bioRxiv preprint doi: https://doi.org/10.1101/015503; this version posted February 20, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Technical Document: February 20, 2015

The Use of Distributions in SBML Models
Lucian Smith and Herbert M. Sauro
Department of Bioengineering, University of Washington, Seattle, WA, 98195

ABSTRACT

In this technical note we describe modifications to Antimony (Biochemical model specifica-
tion language) that allows modelers to use the SBML distributions package. In addition the
article describes best practice for using distributions, including when they should and should
not be used.

INTRODUCTION

With the SBML L3 Package “Distributions”, [1] it has become possible to exchange SBML [2]
models with embedded distributions. This allows modelers to encode stochastic aspects of
the system they are modeling directly in the model.

There are two ways to use the Distributions package. The first uses new constructs that allow
one to, essentially, annotate any mathematical element in an SBML file with information
about a distribution associated with that element. This allows new types of analysis of
a model without changing the original model at all. For example, one could annotate all
input parameters with standard deviations, and do an error analysis of simulator output.
Or one could annotate parameters as coming from particular distributions, then run a series
of simulations, each drawing a new value for those parameters from those distributions.

The second method extends the SBML ‘function definition’ construct. An SBML function
definition takes arguments and returns the result of a computation on those inputs. The
Distributions package adds the ability to define a new function definition that again takes
arguments, but which returns a draw from a distribution defined by those inputs. Because
this use defines a draw from a distribution, it should not generally be used in continuous
contexts. In SBML, that means not using them:

e In rate rules or kinetic laws: These constructs define how variables change in time.
Continually drawing from a distribution would mean that over any given time interval,
all possible draws from that distribution would be sampled, including (in many cases)
positive and negative infinity. This situation is obviously intractable.

e In assignment rules and algebraic rules: These constructs define the value of SBML
variables over all times. Again, since all possible draws from that distribution are
possible over any given time interval, this would make normal SBML model analysis
impossible.

https://doi.org/10.1101/015503
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015503; this version posted February 20, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

e In event triggers: This is a particularly important situation to avoid. When an event
trigger changes in value from false to true, the event is fired, causing its assignments
to be carried out. If all possible draws from a distribution are possible over any given
time interval, this would mean that a typical trigger would literally fire an infinite
number of times for every time step. At the very least, it would mean that any time
it was remotely possible that a trigger would fire, it would do so.

Note that with additional information such as autocorrelation values or full conditional
probabilities, the above situations could become tractable once more, as the distribution
would be defined over time as a random walk, not as pure white noise.

All other uses of MathML in SBML are viable places to use the new distribution function
constructs:

e In initial assignments: An initial assignment is calculated exactly once at the beginning
of a simulation. A model with a draw from a distribution in an initial assignment, then,
would behave differently from one run to another, but the call would not exert any
other stochastic influence on the simulation once the run had started.

e In ‘event’ assignments, delays, and priorities: As mentioned above, an event in SBML
is triggered when the evaluation of its trigger function changes from false to true. After
an optional delay, any assignments it might have are executed. If multiple events are to
be executed at the same moment in time, the order in which they do so is determined by
their relative priorities, with events with higher priorities being executed first. Because
the calculation of the delay, calculation of relative priorities, and calculation of the value
to be assigned all take place at discrete moments in the simulation, all three are viable
places for calls for draws from distributions. These models will behave stochastically
regardless of their initial state, with a single event potentially behaving differently if
called multiple times within a single simulation.

The behavior of a draw from a distribution in an initial assignment is straightforward to
understand, but the complexity of SBML events allows for a variety of opportunities for
using distributions that are worth exploring in greater detail. The use of distributions in
delays

To begin with, modeling a situation that might at first seem solvable by putting a draw
from a distribution in a Trigger (which we have seen is actually intractable) might instead
be better solved by putting a draw from a distribution in a Delay. Suppose we are modeling
a neural depolarization event. Once certain conditions are met, there is a certain percentage
chance of the event firing per second. This can be modeled by calculating the distribution
of times that it is likely to take until the event takes place: an exponential distribution is
likely to be a good candidate for this situation. Giving the event a Trigger of the conditions
to be met, and a Delay of a draw from that distribution will exactly model the random
depolarization of the neuron.

Of course, in many situations, it is not the case that the neuron, once certain conditions are
met, is guaranteed to depolarize at some point in the future. Instead, those conditions must

https://doi.org/10.1101/015503
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015503; this version posted February 20, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

continually be true until the depolarization event happens. This is the situation for which
the persistent attribute on the Trigger was created. If this attribute is set to false, the event,
once triggered, must fire; it is only a matter of when this will happen. If it is set to ‘true’,
however, the trigger conditions must not only change from false to true, but those conditions
must not change back to false before the event fires. Should the conditions change, the event
will no longer fire, regardless of the time it was originally scheduled to do so.

To put this in concrete terms, let us imagine a model of a particular neuron. If the concen-
tration of S1 goes above 5, a depolarization event is likely to happen, taking an average of
2 seconds to do so, which will reset the concentration of S1 to zero. However, if the concen-
tration of S1 goes below 5, depolarization can no longer take place. This can be modeled by
the following SBML event, written here in Antimony shorthand:

depolarization: at exponential(0.5) after S1 > 5, persistent=true: S1=0

Or, in SBML XML:

<event id="depolarization" useValuesFromTriggerTime="true">
<trigger initialValue="true" persistent="true">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<gt/>
<ci> 81 </ci>
<cn type="integer"> 5 </cn>
</apply>
</math>
</trigger>
<delay>
<math xmlns="http://www.w3.o0rg/1998/Math/MathML">
<apply>
<ci> exponential </ci>
<cn> 0.5 </cn>
</apply>
</math>
</delay>
<listOfEventAssignments>
<eventAssignment variable="S1">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<cn type="integer"> 0 </cn>
</math>
</eventAssignment>
</list0fEventAssignments>
</event>

(The call to the exponential function here will be to a ‘Distributions’-extended function
definition that takes the rate parameter as its argument.)

3

https://doi.org/10.1101/015503
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015503; this version posted February 20, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

The reason this setup works is because the exponential function is ‘memoryless’; that is, if
the event has not fired at a certain point after being triggered, the probability of it firing
in the next n seconds is the same as if the event had just been triggered. Thus, if S1 was
greater than 5 for three seconds and then went below five again, if the chosen delay was
4.2, it is sufficient that 4.2 > 3 and say that the depolarization event did not happen during
that three-second window. It is not necessary, should S1 again go above 5, to remember
that 1.2 seconds were ‘left over’ from the previous delay: the exact same distribution will
be obtained if a new draw from the exponential for the delay is chosen the second time the
trigger condition is met.

THE USE OF DISTRIBUTIONS IN PRIORITIES

A Priority in an SBML Event allows a modeler to define, when two events are to be executed
at the same moment in time, which event execution should take place first. If one event has
a higher priority than the other, it is executed first, and if two events have the same priority,
they are to be executed in a random order with respect to one another.

The use of distributions in Priority math allow the modeler to model situations where a
single situation has two potential outcomes, with one more likely to happen than the other.
To create a very simple case, where when S1 gets above a certain threshold, it is either
converted to S4 (25% probability) or S5 (75% probability):

S1toS4: at S1 > 5, persistent=true, priority = uniform(0,1): S4
S1toS5: at S1 > 5, persistent=true, priority = uniform(0,2): S5

S1, S1
S1, S1

0;
0;

Here, both events are triggered by the same condition, making them simultaneous. 50% of
the time, the draw from the uniform distribution of second event will be greater than 1,
necessarily giving it the higher priority. The remaining 50% of the time, both priorities will
be chosen from the same range of values, giving both events a 25% chance of being higher
than the other.

Note that we must set the ‘persistent’ attribute to true, so that when either event is executed
and the level of S1 returns to zero, the trigger condition for the other event is no longer true,
meaning it is not to be executed. These conditional probabilities can be calculated from
model parameters, as well. For this next model, we imagine a cell with potassium and
sodium channels that each might open when the total ion concentration in the cell gets too
high, with each more likely to be the one to open if the concentration of its corresponding
ion is higher than the other:

// The channels themselves:
Kchannel: K -> K_ext; Konx*K;
Nachannel: Na -> Na_ext; NaOnx*Na;

// Turning one of the channels on:
at (K+Na) > 8 && Kon == 0, persistent = true, priority=uniform(O,Na): NaOn = 1;
at (K+Na) > 8 && NaOn == 0, persistent = true, priority=uniform(0,K): KOn = 1;

https://doi.org/10.1101/015503
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015503; this version posted February 20, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

// Turning the channels back off:
at 5 after Kon > 0: Kon=0;
at 5 after NaOn > O: NaOn=0;

// Initial conditionms:
Kon = 0;
NaOn = O;

THE USE OF THE SAME DISTRIBUTION IN MULTIPLE CALCULATIONS

When the same draw from a distribution is desired in multiple contexts, it may be necessary
to set up multiple events: one to assign the value from the distribution to a variable, and
one or more called directly afterwards that use it. For an example, let us take a model of
cell division that is using amounts (instead of concentrations) of species. If the cell were to
always divide exactly in half, one could use an event like the following (again in Antimony
shorthand):

cellDivision: at (telo == 2): S1 = 0.5%S1, S2 = 0.5%S2, S3 = 0.5%S3;

However, if one wanted to have the division percentage be a normal distribution, one could
not simply do:

cellDivision: at (telo == 2): S1 = normal(0.5,0.01)*S1,
S2 = normal(0.5,0.01)*S2,
S3 = normal(0.5,0.01)*S3;

Because each call to “normal(0.5,0.01)” would result in a separate draw from the distribution,
de-synchronizing the amounts of S1, S2, and S3. Instead, one would need to set up a first
event that performed a draw from a distribution and stored it, and then a second event that
used that value. Here, we give two events the same trigger, meaning that they will always
be simultaneous, and then give the first a higher priority than the second, meaning that its
event assignments will be carried out before the other event assignments. However, to let
that new value be used in the second event, the second event needs to be set to not use the
values in its assignments from the time it was triggered, but from the time the assignment is
to be made. In Antimony, this is set by using the fromTrigger keyword, which is translated
to SBML as the event attribute “useValuesFromTriggerTime”:

cellDivisionA: at (telo == 2), priority 10: divisionPercent = normal(0.5, 0.01);
cellDivisionB: at (telo == 2), priority = 1, fromTrigger = false:

S1 = divisionPercent*S1,

S2 = divisionPercent*S2,

S3 divisionPercent*S3;

Alternatively, one could make a slightly simpler model that would have the same effect by
setting ‘divisionPercent’ with an initial assignment to be used the first time the event is
fired, and have another event assignment that re-set ‘divisionPercent’ so it would have a new
value the next time it was fired:

https://doi.org/10.1101/015503
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015503; this version posted February 20, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

divisionPercent = normal(0.5, 0.01);

cellDivision: at (telo == 2): S1 = divisionPercent*S1,
S2 = divisionPercent*S2,

S3 = divisionPercent*S3;

divisionPercent = normal(0.5, 0.01);

This would not be possible, however, in a situation where the division percentage was de-
pendent on the conditions of the model at the time of division. In that case, the priority
approach would have to be taken. Truncated distributions

In some cases, a given distribution may reasonably approximate the true distribution being
modeled, but may include values that do not make sense for the system. In the above
case, though a normal distribution centered at 0.5 may be reasonable approximation of the
vagaries of cell division around the mean, it would be possible to draw values of less than zero
or greater than one, which do not make physical sense for this process. While some other
distribution might be found with natural boundaries that match the physical limits, it is
sometimes simpler to instead define the distribution as being truncated. Antimony provides
a shorthand way of defining these truncations with a different form of the function. If we
believe that no modeled cell division could physically take place at any ratio lower than 9:1,
the last model above, then, would become:

divisionPercent = truncatedNormal(0.5, 0.01, 0.1, 0.9);
cellDivision: at (telo == 2): S1 = divisionPercent*S1,
S2 = divisionPercent*S2,
S3 = divisionPercent*S3;
divisionPercent = truncatedNormal(0.5, 0.01, 0.1, 0.9);

The relevant change corresponding SBML model is the addition of ‘truncationLowerInclu-
siveBound’ and ‘truncationUpperInclusiveBound’ elements in the Uncert ML, as well as new
arguments to set those values.:

<distrib:drawFromDistribution>
<distrib:1list0fDistribInputs>
<distrib:distribInput distrib:id="mean" distrib:index="0"/>
<distrib:distribInput distrib:id="stddev" distrib:index="1"/>
<distrib:distribInput distrib:id="lowlimit" distrib:index="2"/>
<distrib:distribInput distrib:id="uplimit" distrib:index="3"/>
</distrib:1list0fDistribInputs>
<UncertML xmlns="http://www.uncertml.org/3.0">
<NormalDistribution definition="http://www.uncertml.org/distributions">
<mean>
<var varId="mean"/>
</mean>
<stddev>
<var varId="stddev"/>
</stddev>

https://doi.org/10.1101/015503
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015503; this version posted February 20, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

<truncationLowerInclusiveBound>

<var varId="lowlimit"/>
</truncationLowerInclusiveBound>
<truncationUpperInclusiveBound>

<var varId="uplimit"/>
</truncationUpperInclusiveBound>

</NormalDistribution>
</UncertML>
</distrib:drawFromDistribution

Note that a truncated distribution does not mean that the probability density that would
have fallen outside of the truncation is assigned to the borders of the truncation. Instead, the
probability density of the entire distribution must be rescaled so that the total area is once
again 1.0. This means that if one drew a value of -0.3” from the non-truncated version of
the above distribution, one could not simply return 0.1 (the lower limit) and claim that this
constituted a draw from the truncated distribution. In that situation, an entirely new draw
from the distribution must be made, or a method of drawing directly from the truncated
distribution itself must be devised.

SUMMARY OF SUPPORTED DISTRIBUTIONS

Normal (mean, sd) Normal distribution with mean and
standard deviation

truncatedNormal (mean, sd, min, max) Limit the normal disturbing to a range

uniform (min, max) Uniform distribution with given mini-
mum and maximum range

exponential (rate) Exponential distribution with given rate

truncatedExponential (rate, min, max) Exponential distribution with given
range

gamma (shape, scale) Gamma distribution

truncatedGamma (shape, scale, min, max) Gamma distribution with range

poisson (rate) Poisson distribution

truncatedPoisson(rate, min, max) Poisson distribution with range

ACKNOWLEDGMENTS

Herbert M. Sauro acknowledges support from NIH grant RO1 GMO081070. The content is

solely the responsibility of the authors and does not necessarily represent the official views

of the National Institutes of Health.

REFERENCES

[1] http://sbml.org/Documents/Specifications/SBML_Level 3/Packages/Distributions_and_Ranges
Distributions package (distrib). Accessed: 2015-02-15.

7

https://doi.org/10.1101/015503
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/015503; this version posted February 20, 2015. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

[2] M. Hucka et al. The Systems Biology Markup Language (SBML): A medium for repre-
sentation and exchange of biochemical network models. Bioinformatics, 19(4):524-531,
2003.

https://doi.org/10.1101/015503
http://creativecommons.org/licenses/by/4.0/

