level Expressed-region level
Overlaps significant DER Overlaps significant DER

Diff.
expressed

Yes No Sum Yes No Sum
Yes 132 37 169 Yes 144 25 169
No 0 111 111 No 0 111 111
Sum 132 148 280 Sum 144 136 280

whether a strand-specific exonic segment overlaps a significant DER which is not strand specific.

We did not identify any false positives, suggesting that the FWER was accurately controlled in this

simulation. Conversely, the approach identified 37 false negatives, resulting in an empirical power

of 78.1%. We note that 28 (75.7%) of the false negatives were from two-transcript genes where

only one transcript was set to be differentially expressed. In most of these cases, a lower F-statistic

cutoff would have likely identified these regions as differentially expressed.

Using the expressed-region level approach we identified a total of 249 expressed regions, of which

125 were significant (at Bonferroni adjusted p-value < 0.05). Table 2 (Right) shows the results from

cross-tabulating differential expression between the exonic segments and these DERs. Like in the

single-base level analysis, the approach did not detect any false positive regions, empirical power

was 85.2%, and 18 (72%) of these false negatives were from two-transcript genes with only one set

to be differentially expressed. These results further suggest that the single-base level analysis is

more conservative than the expressed-region level analysis.

2.5 Computational considerations

We have demonstrated the ability of our derfinder software to identify annotation-agnostic regions

of differential expression in real and simulated data. However, calculating coverage, summary

statistics, and permutation statistics at base resolution can be extremely computationally intensive.

We have made efforts to address these computational concerns by: (1) parallelizing computations

where possible, (2) storing intermediate data files to manage memory load, and (3) implementing

the expressed region approach to minimize the number of base-resolution statistics that must be

calculated (Supplementary Section 1.1).

We use IRanges’ efficient run-length encoding (Rle) infrastructure (Lawrence et al. 2013) to
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minimize the required memory whenever possible. However, the F-statistics are more efficiently

calculated outside of Rle objects, for which our implementation relies on efficient sparse matrix

operations via the Matrix package (Bates and Maechler 2014). To mitigate the time consumed

transforming the data for each permutation, we save subsets of data to temporary files speeding

up the computation.

Several steps of the analysis can be parallelized by splitting the data into contiguous regions on

chromosomes which the software takes advantage of, thus reducing the wall clock computation time

(Supplementary Website). derfinder is flexible enough to run with different parallel computing

implementations available in R. However, reducing the overall wall clock time does require a high

performance computing environment. This becomes more necessary as the richness and size of the

data set increase.

We present some data on computational time and memory use for the single-base level analysis

with the BrainSpan data set as a benchmark. This analysis resulted in more than 170 megabases

(5.5% of the genome) passing the initial data filter and approximately 171 x 109 F-statistics calcu-

lated after all 1000 permutations. At its peak derfinder used 510 cores to analyze all chromosomes

simultaneously. In this analysis, chromosome 1 took 7 days to complete with 86 GB of memory

used at the peak. Analyses of smaller data sets took 140 and 58 minutes to complete, using at its

peak 96 and 48 cores respectively (Supplementary Website).

The expressed-region level analysis can be performed much faster and with lower number of

cores than the single-base analysis. For example, the BrainSpan data set took 2.7 hours to load the

data and 7 hours to determine the expressed regions with 10 and 5 cores respectively. That is, it

took a total time of 9.7 hours to go from BigWig files to resulting expressed regions. Further timing

and memory use results appear in Supplementary Section 1.6 and the Supplementary Website.

3 Conclusions

Here we introduced the derfinder statistical software for performing genome-scale annotation-

agnostic RNA-seq differential expression analysis. This approach utilizes coverage-level information

to identify differentially expression regions (DERs) at the single-base or expressed-region levels, and

then generates useful summary statistics, visualizations and reports to further inspect and validate
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candidate regions. Feature-level coverage can be easily computed, allowing for the implementation

of complementary statistical analyses, such as differential gene and exon analysis (Supplementary

Section 1.5). The reduced dependence on the transcriptome annotation permits the discovery of

novel regulated transcriptional activity, such as the expression of sequences previously annotated

as intronic or intergenic, which we highlight in publicly available RNA-seq data and our previous

derfinder application (Jaffe et al. 2014). Furthermore, the structure of DERs across a given gene

can permit the direct identification of differentially expressed transcripts (e.g. Figure 1), providing

useful information for biologists running validation experiments.

The software pipeline, starting with BAM or BigWig files, and ending with lists of DERs,

reports, and visualizations, runs at comparable speeds to existing RNA-seq analysis software. Given

the appropriate computing resources, derfinder can scale to analyze studies with several hundred

samples. Further work might be needed to scale to sample sizes in the thousands, which we foresee

becoming a reality in the near future. For such large studies, it will be important to correct for

batch effects and potentially expand derfinder’s statistical model for base-level covariates. The

flexibility in defining the statistical model is one key advantage over other RNA-seq pipelines like

Cuffdiff (Trapnell et al. 2013). Flexible models allow for a wide variety of biological questions

that can be interrogated in the data, while Cuffdiff only allows for two groups comparisons. In

summary, derfinder provides a unique statistical method for RNA-seq data to identify regions

in the genome likely associated with a particular trait or disease, that can be integrated with

complementary statistical approaches and used to prioritize regions of interest in a wide range of

molecular systems.

4 Methods

4.1 Overview of R Implementation

We chose to implement derfinder entirely in the R statistical environment (R Core Team 2014).

Our software includes upstream pre-processing of BAM and/or BigWig files into base-resolution

coverage. At this stage the user can choose to summarize the base resolution coverage into feature

level counts and apply popular feature-level RNA-seq differential expression analysis tools like

DESeq (Anders and Huber 2010), edgeR (Robinson, McCarthy, and Smyth 2010), and voom (Law
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et al. 2014). Since gene-counting approaches frequently filter out reads that overlap multiple gene

features, using a base resolution counting approach before counting within features may allow more

of the reads to be considered (Supplementary Section 1.5).

derfinder can be used to identify regions of differential expression agnostic to existing an-

notation. This can be done with either the single-base or the expressed-region level approaches,

described in detail in the following subsections. The resulting regions can then be visualized to

identify novel regions and filter out potential artifacts.

After differential expression analysis, derfinder can plot DERs using base-resolution coverage

data by accessing the raw reads within differentially expressed regions for posthoc analysis like clus-

tering and sensitivity analyses. We have also created a lightweight annotation function for quickly

annotating DERs based on existing transcriptome annotation, including the UCSC knownGene

hg19, Ensembl p12, and Gencode v19 databases.

Vignettes with detailed instructions and examples are available through the Bioconductor pages

for derfinder (Collado-Torres et al. 2014) and derfinderPlot (Collado-Torres, Jaffe, and Leek

2014).

4.2 Single-base level derfinder

The single-base level approach implemented in derfinder requires two models. The alternative

model (1) contains an intercept, the primary covariate of interest, and optionally adjustment vari-

ables. The primary variable can be as simple as a case-control variable or a more complicated

model including smoothing functions (e.g. splines) over time. The adjustment variables include a

library size normalization factor for raw data and optionally other potential confounders like age,

sex, and batch variables.

yij = αi +

n∑
p=1

βipXjp +

m∑
q=1

γiqZjq + εij (1)

In both models yij is the scaled log2 base-level coverage for genomic position i and sample j.

That is, yij = log2
(
coverageij + scaling factor

)
. The model is completed by the n group effects βi,

m adjustment variable effects γi and potentially correlated measurement error ε. The null model

(2) is nested within model (1) and contains only the intercept and adjustment variables.
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yij = αi +
m∑
q=1

γiqZjq + εij (2)

derfinder uses a fixed design matrix, testing the same hypothesis at every base. This permits

fast vectorized differential expression analysis. At each base we compute a moderated F-statistic

(Smyth 2005) of the form in equation (3), where RSS0i and RSS1i are the residual sum of squares

of the null and alternative models for base i. Furthermore, df0 and df1 are the degrees of freedom

for the null (2) and alternative (1) models respectively, n is the number of samples, and an offset

can be used for smaller experiments to shrink large F-statistics that may be driven by few biological

replicates that cluster tightly.

Fi =
(RSS0i − RSS1i)/(df1 − df0)

offset + (RSS1i/(n− df1))
(3)

We then perform “bump hunting” adapted to Rle objects in order to identify candidate DERs,

Rk. Candidate DERs are defined as contiguous sets of bases where Fi > T for a fixed threshold T .

We then calculate an “area” statistic for each candidate DER which is the sum of the F-statistics

above the threshold within the region: Sk =
∑

j∈Rk
Fj (Figure 1B). We have previously applied

this approach to identify local differentially and variably methylated regions and more long range

changes in methylation (Hansen et al. 2011; Jaffe et al. 2012a,b). One key difference compared

to previous implementations in DNA methylation data is that we do not explicitly smooth the

F-statistics, allowing for precise discovery of intron-exon boundaries in the data (Figure 1C).

Permutation analysis generates statistical significance for each of these candidate DERs by

permuting the sample labels, re-calculating the F-statistics, identifying null candidate regions and

region-level statistics in this permuted data set, and then calculating empirical p-values and/or

directly estimating the family-wise error rate (FWER) (Jaffe et al. 2012a). Alternatively, the

empirical p-values can be adjusted to control the false discovery rate (FDR) via qvalue (Dabney

and Storey 2014).

16 2015/02/17

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 19, 2015. ; https://doi.org/10.1101/015370doi: bioRxiv preprint 

https://doi.org/10.1101/015370
http://creativecommons.org/licenses/by/4.0/


Collado-Torres et al.

4.3 Expressed-region level analysis

In the expressed-region approach, we compute the mean coverage for all base pairs from all the

samples and filter out those below a user specified cutoff. Contiguous bases passing this filtering

step are then considered a candidate region (Figure 2A). Then for each sample, we sum the base

level coverage for each such region in order to create an expression matrix with one row per region

and one column per sample. This matrix can then be used with feature-level RNA-seq differential

expression analysis tools.

4.4 Annotation and “Genomic State” Objects

We have implemented a “genomic state” framework to efficiently annotate and summarize resulting

regions, which assigns each base in the genome to exactly one state: exonic, intronic, or intergenic,

based on any existing or user-defined annotation (e.g. UCSC, Ensembl, Gencode). At each base,

we prioritize exon > intron > unannotated across all annotated transcripts.

Overlapping exons of different lengths belonging to different transcripts are reduced into a single

“exonic” region, while retaining merged transcript annotations. We have a second implementation

that further defines promoters and divides exonic regions into coding and untranslated regions

(UTRs) which may be useful for the user to more specifically annotate regions - this implementation

prioritizes coding exon > UTR > promoter > intron > unannotated.

4.5 Data Processing for Results in Main Manuscript

4.5.1 BrainSpan data

BigWig files for all 487 samples across 16 brain regions were downloaded from the BrainSpan website

(BrainSpan 2011). Based on exploratory analyses, coverage was assumed to be reads per million

in this data set, and we set the coverage filter to 0.25 for both the single-base and region-level

derfinder approaches.

In the single base analysis, library size was not included in the models (as the coverage was

already adjusted for this factor), a scaling factor of 1 was used, and the F-statistic cutoff T was

chosen such that P (F > T ) = 10−6. We sought to identify differences in expression across brain

region (neocortical regions: DFC, VFC, MFC, OFC, M1C, S1C, IPC, A1C, STC, ITC, V1C and
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non-neocortical regions: HIP, AMY, STR, MD, and CBC) and developmental stage (fetal versus

postnatal). We therefore fit the following region-by-stage interaction alternative model, which

included main effects for fetal versus postnatal (binary) and categorical brain region variable (15

levels, relative to A1C), and interaction terms for each brain region and developmental stage. This

resulted in a total of 32 terms in the model (intercept; 16 main effects, 15 interaction terms).

yij = αi + βiFetalj +
m∑
q=1

γiqRegionjq +
m∑
q=1

ζiqFetalj ∗Regionjq + εij (4)

We compared the above model to an intercept-only model, and identified DERs using the single-

base level analysis. We then calculated the mean coverage for each significant single-base DERs in

each sample, resulting in a mean coverage matrix (DERs by samples), and we performed principal

component analysis (PCA) on this log2-transformed matrix (after adding an offset of 1) , which

were subsequently plotted in Figure 4.

For the expressed-region analysis, we used the same alternative model as in (4) where yij is the

log( mean base-level coverage +1). We then compared it against the corresponding intercept-only

model using the lmFit function from limma (Smyth 2005). The p-values for the expressed-region

level DERs were adjusted via the Bonferroni method and those with adjusted p-values less than

0.05 were determined to be significant.

4.5.2 Simulated data

We simulated 100 bp paired-end reads (250bp fragments, sd = 25) with polyester (Frazee, Jaffe,

and Leek 2014) for 3 groups with 10 samples each from human chromosome 22 at 40x coverage.

12 single transcript genes were set to be differentially expressed, 24 two transcript genes were

differentially expressed (half only one transcript, half both transcripts), and 24 genes were set to

background expression levels (half single, half two transcript genes). For each set of differentially

expressed genes, 4 were assigned to each group with 2 genes having lower
(
1
2x
)

and 2 higher (2x)

expression levels in that group relative to the other two groups in order to balance the differential

expression signal. The number of reads was generated with the NB function with size equal to one

third of the mean. Reads were aligned to the genome using TopHat v2.0.13 using known transcripts

of UCSC knownGene in the UCSC hg19 Illumina iGenomes distribution to guide the alignment,
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as well as the known fragment information (the “--transcriptome-index”, “--mate-inner-dis”, and

“--mate-std-dev” arguments in the software).

The single-base analysis approach was performed using models that adjusted for library size

and tested for differences between the 3 groups. We used a data filter cutoff of 0 as we didn’t

expect reads to align to regions outside of the simulated genes. While a few reads aligned to other

chromosomes, none of them resulted in DERs. Finally, we used a scaling factor of 32, a F-statistic

cutoff T corresponding to P (F > T ) = 10−3, and 100 permutations.

For the expressed-region analysis, a mean coverage cutoff of 5 was used to determine the ex-

pressed regions. Then, differential expression was determined by fitting the same models as in the

single-base analysis using the lmFit function from limma (Smyth 2005). Like with the BrainSpan

data set, p-values for the expressed-region level DERs were adjusted via the Bonferroni method

with a 0.05 cutoff for determining statistical significance.

Supplementary Materials

Supplementary files 1 through 3 contain the identified candidate single-base level DERs in CSV

format (gzip compressed). The Supplementary Methods and Results describes in more detail the

R implementation, coverage artifacts, benefits from base-level counting, and resources used by

derfinder. The flexibility of the software is showcased by analyses of the effects of drug abuse

on the human hippocampus (Zhou et al. 2011) and time course expression measurements in blood

(Chen et al. 2012) from publicly available data sets.

The code used for all the analyses described in this paper is available at the Supplementary

Website: http://lcolladotor.github.io/derSoftware. Several HTML reports are available in

this site including

1. Brief results overview for each experiment.

2. Detailed description of fields from the CSV supplementary files 1, 2, and 3.

3. Timing and memory results from the different analyses.

4. Detailed information about the simulation including all code for generating the data and evalu-

ating the results.
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5. Using the effects on drug abuse data set, we compare single-base level derfinder results versus

previously published results (Zhou et al. 2011) (Supplementary Section 1.4).

The derfinder (Collado-Torres et al. 2014) vignettes detail how to use the software and its

infrastructure. In particular, the advanced vignette has visualizations showing the relationship

between the different functions.
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