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Abstract
Let a sensation magnitude γ be determined by a stimulus magnitude β. The Webers laws states that ∆γ remains constant when
the relative stimulus increment ∆β remains constant. It has been found that this law is actually a derivation of Bernoullis law
were ∆γ ∝ log ∆β

β . Recently, such psychophysical laws have been observed in the natural behaviour of certain intra/extracellular
factors working in the Wnt pathway. This manuscript tests the veracity of the prevalence of such laws, albeit at a coarse level,
using sensitivity analysis on biologically inspired computational causal models. Sensitivity analysis plays a crucial role in
observing the behaviour of output of a variable given variations in the input. In this work, the variation in the effect of the
predictive behaviour of the transcription complex (TRCMPLX) conditional on the evidences of gene expressions in normal
and tumor samples is observed by varying the initially assigned values of conditional probability tables (cpt) for TRCMPLX .
Preliminary analysis shows that the variation in predictive behaviour of TRCMPLX conditional on gene evidences follows
power and logarithmic psychophysical law crudely. This implies deviations in output are proportional to increasing function
of deviations in input and shows constant behaviour for recorded deviations in higher values of the input. This points towards
stability in the behaviour of TRCMPLX and is reflected in the preserved gene-gene interactions. These interactions are
obtained by thresholding the inferred conditional probabilities of a gene activation given the status of another gene activation.
The deviation in the interactions in normal and tumor samples was also observed by varying the initially assigned values of cpt
for β-catenin based TRCMPLX . Analysis of deviation in interactions show prevalence of power-logarithmic psychophysical
law. This prevalence is reported for interaction between pairs of (SFRP3, MYC), (SFRP2, CD44) and (DKK1, DACT2).
Dynamic models of Bayesian networks might reveal the phenomena in a better way.

1 Introduction & problem statement

Ever since the accidental discovery of the Wingless in 1973
by Sharma2, a tremendous amount of research work has been
carried out in the related field of Wnt signaling pathway in the
past forty years. A majority of the work has focused on issues
related to • the discovery of genetic and epigenetic factors af-
fecting the pathway (Thorstensen et al.3 & Baron and Kneis-
sel4), • implications of mutations in the pathway and its dom-
inant role on cancer and other diseases (Clevers5), • investiga-
tion into the pathway’s contribution towards embryo develop-
ment (Sokol6), homeostasis (Pinto et al.7, Zhong et al.8) and
apoptosis (Pećina-Šlaus9) and • safety and feasibility of drug
design for the wnt pathway (Kahn10, Garber11, Voronkov and
Krauss12, Blagodatski et al.13 & Curtin and Lorenzi14). More
recent informative reviews have touched on various issues re-
lated to the different types of the Wnt signaling pathway and
have stressed not only the activation of the Wnt signaling path-
way via the Wnt proteins (Rao and Kühl15) but also the on the
secretion mechanism that plays a major role in the initiation
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of the Wnt activity as a prelude (Yu and Virshup16).

In a more recent development, there has been the obser-
vation and study of psychophysical laws prevailing within
the pathway and in this regard Goentoro and Kirschner17

point to two findings namely, • the robust fold changes of
β-catenin and • the transcriptional machinery of the Wnt
pathway depends on the fold changes in β-catenin instead
of absolute levels of the same and some gene transcription
networks must respond to fold changes in signals according
to the Weber18 law in sensory physiology. Note that We-
ber’s law has been found to be a special case of Bernoulli’s
logarithmic law Masin et al.19. If a sensation magnitude γ
be determined by a stimulus magnitude β, then the Weber’s
law states that ∆γ remains constant when the relative stimu-
lus increment ∆β remains constant. The law derives from a
more general Bernoullis law were ∆γ ∝ log ∆β

β . In an unre-
lated work by Sun et al.20, it has been shown that these laws
arise at computational level as Bayes optimal under neurobi-
ological constraints at implementational and algorithmic lev-
els. The proposed mathematical framework for understanding
the psychophysical scales as Bayes optimal and information
theoretically-optimal representation of time sampled contin-
uous valued stimuli is based on established neurobiological
assumptions. The authors also show that the psychophysical
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laws connect well to quantization frameworks and state that
only discrete set of output is distinguishable due to biological
constraints. This discretization leads to quantization of stim-
ulus also as the nonlinear scaling of the stimulus that leads to
the resultant output is invertible. These mathematical insights
might explain the indistinguishable insensitive fold changes in
levels of β-catenin shown by Goentoro and Kirschner17.

Based on the importance of the revealed phenomena, it
might be useful to know if these observations could be ver-
ified using computational models apart from analysis of re-
sults from wet lab experiments. What is needed is a frame-
work that can capture the causal semantics of the signaling
pathway where the influence diagrams involving the interact-
ing extra/intracellular factors working in the pathway, repre-
sent the biological knowledge/mechanism of the pathway to a
certain extent. Once a model representation is available, the
desired variation in the activity of an input factor and the ob-
served variation in the output of the activity of factor(s) can be
studied. Sensitivity analysis plays a crucial role in observing
the behaviour of output of a variable given variations in the
input. As will be seen later, probabilistic graphical models or
Bayesian networks provide a framework for representing the
causal semantics of the pathway under investigation.

To address these issues, the current work uses the Bayesian
nework model proposed in Sinha1 and conducts sensitivity
analysis on the model to check the observations regarding the
prevalence of the reported psychophysical laws. In Sinha1, it
was shown via hypothesis testing that the active (repressed)
state of TRCMPLX in the Wnt signaling pathway for col-
orectal cancer cases is not always correspond to the tumor-
ous (normal) state of the test sample under consideration. For
this, Sinha1 shows various results on the predicted state of
TRCMPLX conditional on the given gene evidences, while
varying the assigned probability values of conditional proba-
bility tables of TRCMPLX during initialization of the bio-
logically inspired Bayesian Network model. Here, the degree
of belief in the activity of TRCMPLX is denoted by the
prior probability assigned to the node of TRCMPLX in the
network. It was found that the predicted values often increase
with an increasing value (in conditional probability tables)
of the activity of TRCMPLX on certain genes. What this
asks for is that for the recorded deviations due to the changes
made in these prior probabilities (i.e the input deviations), is
it possible to observe the prevalent logarithmic laws and their
deviations (like the Weber’s law) as shown by Goentoro and
Kirschner17, using computational causal modeling?

In this manuscript, the preliminary analysis of devia-
tions computed from variation in prior and estimated con-
ditional probability values using Bayesian network model in
Sinha1 show that the variation in predictive behaviour of
TRCMPLX conditional on gene evidences (i.e the out-
put deviation) follows power and logarithmic psychophysi-

cal law crudely, apropos the variation in assigned priors of
TRCMPLX (i.e input deviations). This implies that the de-
viations in output are proportional to increasing function of
deviations in input. This relates to the work of Adler et al.21

on power and logarithmic law albeit at a coarse level. The
granularity is obscured due to the use of static data from Jiang
et al.22 that is used in Sinha1 as well as the Bayesian network
model that encodes the belief in the factors affecting the path-
way in terms of probabilities as well as the inferences made
based on the updating of these probabilities conditional on
discretized states of gene expression values as evidences. Irre-
spective of the hurdle posed by the causal models, inferences
made based on prior biological knowledge and gene expres-
sion evidences coupled with sensitivity analysis sheds light on
the prevalent psychophysical laws in the pathway.

Adler et al.21 show in detail that these laws can be stud-
ied empirically using models that exhibit the property of fold
change detection (FCD). What this means is that the output
depends on the relative changes in the input. The biological
feedback models employed for these studies consider various
parameters like rates of production of a compound, removal
removal of a compound, repression of a compound, levels of
scaffolds, kinases, etc. that might be responsible for exhibit-
ing these laws. The current work using the static Bayesian
network model might not propose feedback loops directly as
used by Adler et al.21, yet it could reveal existence of the
loops via causal inference even while using static data. The
drawback of the current work is its inability to consider cyclic
loops. This can be rectified by use of dynamic Bayesian net-
work models that incorporate interaction represented in time
series data. Also, the use of Bayesian network models can
help in studying the problem from a multiparameter setting as
various factors affecting the pathway can be connected in the
influence diagrams of the network through the principle of d-
connectivity/separability. This connectivity will be explained
later in the required theory section.

Note that Goentoro and Kirschner17 show results for the be-
haviour of fold change of β-catenin with respect to changes
in the single parameter values i.e the Wnt. On similar
lines, the current work takes into account the behaviour of
TRCMPLX conditional on affects of multiple parameters
in the form of evidences of various intra/extracellular gene ex-
pression values working in the pathway, based on the changes
made in the assinged prior probabilities for TRCMPLX .
The difference here is that one can analyse changes in nodes
of a computational model to explore an inherent law in com-
parison to use of wet lab experiments. The issue here is that
FCD which is recorded with respect to changes in levels of
concentration can now be recorded via changes in the strength
of belief in the occurrence of an event. For example, sup-
pose it is not known by what degree the TRCMPLX plays
a major role in the signaling pathway quantitatively, then it
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Fig. 1 A cartoon of wnt signaling pathway contributed by Verhaegh
et al. 23. Part (A) represents the destruction of β-catenin leading to
the inactivation of the wnt target gene. Part (B) represents activation
of wnt target gene.

is possible to encode the degree of belief regarding the role
of TRCMPLX in the form of prior or conditional proba-
bilities during initialization of the network. By recording the
deviations in these probabilities and observing the output de-
viations, it is possible to study certain psychophysical laws.
Finally, this does not mean that probabilities related to actual
concentrations cannot be encoded. Thus, Bayesian networks
help in captuing the desired biological knowledge via various
causal arcs and conditional probabilities and sensitivity anal-
ysis aids in the study of the such natural behaviour.

As a second observation, the forgoing result points towards
stability in the behaviour of TRCMPLX and this stability
is reflected in the preserved gene gene interactions across the
changing values of the priors of TRCMPLX . The interac-
tions are inferred from conditional probabilities of individ-
ual gene activation given the status of another gene activa-
tion. Finally, as a third observation, it would be interesting
to note if the psychophysical laws are prevalent among the
dual gene-gene interactions or not. If the results are affir-
mative then the following important speculations might hold
true • Not just one factor but components of the entire net-
work might be exhibit in such a behavior at some stage or
the other. • The psychophysical law might not be restricted
to individual intra/extracellular components but also to the in-
teractions among the the intra/extracellular components in the
pathway. This might mean that the interactions manifest dur-
ing the prevalence of power and logarithmic laws. Further wet
lab analysis is needed to very these computational claims.

It is important to be aware of the fact that the presented
results are derived from a static Bayesian network model. It
is speculated that dynamic models might give much better and

more realistic results.

2 Revisiting the requisite theory

To understand the logical flow of the current paper, some
details of the above related topics from Sinha1 are revisited
here in order and subdivided into descriptions of - (1) gen-
eral working of canonical Wnt signaling pathway and some
of the involved epigenetic factors (2) introduction to Bayesian
networks and (3) the intuition behind the Bayesian network
model employed. This is followed by Weber’s law and its
derivation and finally the notations and terminologies to un-
derstand the results and discussion section.

2.1 Canonical Wnt signaling pathway

The canonical Wnt signaling pathway is a transduction mech-
anism that contributes to embryo development and controls
homeostatic self renewal in several tissues (Clevers5). So-
matic mutations in the pathway are known to be associated
with cancer in different parts of the human body. Promi-
nent among them is the colorectal cancer case (Gregorieff
and Clevers24). In a succinct overview, the Wnt signaling
pathway works when the Wnt ligand gets attached to the
Frizzled(fzd)/LRP coreceptor complex. Fzd may interact
with the Dishevelled (Dvl) causing phosphorylation. It is also
thought that Wnts cause phosphorylation of the LRP via ca-
sein kinase 1 (CK1) and kinase GSK3. These developments
further lead to attraction of Axin which causes inhibition of the
formation of the degradation complex. The degradation com-
plex constitutes of Axin, the β-catenin transportation com-
plex APC, CK1 and GSK3. When the pathway is active
the dissolution of the degradation complex leads to stabiliza-
tion in the concentration of β-catenin in the cytoplasm. As
β-catenin enters into the nucleus it displaces the Groucho
and binds with transcription cell factor TCF thus instigat-
ing transcription of Wnt target genes. Groucho acts as lock
on TCF and prevents the transcription of target genes which
may induce cancer. In cases when the Wnt ligands are not cap-
tured by the coreceptor at the cell membrane, Axin helps in
formation of the degradation complex. The degradation com-
plex phosphorylates β-catenin which is then recognized by
Fbox/WD repeat protein β−TrCP . β−TrCP is a compo-
nent of ubiquitin ligase complex that helps in ubiquitination of
β-catenin thus marking it for degradation via the proteasome.
Cartoons depicting the phenomena of Wnt being inactive and
active are shown in figures 1(A) and 1(B), respectively.

2.2 Epigenetic factors

One of the widely studied epigenetic factors is methylation
(Costello and Plass25, Das and Singal26, Issa27). Its occur-
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rence leads to decrease in the gene expression which affects
the working of Wnt signaling pathways. Such characteristic
trends of gene silencing like that of secreted frizzled-related
proteins (SFRP ) family in nearly all human colorectal tu-
mor samples have been found at extracellular level (Suzuki
et al.28). Similarly, methylation of genes in the Dickkopf
(DKKxNiehrs29, Sato et al.30), Dapper antagonist of catenin
(DACTx Jiang et al.22) and Wnt inhibitory factor-1 (WIF1
Taniguchi et al.31) family are known to have significant ef-
fect on the Wnt pathway. Also, histone modifications (a class
of proteins that help in the formation of chromatin which
packs the DNA in a special form Strahl and Allis32) can af-
fect gene expression (Peterson et al.33). In the context of the
Wnt signaling pathway it has been found that DACT gene
family show a peculiar behavior in colorectal cancer (Jiang
et al.22). DACT1 and DACT2 showed repression in tumor
samples due to increased methylation while DACT3 did not
show obvious changes to the interventions. It is indicated that
DACT3 promoter is simultaneously modified by the both re-
pressive and activating (bivalent) histone modifications (Jiang
et al.22).

2.3 Bayesian Networks

In reverse engineering methods for control networks (Gardner
and Faith34) there exist many methods that help in the con-
struction of the networks from the data sets as well as give
the ability to infer causal relations between components of the
system. A widely known architecture among these methods is
the Bayesian Network (BN). These networks can be used for
causal reasoning or diagnostic reasoning or both. It has been
shown through reasoning and examples in Roehrig35 that the
probabilistic inference mechanism applied via Bayesian net-
works are analogous to the structural equation modeling in
path analysis problems.

Initial works on BNs in Pearl36 and Pearl37 suggest that
the networks only need a relatively small amount of marginal
probabilities for nodes that have no incoming arcs and a set
of conditional probabilities for each node having one or more
incoming arcs. The nodes form the driving components of a
network and the arcs define the interactive influences that drive
a particular process. Under these assumptions of influences
the joint probability distribution of the whole network or a part
of it can be obtained via a special factorization that uses the
concept of direct influence and through dependence rules that
define d-connectivity/separability as mentioned in Charniak38

and Needham et al.39. This is illustrated through a simple
example in Roehrig35.

The Bayesian networks work by estimating the posterior
probability of the model given the data set. This estimation
is usually referred to as the Bayesian score of the model con-
ditioned on the data set. Mathematically, let S represent the

model given the data D and ξ is the background knowledge.
Then according to the Bayes Theorem (Bayes and Price40):

P(S|D, ξ) =
P(S ∩ D|ξ)
P(D|ξ)

=
P(S|ξ)× P(D|S, ξ)

P(D|ξ)

posterior =
prior × likelihood

constant
(1)

Thus the Bayesian score is computed by evaluating the poste-
rior distribution P(S|D, ξ) which is proportional to the prior
distribution of the modelP(S|ξ) and the likelihood of the data
given the model P(D|S, ξ). It must be noted that the back-
ground knowledge is assumed to be independent of the data.
Next, since the evaluation of probabilities require multiplica-
tions a simpler way is to take logarithmic scores which boils
down to addition. Thus the estimation takes the form:

logP(S|D, ξ) = logP(S|ξ) + logP(D|S, ξ)−
logP(D|ξ)

= logP(S|ξ) + logP(D|S, ξ) +

constant (2)

Finally, the likelihood of the function can be evaluated by av-
eraging over all possible local conditional distributions param-
eterized by θi’s that depict the conditioning of parents. This is
equated via:

P(D|S, ξ) =

∫
θ1

...

∫
θn

P(D, θi|S)dθi

=

∫
θ1

...

∫
θn

P(D|θiS)P(θi|S)dθi (3)

Work on biological systems that make use of Bayesian net-
works can also be found in (Friedman et al.41, Hartemink
et al.42, Sachs et al.43, Sachs et al.44 and Peer et al.45).
Bayesian networks are good in generating network structures
and testing a targeted hypothesis which confine the experi-
menter to derive causal inferences (Brent and Lok46). But
a major disadvantage of the Bayesian networks is that they
rely heavily on the conditional probability distributions which
require good sampling of datasets and are computationally in-
tensive. On the other hand, these networks are quite robust to
the existence of the unobserved variables and accommodates
noisy datasets. They also have the ability to combine hetero-
geneous data sets that incorporate different modalities.

In Sinha1, simple static Bayesian Network models have
been developed with an aim to show how • incorporation of
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heterogeneous data can be done to increase prediction accu-
racy of test samples • prior biological knowledge can be em-
bedded to model biological phenomena behind the Wnt path-
way in colorectal cancer • to test the hypothesis regarding di-
rect correspondence of active state of β-catenin based tran-
scription complex and the state of the test sample via segre-
gation of nodes in the directed acyclic graphs of the proposed
models and • inferences can be made regarding the hidden
biological relationships between a particular gene and the β-
catenin transcription complex. This work uses Matlab imple-
mented BN toolbox from Murphy et al.47.

2.4 Intuition behind the causal semantics of the biologi-
cally inspired Bayesian network

The NB model (Verhaegh et al.23) assumes that the activa-
tion (inactivation) of β-catenin based transcription complex
is equivalent to the fact that the sample is cancerous (nor-
mal). This assumption needs to be tested and Sinha1 pro-
poses a newly improvised models based on prior biological
knowledge and epigenetic information regarding the signaling
pathway with the assumption that sample prediction may not
always mean that the β-catenin based transcription complex
is activated. These assumptions are incorporated by inserting
another node of Sample for which gene expression measure-
ments were available. This is separate from the TRCMPLX
node that influences a particular set of known genes in the hu-
man colorectal cancer. For those genes whose relation with the
TRCMPLX is currently not known or biologically affirmed,
indirect paths through the Sample node to the TRCMPLX
exist, technical aspect of which is described next.

For those factors whose relations were not yet confirmed but
known to be involved in the pathway, the causal arcs were seg-
regated via a latent variable introduced into the Bayesian net-
work. The latent variable in the form of Sample (see figure 2)
is extremely valuable as it connects the factors whose relations
have not been confirmed till now, to factors whose influences
have been confirmed in the pathway. Finally, the introduction
of latent variable in a causal model opens the avenue to assume
the presence of measurements that haven’t been recorded. In-
tuitively, for cancer samples the hidden measurements might
be different from those for normal samples. The connectivity
of factors through the variable provides an important route to
infer biological relations.

Since all gene expressions have been measured from a
sample of subjects the expression of genes is conditional on
the state of the Sample. Here both tumorous and normal
cases are present in equal amounts. The transcription factor
TRCMPLX under investigation is known to operate with
the help of interaction between β-catenin with TCF4 and
LEF1 (Waterman49, Kriegl et al.50). It is also known that the
regions in the TSS ofMYC (Yochum51),CCND1 (Schmidt-

Ott et al.52), CD44 (Kanwar et al.53), SFRP1 (Cald-
well et al.54), WIF1 (Reguart et al.55), DKK1 (González-
Sancho et al.56) and DKK4 (Pendas-Franco et al.57, Baehs
et al.58) contain factors that have affinity to β-catenin based
TRCMPLX . Thus expression of these genes are shown to
be influenced by TRCMPLX , in figure 2.

Roles ofDKK2 (Matsui et al.59) andDKK3 (Zitt et al.60,
Veeck and Dahl61) have been observed in colorectal can-
cer but their transcriptional relation with β-catenin based
TRCMPLX is not known. Similarly, SFRP2 is known to
be a target of Pax2 transcription factor and yet it affects the β-
catenin Wnt signaling pathway (Brophy et al.62). Similarly,
SFRP4 (Feng Han et al.63, Huang et al.64) and SFRP5
(Suzuki et al.28) are known to have affect on the Wnt pathway
but their role with TRCMPLX is not well studied. SFRP3
is known to have a different structure and function with re-
spect to the remaining SFRPx gene family (Hoang et al.65).
Also, the role ofDACT2 is found to be conflicting in the Wnt
pathway (Kivimäe et al.66). Thus for all these genes whose
expression mostly have an extracellular affect on the pathway
and information regarding their influence on β-catenin based
TRCMPLX node is not available, an indirect connection has
been made through the Sample node. This connection will be
explained at the end of this section.

Lastly, it is known that concentration of DV L2 (a member
of Disheveled family) is inversely regulated by the expression
of DACT3 (Jiang et al.22). High DV L2 concentration and
suppression ofDACT1 leads to increase in stabilization of β-
catenin which is necessary for the Wnt pathway to be active
(Jiang et al.22). But in a recent development (Yuan et al.67)
it has been found that expression of DACT1 positively reg-
ulates β-catenin. Both scenarios need to be checked via in-
spection of the estimated probability values for β-catenin us-
ing the test data. Thus there exists direct causal relations be-
tween parent nodes DACT1 and DV L2 and child node, β-
catenin. Influence of methylation (yellow hexagonal) nodes
to their respective gene (green circular) nodes represent the
affect of methylation on genes. Influence of histone modifica-
tions in H3K27me3 and H3K4me3 (blue octagonal) nodes
to DACT3 gene node represents the affect of histone mod-
ification on DACT3. The β-catenin (blue square) node is
influenced by concentration of DV L2 (depending on the ex-
pression state of DACT3) and behavior of DACT1.

The aforementioned established prior causal biological
knowledge is imposed in the Bayesian network model with
the aim to computationally reveal unknown biological rela-
tionships. The influence diagram of this model is shown in
figure 2 with nodes on methylation and histone modification.

In order to understand indirect connections further it is im-
perative to know about d-connectivity/separability. In a BN
model this connection is established via the principle of d-
connectivity which states that nodes are connected in a path

1–29 | 5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2015. ; https://doi.org/10.1101/015834doi: bioRxiv preprint 

https://doi.org/10.1101/015834
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2 Influence diagram ofMPBK+EI contains partial prior biological knowledge and epigenetic information in the form of methylation
and histone modification. Diagram drawn using Cytoscape Shannon et al. 48. In this model the state of Sample is distinguished from state of
TRCMPLX that constitutes the Wnt pathway.
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Fig. 3 Cases for d-connectivity and d-separation. Black (Gray)
circles mean evidence is available (not available) regarding a
particular node.

when there exists no node in the path that has more than one
incoming influence edge or there exits nodes in path with more
than one incoming influence edge which are observed (i.e ev-
idence regarding such nodes is available) (Charniak38). Con-
versely, via principle of d-separation nodes are separated in
a path when there exists nodes in the path that have more than
one incoming influence edge or there exists nodes in the path
with at most one incoming influence edge which are observed

(i.e evidence regarding such nodes is available). Figure 3 rep-
resents three different cases of connectivity and separation be-
tween nodes A and C when the path between them passes
through node B. Connectivity or dependency exists between
nodes A and C when • evidence is not present regarding node
B in the left graphs of I. and II. in figure 3 or • evidence is
present regarding node B in the right graph of III. in figure 3.
Conversely, separation or independence exits between nodes
A and C when • evidence is present regarding node B in the
right graphs of I. and II. in figure 3 or • evidence is not present
regarding node B in the left graph of III. in figure 3.

It would be interesting to know about the behaviour
of TRCMPLX given the evidence of state of SFRP3.
To reveal such information paths must exist between these
nodes. It can be seen that there are multiple paths between
TRCMPLX and SFRP2 in the BN model in figure 2.
These paths are enumerated as follows:

1. SFRP3, Sample, SFRP1, TRCMPLX

2. SFRP3, Sample, DKK1, TRCMPLX

3. SFRP3, Sample, WIF1, TRCMPLX

4. SFRP3, Sample, CD44, TRCMPLX

5. SFRP3, Sample, DKK4, TRCMPLX

6. SFRP3, Sample, CCND1, TRCMPLX

7. SFRP3, Sample, MYC, TRCMPLX
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8. SFRP3, Sample, LEF1, TRCMPLX

9. SFRP3, Sample, DACT3, DV L2, β-catenin,
TRCMPLX

10. SFRP3, Sample, DACT1, β-catenin, TRCMPLX

Knowledge of evidence regarding nodes of SFRP1 (path
1), DKK1 (path 2), WIF1 (path 3), CD44 (path 4),
DKK4 (path 5), CCND1 (path 6) and MYC (path 7)
makes Sample and TRCMPLX dependent or d-connected.
Further, no evidence regarding state of Sample on these
paths instigates dependency or connectivity between SFRP3
and TRCMPLX . On the contrary, evidence regarding
LEF1, DACT3 and DACT1 makes Sample (and child
nodes influenced by Sample) independent or d-separated
from TRCMPLX through paths (8) to (10). Due to the de-
pendency in paths (1) to (7) and the given state of SFRP3
(i.e evidence regarding it being active or passive), the BN uses
these paths during inference to find how TRCMPLX might
behave in normal and tumorous test cases. Thus, exploiting
the properties of d-connectivity/separability, imposing a bio-
logical structure via simple yet important prior causal knowl-
edge and incorporating epigenetic information, BN help in in-
ferring many of the unknown relation of a certain gene expres-
sion and a transcription complex.

2.5 The logarithmic psychophysical law

Masin et al.19 states the Weber’s law as follows -

Consider a sensation magnitude γ determined
by a stimulus magnitude β. Fechner68 (vol 2, p. 9)
used the symbol ∆γ to denote a just noticeable sen-
sation increment, from γ to γ + ∆γ, and the sym-
bol ∆β to denote the corresponding stimulus incre-
ment, from β to β + ∆β. Fechner68 (vol 1, p. 65)
attributed to the German physiologist Ernst Hein-
rich Weber the empirical finding Weber18 that ∆γ
remains constant when the relative stimulus incre-
ment ∆β

β remains constant, and named this finding
Weber’s law. Fechner68 (vol 2, p. 10) underlined
that Weber’s law was empirical.

It has been found that Bernoulli’s principle (Bernoulli69) is
different from Weber’s law (Weber18) in that it refers to ∆γ
as any possible increment in γ, while the Weber’s law refers
only to just noticeable increment in γ. Masin et al.19 shows
that Weber’s law is a special case of Bernoulli’s principle and
can be derived as follows - Equation 4 depicts the Bernoulli’s
principle and increment in sensation represented by ∆γ is pro-
portional to change in stimulus represented by ∆β.

γ = b× log
β

α
(4)

were b is a constant and α is a threshold. To evaluate the incre-
ment, the following equation 5 and the ensuing simplification
gives -

∆γ = b× log
β + ∆β

α
− b× log

β

α

= b× log(
β + ∆β

β
)

= b× log(1 +
∆β

β
) (5)

Since b is a constant, equation 5 reduces to

∆γ ◦ ∆β

β
(6)

were ◦ means ”is constant when there is constancy of” from
Masin et al.19. The final equation 6 is a formulation of We-
ber’s laws in wordings and thus Bernoulli’s principles imply
Weber’s law as a special case. Using Fechner68 derivation, it
is possible to show the relation between Bernoulli’s principles
and Weber’s law. Starting from the last line of equation 5, the
following yields the relation.

∆γ = b× log(1 +
∆β

β
)

e∆γ = eb×log(1+ ∆β
β )

kp = elog(1+ ∆β
β )b ; were kp = e∆γ

kp = (1 +
∆β

β
)b; since elog(x) = x

b
√
kp = 1 +

∆β

β

kq − 1 =
∆β

β
; were b

√
kp = kq

kr =
∆β

β
; the weber’s law s.t. kr =

b
√
e∆γ − 1

(7)

Equation 6 holds true given the last line of equation 7. In the
current study, observation of deviation recorded in predicted
values of state of TRCMPLX conditional on gene evidences
show crude logarithmic behaviour which might bolster We-
ber’s law and Bernoulli’s principles. But it must be noted that
these observations are made on static causal models and ob-
servation of the same behaviour in dynamical setting would
add more value.

3 Materials and methods

The models purported by Sinha1 involving the biologi-
cal knowledge as well as epigenetic information depicted
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by MPBK+EI and biological knowledge excluding epige-
netic information MPBK were used to predict the state of
TRCMPLX given the gene evidences. Figure 2 depicts the
model MPBK+EI . The predictions were recorded over the
varying effect of TRCMPLX on gene regulations via as-
signment of different values to conditional probability tables
(cpt) of TRCMPLX while initializing the aforementioned
BN models. This varying effect is represented by the term
ETGN in Sinha1.

As a recapitulation, the design of the experiment is a sim-
ple 2-holdout experiment where one sample from the normal
and one sample from the tumorous are paired to form a test
dataset. Excluding the pair formed in an iteration of 2-hold out
experiment the remaining samples are considered for training
of a BN model. Thus in a data set of 24 normal and 24 tu-
morous cases obtained from Jiang et al.22, a training set will
contain 46 samples and a test set will contain 2 samples (one
of normal and one of tumor). This procedure is repeated for
every normal sample which is combined with each of the tu-
morous sample to form a series of test datasets. In total there
will be 576 pairs of test data and 576 instances of training
data. Note that for each test sample in a pair, the expression
value for a gene is discretized using a threshold computed for
that particular gene from the training set. Computation of the
threshold has been elucidated in Sinha1. This computation is
repeated for all genes per test sample. Based on the avail-
able evidence from the state of expression of all genes, which
constitute the test data, inference regarding the state of both
the TRCMPLX and the test sample is made. These infer-
ences reveal information regarding the activation state of the
TRCMPLX and the state of the test sample. Finally, for
each gene gi, the conditional probability Pr(gi = active|gk ev-
idence) ∀k genes. Note that these probabilities are recorded
for both normal and tumor test samples.

Three observations are presented in this manuscript. The
first observation is regarding the logarithmic deviations in
prediction of activation status of TRCMPLX conditional
on gene expression evidences. The second observation is
preservation of some gene gene interactions across different
strength of beliefs concerning the affect of TRCMPLX . To
observe these preservations, first the gene gene interactions
have to be constructed from the predicted conditional proba-
bilities of one gene given the evidence of another gene (for all
gene evidences taken separately). After the construction, fur-
ther preprocessing is required before the gene-gene interaction
network can be inferred. Finally, the third observation is to
check whether these laws are prevalent among the gene-gene
interactions in the network or not.

Deviation study for modelMPBK+EI

β ∆β ∆β
β log(1 + ∆β

β )∆γ in Normal∆γ in Tumor
0.8 0.1 0.125 0.117783 0.03055427 0.09151151
0.7 0.1 0.1428571 0.1335314 0.01423754 0.09086427
0.6 0.1 0.1666667 0.1541507 0.004384244 0.08052346
0.5 0.1 0.2 0.1823216 0.0005872203 0.07294716
0.8 0.1 0.125 0.117783 0.03055427 0.09151151
0.7 0.2 0.2857143 0.2513144 0.04479181 0.1823758
0.6 0.3 0.5 0.4054651 0.04917605 0.2628992
0.5 0.4 0.8 0.5877867 0.04976327 0.3358464

Table 1 Deviation study for modelMPBK+EI . ∆γ - mean value
of Pr(TRCMPLX = active|∀gei evidences) over all runs, γ -
Pr(TRCMPLX = active|all gene evidences), β - the assigned cpt
value of TRCMPLX during initialization of the Bayesian network
models and ∆β - the deviation in the assigned values of
TRCMPLX during initialization.

4 Results and discussion on observation 1

4.1 Logarithmic-power deviations in predictions of β-
catenin transcription complex

Let γ be Pr(TRCMPLX = active|all gene evidences), β be
the assigned cpt value of TRCMPLX during initialization
of the Bayesian network models and ∆β be the deviation in
the assigned values of TRCMPLX during initialization. To
compute ∆γ, the 576 predictions of γ observed at β = 90% is
subtracted from the 576 predictions of γ observed at β = 80%
and a mean of the deviations recorded. This mean becomes
∆γ. The procedure is computed again for different value of
β. In this manuscript, the effect of constant and incremental
deviations are observed. Tables 1 and 2 represent the devia-
tions for modelsMPBK+EI andMPBK , respectively.

Figures 4, 5, 6 and 7 show the deviations represented in
tables 1 and 2. Note that the numbers depicted in the ta-
bles are scaled in a nonuniform manner for observational pur-
pose in the figures. Unscaled values are represented under
the last two columns on the right of tables 1 and 2. Before
reading the graphs, note that red indicates deviation of mean
of Pr(TRCMPLX = active|∀gei evidences) in normal test
samples, blue indicates deviation of mean of Pr(TRCMPLX
= active|∀gei evidences) in tumor case, green indicates de-
viations in Weber’s law and cyan indicates deviations in
Bernoulli’s law.

For the case of contant deviations (figure 4) in model
MPBK+EI , it was observed that deviations in activation of
TRCMPLX conditional on gene evidences for the tumor
test samples showed a logarithmic behaviour and were di-
rectly proportional to the negative of both the Weber’s and
Bernoulli’s law. This can be seen by the blue curve almost
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Deviation study for modelMPBK

β ∆β ∆β
β log(1 + ∆β

β )∆γ in Normal∆γ in Tumor
0.8 0.1 0.125 0.117783 0.1400355 0.1097089
0.7 0.1 0.1428571 0.1335314 0.06442086 0.1877266
0.6 0.1 0.1666667 0.1541507 0.01762791 0.06204044
0.5 0.1 0.2 0.1823216 0.01393517 0.1718198
0.8 0.1 0.125 0.117783 0.1400355 0.1097089
0.7 0.2 0.2857143 0.2513144 0.2044564 0.2974356
0.6 0.3 0.5 0.4054651 0.2220843 0.359476
0.5 0.4 0.8 0.5877867 0.2360195 0.5312958

Table 2 Deviation study for modelMPBK . ∆γ - mean value of
Pr(TRCMPLX = active|∀gei evidences) over all runs, γ -
Pr(TRCMPLX = active|all gene evidences), β - the assigned cpt
value of TRCMPLX during initialization of the Bayesian network
models and ∆β - the deviation in the assigned values of
TRCMPLX during initialization.
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Fig. 4 Constant deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used isMPBK+EI . Red - constant deviation in Normal,
constant deviation in Tumor, Green - constant deviation in Weber’s
law, Cyan - constant deviation in Bernoulli’s law.

following the green and cyan curves. For the case of devia-
tions in activation of TRCMPLX conditional on gene ev-
idences for the normal test samples showed an exponential
behaviour and were proportional to negative of both the We-
ber’s and Bernoulli’s law. Similar behaviour was observed for
all the coloured curves in case of incremental deviations as
shown in figure 5. The exponential behaviour for activation
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Fig. 5 Incremental deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used isMPBK+EI . Red - incremental deviation in Normal,
incremental deviation in Tumor, Green - incremental deviation in
Weber’s law, Cyan - incremental deviation in Bernoulli’s law.

of TRCMPLX being active conditional on gene evidences
correctly supports to the last line of equation 7 which is the
derivation of Weber’s law from Bernoulli’s equation. It actu-
ally point to Fechner’s derivation of Weber’s law from loga-
rithmic formulation.

For model MPBK , the above observations do not yield
consistent behaviour. In figure 6, for the case of constant devi-
ations, only the deviations in activation of TRCMPLX con-
ditional on gene evidences for normal test samples exponen-
tial in nature and were found to be directly proportional to the
negative of both the Weber’s and Bernoulli’s law. But the de-
viations in activation of TRCMPLX conditional on gene ev-
idences in tumor test samples show noisy behaviour. But this
observation is not the case in incremental deviations for the
same model. For the case of incremental deviations as repre-
sented in figure 7, the deviations in activation of TRCMPLX
conditional on gene evidences is directly proportional to both
the Weber’s and Bernoulli’s law. The figure actually represent
the plots with inverted values i.e negative values. A primary
reason for this behaviour might be thatMPBK does not cap-
ture and constrain the network as much asMPBK+EI which
include epigenetic information. This inclusion of heteroge-
neous information adds more value to the biologically inspired
network and reveals the hidden natural laws occurring in the
signaling pathway in both normal and tumor cases.
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Fig. 6 Constant deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used isMPBK . Red - constant deviation in Normal, constant
deviation in Tumor, Green - constant deviation in Weber’s law, Cyan
- constant deviation in Bernoulli’s law.

4.2 Intuition behind the curve behaviour

Lastly, the intiutive idea behind the behaviour of the curves
generated from constant deviation in table 1 is as follows. It
is expected that Pr(TRCMPLX = active|all gene evidences)
is low (high) in the case of Normal (Tumor) samples. The
change ∆Pr(TRCMPLX = active|all gene evidences) jumps
by power of 10 as the β values change from 50% to 90% in
Normal cases. It can be observed from the table that there
are low deviations in Pr(TRCMPLX = active|all gene evi-
dences) when β is low i.e the effect of transcription complex is
low and high deviations in Pr(TRCMPLX = active|all gene
evidences) when β is high i.e the effect of transcription com-
plex is high. But it should be noted that the deviations still tend
to be small. This implies that the TRCMPLX is switched
off at a constant rate. Thus changes in β leads to exponential
curves as in the formulation ∆β

β , ∆β → 0 and β →∞.
In tumor cases, ∆Pr(TRCMPLX = active|all gene evi-

dences) behaves near to logarithmic curve as β increases from
50% to 90%. The deviations increase in a slow monotonic
way as β increases. Finally, the ratio ∆β

β shows monotonically
increasing behaviour as ∆β increases proportionally with β.
This means that in tumor samples the rate of transcription in-
creases or the effect of rate of transcription complex increases
monotonically as β increases. This points to the fold change
in β-catenin concentration that might be influencing the tran-

0.50 0.55 0.60 0.65 0.70 0.75 0.80

−1
.0

−0
.8

−0
.6

−0
.4

−0
.2

0.
0

Stimulus beta

N
on

−u
ni

fo
rm

 s
ca

le
d 

de
vi

at
io

ns

Incremental deviations for model with PBK

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

iDevNormal
iDevTumor
iDevWeber
iDevBernoulli

Fig. 7 Incremental deviations in β i.e ETGN and corresponding
deviations in Pr(TRCMPLX = active|∀gei evidences) for both
normal and tumor test samples. Corresponding Weber and Bernoulli
deviations are also recorded. Note that the plots and the y-axis
depict scaled deviations to visually analyse the observations. The
model used isMPBK . Red - incremental deviation in Normal,
incremental deviation in Tumor, Green - incremental deviation in
Weber’s law, Cyan - incremental deviation in Bernoulli’s law.

scription rate of the transcription complex. In normal case,
the β-catenin concentration remains constant. Due to this,
changes in the rate of transcription by the transcription com-
plex might remains constant and near to zero. Change in β
values that is the change in initialization of cpt values of tran-
scription complex causes the logarithmic curve in deviations
of prediction of transcription complex.

Finally, these observations present a crude yet important
picture regarding the downstream transcriptional behaviour of
signaling pathway in case of colorectal cancer. Though the
current model does not measure the fold changes in the con-
centration levels of β-catenin, it can help in measuring the de-
viations in activity of the transcription complex conditional on
the gene evidences by observing the deviations in the strength
of belief assigned as priors in the probability tables of the node
representing the transcription complex of the network. Thus
sensitivity analysis facilitates in observing such natural phe-
nomena at computational level. In context of the work by
Goentoro and Kirschner17, the presented results are crude in
terms of static observations yet they show corresponding be-
haviour of transcriptional activity in terms of psychophysical
laws. Further investigations using dynamic models might re-
veal more information in comparison to the static models used
in Sinha1. The observations presented here bolster the exis-
tence of behavioural phenomena in terms of logarithmic laws.
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SFRP3 activation status apropos gene evidences in Normal and Tumor samples using θ = 0.5

ge aaN arN raN rrN aaT arT raT rrT ggIN ggIT
1 DKK1 192 360 24 0 0 216 360 0 DKK1 |− <> SFRP3 DKK1 <> −| SFRP3
2 DKK2 360 168 0 48 216 217 0 143 DKK2 <> − <> SFRP3 DKK2 |− <> SFRP3
3 DKK3-1 360 160 0 56 216 226 0 134 DKK3-1 <> − <> SFRP3 DKK3-1 |− <> SFRP3
4 DKK3-2 240 336 0 0 336 240 0 0 DKK3-2 |− <> SFRP3 DKK3-2 <> − <> SFRP3
5 DKK4 0 480 96 0 0 116 460 0 DKK4 |− <> SFRP3 DKK4 <> −| SFRP3
6 DACT1 346 230 0 0 216 360 0 0 DACT1 <> − <> SFRP3 DACT1 |− <> SFRP3
7 DACT2 312 264 0 0 264 312 0 0 DACT2 <> − <> SFRP3 DACT2 |− <> SFRP3
8 DACT3 504 0 0 72 69 0 0 507 DACT3 <> − <> SFRP3 DACT3 | − | SFRP3
9 SFRP1 552 24 0 0 46 460 0 70 SFRP1 <> − <> SFRP3 SFRP1 |− <> SFRP3
10 SFRP2 480 0 0 96 96 480 0 0 SFRP2 <> − <> SFRP3 SFRP2 |− <> SFRP3
11 SFRP4 264 312 0 0 312 264 0 0 SFRP4 |− <> SFRP3 SFRP4 <> − <> SFRP3
12 SFRP5 460 0 0 116 115 0 0 461 SFRP5 <> − <> SFRP3 SFRP5 | − | SFRP3
13 WIF1 0 408 168 0 0 178 398 0 WIF1 |− <> SFRP3 WIF1 <> −| SFRP3
14 LEF1 0 480 96 0 0 92 484 0 LEF1 |− <> SFRP3 LEF1 <> −| SFRP3
15 MYC 0 456 120 0 0 134 442 0 MYC |− <> SFRP3 MYC <> −| SFRP3
16 CCND1 0 480 96 0 0 96 480 0 CCND1 |− <> SFRP3 CCND1 <> −| SFRP3
17 CD44 0 376 200 0 0 192 384 0 CD44 |− <> SFRP3 CD44 <> −| SFRP3

SFRP3 activation status apropos gene evidences in Normal and Tumor samples using θ = θN and θ = θT
1 DKK1 0 360 216 0 360 216 0 0 DKK1 |− <> SFRP3 DKK1 <> − <> SFRP3
2 DKK2 360 0 0 216 216 360 0 0 DKK2 <> − <> SFRP3 DKK2 |− <> SFRP3
3 DKK3-1 360 0 0 216 216 360 0 0 DKK3-1 <> − <> SFRP3 DKK3-1 |− <> SFRP3
4 DKK3-2 0 328 240 8 336 240 0 0 DKK3-2 |− <> SFRP3 DKK3-2 <> − <> SFRP3
5 DKK4 0 480 96 0 0 116 460 0 DKK4 |− <> SFRP3 DKK4 <> −| SFRP3
6 DACT1 346 230 0 0 216 360 0 0 DACT1 <> − <> SFRP3 DACT1 |− <> SFRP3
7 DACT2 24 0 288 264 264 312 0 0 DACT2 <> −| SFRP3 DACT2 |− <> SFRP3
8 DACT3 504 0 0 72 69 0 0 507 DACT3 <> − <> SFRP3 DACT3 | − | SFRP3
9 SFRP1 552 0 0 24 46 530 0 0 SFRP1 <> − <> SFRP3 SFRP1 |− <> SFRP3
10 SFRP2 480 0 0 96 96 480 0 0 SFRP2 <> − <> SFRP3 SFRP2 |− <> SFRP3
11 SFRP4 0 77 264 235 312 264 0 0 SFRP4 <> −| SFRP3 SFRP4 <> − <> SFRP3
12 SFRP5 460 0 0 116 115 411 0 50 SFRP5 <> − <> SFRP3 SFRP5 |− <> SFRP3
13 WIF1 0 408 168 0 398 178 0 0 WIF1 |− <> SFRP3 WIF1 <> − <> SFRP3
14 LEF1 0 480 96 0 0 92 484 0 LEF1 |− <> SFRP3 LEF1 <> −| SFRP3
15 MYC 0 456 120 0 0 134 442 0 MYC |− <> SFRP3 MYC <> −| SFRP3
16 CCND1 0 480 96 0 0 96 480 0 CCND1 |− <> SFRP3 CCND1 <> −| SFRP3
17 CD44 0 376 200 0 384 192 0 0 CD44 |− <> SFRP3 CD44 <> − <> SFRP3

Table 3 SFRP3 activation status in test samples conditional on status of individual gene activation (represented by evidence in test data) in
Normal and Tumor samples. Measurements are taken over summation of all predicted values across the different runs of the 2-Hold out
experiment. Here the notations denote the following: a - active, p - passive, N - Normal, T - Tumor, ggIN - gene-gene interaction with
Normal, ggIT - gene-gene interaction with Tumor, <> - active and | - repressed.

5 Preservation of gene gene interactions

The second part of this study was to find interactions between
two genes by observing the conditional probability of activa-
tion status of one gene given the evidence of another gene. Let
g be a gene. To obtain the results, two steps need to be exe-
cuted in a serial manner. The first step is to construct gene
gene interactions based on the available conditional proba-
bilities denoted by Pr(gi = active/repressed|gk evidence) ∀k
genes. The conditional probabilities are inferred using the
junction tree algorithm that employs two-pass message pass-

ing scheme. Example code and implementations of the same
can be found in Murphy et al.47. The steps for constructing the
gene gene interactions based on these conditional probabilities
are documented in the Appendix. The second step is to infer
gene gene interaction network based purely on reversible in-
teractions. Note that networks are inferred for gene evidences
using normal and tumor test samples separately.

Finally, once the interaction network is ready, the compu-
tational empirical estimates for deviations in gene-gene inter-
action is recorded and observation on the prevalence of psy-
chophysical laws in these interactions is discussed. An im-
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Fig. 8 Gene gene interactions for normal case while usingMPBK+EI with θ = 0.5. Note that the effect of initialized cpt for TRCMPLX
is 90% in tumorous case and 10% in normal case. Diamond <> means activation and straight bar | means repression.

portant point that needs to be kept in mind is that the inferred
interaction network differs based on the choice of the thresh-
old involved (which is a computational issue) but the underly-
ing psychophysical laws remain unchanged (which is a natu-
ral phenomena irrespective of the components involved). Thus
the while reading the observations on the psychophysical laws,
readers must not get confused regarding plots made for inter-
actions from different networks.

5.1 Constructing gene-gene interactions

Gene interactions are constructed by labeling the inferred con-
ditional probability of activation of gj given the state of gi, for
all j′s&i′s. Here labels refer to assigning <> for an activated
gene and | for repressed gene. Thus the following possible
combinations can be inferred - gj <> − <> gi, gj | − |gi,
gj <> −|gi and gj |− <> gi. Note that all interactions are
basically depicting the degree of belief in the state of gi given
or conditional on gj i.e Pr(gi|gj). The label related to gi is

derived by discretizing Pr(gi|gj) with respect to a weighted
mean or the arbitrary value of 0.5. In any interaction, the
label associated with gj is the evidence and the label asso-
ciated with gi is the predicted conditional probability. Thus
there will always exist two way interactions corresponding to
Pr(gj |gi) and Pr(gi|gj) in a Normal case. Similar interactions
can be inferred for the Tumor case. Which interactions to se-
lect is based on criteria of reversibility and duplication, which
is addressed later. To reiterate a final note regarding the in-
teractions - the inferred interactions differ based on the choice
of the threshold involved (which is a computational issue) but
if prevalent, the underlying psychophysical laws remain un-
changed (which is a natural phenomena irrespective of the
components involved).

The network obtained by using an arbitrary value like 0.5
for labeling the gene interactions is different from those ob-
tained using a weighted mean. There are advantages of choos-
ing the weighted mean of the training labels for each gene -
• Each gene has an individual threshold that is different from
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Fig. 9 Gene gene interactions for normal case while usingMPBK+EI with θ = θN . Note that the effect of initialized cpt for TRCMPLX
is 90% in tumorous case and 10% in normal case. Diamond <> means activation and straight bar | means repression.

the other as the expression values are different and the dis-
cretization used to estimate a particluar threshold is based on
the median value of the training data for that particular gene
under consideration. • The weighted mean assigns appropriate
weights to the labels under consideration rather than assigning
equal weights which might not represent the actual threshold.
•Due to the properties mentioned in the second point, it might
be expected that the weighted mean generates a sparse net-
work in comparison to that generated using an arbitrary value
of 0.5. • Finally, the weighted mean could reveal interactions
between two genes that might be happening at different stages
of time. Even though using a static model, capturing such in-
tricate interactions is possible as will be seen later.

There is a formulation for weighted means, but the compu-
tation of the weighted mean for training samples belonging to
Normal and Tumor is done separately. The separate formula-

tions are given below -

θN =
1× n1,N + 2× n2,N

(1 + 2)× (n1,N + n2,N )

θT =
1× n1,T + 2× n2,T

(1 + 2)× (n1,T + n2,T )

(8)

were, n1,N is the number of Normal training samples with la-
bel 1, n2,N is the number of Normal training samples with
label 2, n1,T is the number of Tumor training samples with la-
bel 1 and n1,N is the number of Tumor training samples with
label 2. Note that the sample labels (i,e evidence of gene ex-
pression) were discretized to passive or 1 (active or 2).

Based on the steps described in Appendix, for each gene a
matrix is obtained that shows the statistics of how the status of
a gene is affected conditional on the individual evidences of
the remaining genes. Also, for each of the ith gene the aver-
aged P̂rN (gi|gk) is also stored in vector PggN . Same is done
for tumor cases. These two vectors are later used to test the
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Gene-gene interactions using θ = 0.5

DACT2 <> −| DKK1, SFRP4 | − | DKK1, DACT1 <> − <> DKK2, SFRP1 <> − <> DKK2, LEF1 |− <> DKK2,
DKK4 |− <> DKK3-1, DACT3 <> − <> DKK3-1, SFRP2 <> − <> DKK3-1, SFRP3 <> − <> DKK3-1, SFRP5
<> − <> DKK3-1, WIF1 |− <> DKK3-1, LEF1 |− <> DKK3-1, MYC |− <> DKK3-1, CCND1 |− <> DKK3-1, CD44
|− <> DKK3-1, DKK1 | − | DKK3-2, DKK2 <> −| DKK3-2, DKK3-1 <> −| DKK3-2, DACT1 <> −| DKK3-2, DACT2
<> −| DKK3-2, SFRP1 <> −| DKK3-2, SFRP4 | − | DKK3-2, DKK3-2 | − | DKK4, DACT3 <> −| DKK4, SFRP2 <> −|
DKK4, SFRP3 <> −| DKK4, SFRP5 <> −| DKK4, WIF1 | − | DKK4, LEF1 | − | DKK4, MYC | − | DKK4, CCND1 | − |
DKK4, CD44 | − | DKK4, DKK4 | − | DACT1, DACT3 <> −| DACT1, MYC | − | DACT1, CCND1 | − | DACT1, DKK2
<> − <> DACT2, DKK3-1 <> − <> DACT2, DKK4 |− <> DACT2, DACT3 <> − <> DACT2, SFRP1 <> − <>
DACT2, SFRP2 <> − <> DACT2, SFRP3 <> − <> DACT2, SFRP4 |− <> DACT2, SFRP5 <> − <> DACT2, WIF1
|− <> DACT2, LEF1 |− <> DACT2, MYC |− <> DACT2, CCND1 |− <> DACT2, CD44 |− <> DACT2, DACT1 <> −|
DACT3, DKK3-1 <> − <> SFRP1, DKK4 |− <> SFRP1, SFRP2 <> − <> SFRP1, SFRP3 <> − <> SFRP1, SFRP4
|− <> SFRP1, SFRP5 <> − <> SFRP1, MYC |− <> SFRP1, CCND1 |− <> SFRP1, CD44 |− <> SFRP1, DACT3
<> − <> SFRP2, SFRP3 <> − <> SFRP2, LEF1 |− <> SFRP2, DKK1 |− <> SFRP3, DACT3 <> − <> SFRP3,
SFRP5 <> − <> SFRP3, WIF1 |− <> SFRP3, LEF1 |− <> SFRP3, MYC |− <> SFRP3, CCND1 |− <> SFRP3, CD44
|− <> SFRP3, DKK2 <> −| SFRP4, DKK3-1 <> −| SFRP4, DACT1 <> −| SFRP4, SFRP3 <> −| SFRP4, DKK1 |− <>
SFRP5, DKK2 <> − <> SFRP5, DKK3-2 |− <> SFRP5, DACT1 <> − <> SFRP5, DACT3 <> − <> SFRP5, SFRP2
<> − <> SFRP5, WIF1 |− <> SFRP5, LEF1 |− <> SFRP5, MYC |− <> SFRP5, CCND1 |− <> SFRP5, CD44 |− <>
SFRP5, DKK3-2 | − |WIF1, DACT1 <> −|WIF1, SFRP1 <> − <> WIF1, DKK1 | − | LEF1, DACT3 <> −| LEF1, WIF1
| − | LEF1, MYC | − | LEF1, CCND1 | − | LEF1, CD44 | − | LEF1, DACT3 <> −|MYC, CCND1 | − |MYC, DACT3 <> −|
CCND1, DACT3 <> −| CD44, MYC | − | CD44, CCND1 | − | CD44
Gene interaction using θ = θN
DKK3-1 | − | DKK1, DKK3-2 <> −| DKK1, DACT2 | − | DKK1, SFRP4 <> −| DKK1, DACT1 | − | DKK2, SFRP1 | − |
DKK2, DKK4 <> −| DKK3-1, DACT2 |− <> DKK3-1, DACT3 | − | DKK3-1, LEF1 <> −| DKK3-1, MYC <> −| DKK3-
1, CCND1 <> −| DKK3-1, SFRP1 | − | DKK3-2, DKK3-2 <> − <> DKK4, DKK4 <> − <> DACT1, DACT3 |− <>
DACT1, MYC <> − <> DACT1, CCND1 <> − <> DACT1, DKK1 <> −| DACT2, DKK2 | − | DACT2, DKK3-1 | − |
DACT2, DKK3-2 <> −| DACT2, DKK4 <> −| DACT2, SFRP1 | − | DACT2, SFRP2 | − | DACT2, SFRP3 | − | DACT2,
SFRP4 <> −| DACT2, SFRP5 | − | DACT2, WIF1 <> −| DACT2, LEF1 <> −| DACT2, MYC <> −| DACT2, CCND1
<> −| DACT2, CD44 <> −| DACT2, DKK1 <> − <> DACT3, DKK2 |− <> DACT3, DKK3-1 |− <> DACT3, DKK3-2
<> − <> DACT3, DKK4 <> − <> DACT3, DACT1 |− <> DACT3, DACT2 |− <> DACT3, SFRP2 |− <> DACT3,
SFRP3 |− <> DACT3, SFRP4 <> − <> DACT3, SFRP5 |− <> DACT3, WIF1 <> − <> DACT3, LEF1 <> − <>
DACT3, MYC <> − <> DACT3, CCND1 <> − <> DACT3, CD44 <> − <> DACT3, DKK1 <> − <> SFRP1, DKK2
|− <> SFRP1, DKK3-1 |− <> SFRP1, DKK3-2 <> − <> SFRP1, DACT1 |− <> SFRP1, DACT2 |− <> SFRP1, DACT3
|− <> SFRP1, SFRP4<> − <> SFRP1, WIF1<> − <> SFRP1, CD44<> − <> SFRP1, DKK2 |− <> SFRP2, DKK3-1
|− <> SFRP2, DKK3-2 <> − <> SFRP2, DACT1 |− <> SFRP2, DACT2 |− <> SFRP2, SFRP1 |− <> SFRP2, SFRP4
<> − <> SFRP2, LEF1 <> −| SFRP2, CD44 <> − <> SFRP2, DKK4 <> −| SFRP3, DACT2 |− <> SFRP3, DACT3
| − | SFRP3, LEF1 <> −| SFRP3, MYC <> −| SFRP3, CCND1 <> −| SFRP3, DKK2 |− <> SFRP4, DKK3-1 |− <>
SFRP4, DKK3-2 <> − <> SFRP4, DACT1 |− <> SFRP4, SFRP1 |− <> SFRP4, SFRP3 |− <> SFRP4, DKK1 <> −|
SFRP5, SFRP4 <> − <> SFRP5, DKK3-2 <> −| WIF1, DACT2 | − | WIF1, SFRP1 | − | WIF1, SFRP4 <> −| WIF1,
SFRP5 |− <> WIF1, DKK1 <> − <> LEF1, DKK4 <> − <> LEF1, DACT3 |− <> LEF1, WIF1 <> − <> LEF1,
CCND1 <> − <> LEF1, CD44 <> − <> LEF1, LEF1 <> − <> MYC, MYC <> − <> CCND1, CCND1 <> − <>
CD44

Table 4 Tabulated gene gene interactions of figure 8 and 9 usingMPBK+EI obtained in case of Normal samples. Here, the symbols
represent the following - <> activation and | repression/suppression. Note that for Tumor cases, the interaction roles were found to be
reversed, ie. <> −| in normal became |− <> in tumor, |− <> in normal became <> −| in tumor, <> − <> in normal became | − | in
tumor and | − | in normal became <> − <> in tumor.

veracity of existence of psychophysical laws in gene-gene in-
teraction network. Table 3 represents one such tabulation for
gene SFRP3. For all runs and all test samples, the following
was tabulated in table 3 : aaN - SFRP3 is active (a) when

a gene is active (a) in Normal (N) sample, arN - SFRP3 is
active (a) when a gene is repressed (r) in Normal (N) sample,
raN - SFRP3 is repressed (r) when a gene is active (a) in
Normal (N) sample, rrN - SFRP3 is repressed (r) when a
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Missing gene-gene interactions for different values of ETGN using θ = 0.5

90N-T1 80N-T1 (in 90N-T1) MYC | − | DACT1, CCND1 | − | DACT1, SFRP2 <> − <> SFRP5, CCND1 | − | MYC,
DACT3 <> −| CCND1, MYC | − | CD44 (in 80N-T1) SFRP5 <> − <> SFRP2, MYC | − | CCND1

70N-T1 (in 90N-T1) DACT3<> −|DACT1, MYC |−|DACT1, CCND1 |−|DACT1, SFRP2<> − <> SFRP5,
CCND1 |− |MYC, DACT3 <> −| CCND1, DACT3 <> −| CD44, MYC |− | CD44 (in 70N-T1) SFRP5
<> − <> SFRP2, MYC | − | CCND1

60N-T1 (in 90N-T1) DACT3<> −|DACT1, MYC |−|DACT1, CCND1 |−|DACT1, SFRP2<> − <> SFRP5,
CCND1 |− |MYC, DACT3 <> −| CCND1, DACT3 <> −| CD44, MYC |− | CD44 (in 60N-T1) SFRP5
<> − <> SFRP2, MYC | − | CCND1

50N-T1 (in 90N-T1) CD44 |− <> DKK3-1, SFRP1 <> −| DKK3-2, CD44 | − | DKK4, DACT3 <> −| DACT1,
MYC | − | DACT1, CCND1 | − | DACT1, DKK3-1 <> − <> SFRP1, DKK4 |− <> SFRP1, SFRP2
<> − <> SFRP5, DACT1 <> −|WIF1, CCND1 | − |MYC, DACT3 <> −| CCND1, DACT3 <> −|
CD44, MYC | − | CD44 (in 50N-T1) SFRP1 <> − <> DKK3-1, CD44 | − | DKK3-2, SFRP1 <> −|
DKK4, DKK3-2 |− <> SFRP1, SFRP5<> − <> SFRP2, MYC |− <> SFRP2, CCND1 |− <> SFRP2,
CD44 | − | SFRP4, MYC | − | CCND1

Missing gene-gene interactions for different values of ETGN using θ = θN
90N-T1 80N-T1 (in 90N-T1) MYC |− <> DKK3-1, SFRP1 <> − <> DKK3-2, MYC | − | DACT1 (in 80N-T1) MYC

| − | SFRP5
70N-T1 (in 90N-T1) DKK4 |− <> DKK3-1, MYC |− <> DKK3-1, SFRP1 <> − <> DKK3-2, MYC | − |

DACT1, CCND1 | − | DACT1, SFRP1 <> −| SFRP2, SFRP1 <> −| SFRP4, CD44 | − | LEF1 (in
70N-T1) DKK4 | − | SFRP5, MYC | − | SFRP5, CCND1 | − | SFRP5, DKK2 <> − <> WIF1, DKK3-1
<> − <> WIF1

60N-T1 (in 90N-T1) DKK4 |− <>DKK3-1, MYC |− <>DKK3-1, CCND1 |− <>DKK3-1, SFRP1<> − <>
DKK3-2, DACT3 <> −| DACT1, MYC | − | DACT1, CCND1 | − | DACT1, DACT3 <> −| SFRP1,
SFRP1 <> −| SFRP2 MYC |− <> SFRP3, SFRP1 <> −| SFRP4, CD44 | − | LEF1(in 60N-T1) MYC
| − | SFRP1, MYC | − | SFRP2, DKK4 | − | SFRP5, MYC | − | SFRP5, CCND1 | − | SFRP5, DKK2
<> − <> WIF1, DKK3-1 <> − <> WIF1, CD44 |− <> WIF1

50N-T1 (in 90N-T1) DKK4 |− <>DKK3-1, MYC |− <>DKK3-1, CCND1 |− <>DKK3-1, SFRP1<> − <>
DKK3-2, DACT3<> −|DACT1, MYC |−|DACT1, CCND1 |−|DACT1, DACT3<> −| SFRP1, SFRP1
<> −| SFRP2, MYC |− <> SFRP3, SFRP1<> −| SFRP4, DKK4 |−| LEF1, CCND1 |−| LEF1, CD44
|− | LEF1 (in 50N-T1) DKK4 |− <> DKK1, MYC |− <> DKK1, CCND1 |− <> DKK1, CD44 |− <>
DKK1, CD44 |− <> DKK3-2, MYC | − | SFRP1, DKK4 | − | SFRP2, DACT3 <> − <> SFRP2, MYC
| − | SFRP2, CCND1 | − | SFRP2, MYC | − | SFRP5, CCND1 | − | SFRP5, DKK2 <> − <> WIF1,
DKK3-1 <> − <> WIF1, DKK4 |− <> WIF1, MYC |− <> WIF1, CCND1 |− <> WIF1, CD44
|− <> WIF1

Table 5 Tabulated missing gene gene interactions of figure 8 and 9 usingMPBK+EI obtained in case of Normal samples. Interactions found
in Normal samples with 80%, 70%, 60% and 50% effect that are not found with 90% and vice versa have been recorded. Here, the symbols
represent the following - <> activation and | repression/suppression. Note that for Tumor cases, the interaction roles were found to be
reversed, ie. <> −| in normal became |− <> in tumor, |− <> in normal became <> −| in tumor, <> − <> in normal became | − | in
tumor and | − | in normal became <> − <> in tumor.
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gene is repressed (r) in Normal (N) sample, aaT - SFRP3 is
active (a) when a gene is active (a) in Tumor (T) sample, arT -
SFRP3 is active (a) when a gene is repressed (r) in Tumor (T)
sample, paT - SFRP3 is repressed (r) when a gene is active
(a) in Tumor (T) sample, ggIN - interaction of SFRP3 given
the gene evidence based on majority voting among aaN , arN ,
raN and rrN and finally, ggIT - interaction of SFRP3 given
the gene evidence based on majority voting among aaT , arT ,
raT and rrT . The highest score among aaN , arN , raN and
rrN (aaT , arT , raT and rrT ) confirms the relation between
genes using Normal (Tumor) samples. Activation (repression)
for SFRP3 is based on discretizing the predicted conditional
probability Pr(SFRP3 = active|gj evidence) as ≥ θ (< θ).
Activation (repression) for a particular gene evidence gj is
done using discrete evidence. In table 3, under the columns
ggIN and ggIT , <> implies the gene is active and | implies
the gene is repressed or passive.

Gene-gene interaction network when θ = 0.5

Considering only reversible interactions, in table 3 it was
found that evidence for DKK1 and DKK4 show similar
repression behaviour as the standard genes WIF1, LEF1,
MYC, CCND1 and CD44 in Normal (Tumor) test samples.
Only, SFRP5 and DACT3 in Normal (Tumor) test samples
shows activation (repression). Conditional on the observed ac-
tivation status of the genes mentioned above, SFRP3 shows
activated (repressed) state in Normal (Tumor) test samples.
SFRP3 showed behaviour similar to SFRP − 1/2/5. Since
it is known that the activation status of the latter is influenced
by epigenetic factors, SFRP3 might also be influenced by
epigenetic factors.

Irreversible interactions present in table 3 are deleted as
they do not provide concrete information regarding the func-
tional roles of the genes in normal and tumor cases. This at-
tributes to one of the following facts (1) noise that corrupts
prediction values as can be seen in the columns of aaN (aaT ),
arN (arT ), raN (raT ) and rrN (rrT ) or (2) other multiple
genes might be interacting along with SFRP3 in a combined
manner and it is not possible to decipher the relation between
SFRP3 and other genes. This calls for investigation of pre-
diction of SFRP3 status conditional on joint evidences of two
or more genes (a combinatorial problem with a search space
order of 217 − 17, which excludes 17 cases of individual gene
evidences which have already been considered here). Incor-
porating multiple gene evidences is not a problem while us-
ing Bayesian network models as they are designed to compute
conditional probabilities given joint evidences also (except at
the cost of high computational time).

It is evident that an arbitrary value of θ = 0.5 will not gen-
erate appropriate networks. This is due to the fact that 0.5 does
not encode the biological knowledge of thresholding while us-
ing discretization. To over come this, a weighted mean is em-
ployed as shown below.

Gene-gene interaction network when θ = θSFRP3
N

While employing the weighted mean as the threshold to dis-
cretize Pr(SFRP3 = active|gj evidence), the SFRP3 gene
evidences that constitutes the test data are used. See step 5.a.iii
in Appendix. Note that the test evidences for SFRP3 are used
for two purpose (1) to discretize Pr(SFRP3 = active|gj evi-
dence) as discussed above and (2) to compute the probability
of activation status of another gene conditional on evidence for
SRFP3, i.e Pr(gj = active|SFRP3 evidence). Why to use
test evidence or labels to compute weighted mean? Since the
test evidence for a gene (i.e the discretized label) has been de-
rived using the median computed on the corresponding train-
ing data for the same gene, it absolutely fine to use the disrec-
tized test labels to further compute the weighted mean. This
is because the median of gene expression is a value which is
much higher than the probability value of 1 and cannot be
used to discretize a predicted conditional probability value.
Also, estimating the density estimates from a small popula-
tion of gene expression values has its own weakness. To con-
verge on a plausible realistic value the discretized test sam-
ples can be used to estimate a weighted mean which repre-
sents the summary of the distribution of the discretized val-
ues. This weighted mean of SFRP3 test samples then dis-
cretizes Pr(SFRP3 = active|gj evidence) according to the in-
herently represented summary. More realistic estimates like
kernel density estimates could also be used.

In comparison to the interactions derived using θ = 0.5 in
table 3, it was found that a more restricted list of DKK4,
DACT − 2/3, LEF1, MYC and CCND1 showed re-
versible behaviour with SFRP3 using the weighted mean.
This reduction in the reversible interactions is due to the fact
that the weighted mean carries an idiosyncrasy of the test la-
bel data distribution and is more restricted in comparison to
the use of 0.5 value that was arbitrarily choosen. Finally, using
the proposed weighted mean reveals more than one interaction
between two genes. These interactions point to important hid-
den biological phenomena that require further investigation in
the form of wet lab experiments and the ensuing in silico anal-
ysis. It also points to the fact that a particular gene may be
showing different behaviour at different times in the network
while interacting with multiple genes. An example of this will
be addressed later. Again, dynamic models will bring more
clarity to the picture. Table 3 shows these interactions using
θ ∈ {0.5, θN , θT }.

5.2 Inferring gene-gene interaction network

Next, after the construction of gene-gene interactions, it is
necessary to infer the network. The inference of the esti-
mated gene-gene interactions network is based on explicitly
reversible roles in Normal and Tumor test samples. This
means that only those interactions are selected which show
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the following property - gj <> − <> gi in Normal if and
only if gj | − |gi in Tumor, gj <> −|gi in Normal if and only
if gj |− <> gi in Tumor, gj |− <> gi in Normal if and only
if gj <> −|gi in Tumor and finally, gj | − |gi in Normal if
and only if gj <> − <> gi. This restricts the network to
only reversible gene-gene interactions in Normal and Tumor
cases. Note that an interaction gjIRgi (giIRgj) is depicted
by Pr(gi|gj) (Pr(gj |gi)).

Reversibility helps in tracking the behaviour of gene-gene
interaction in both normal and tumor case simultaneously and
thus give more weightage to confirmatory results. Irreversible
reactions here mean that the state of activation of a gene in
both normal and tumor sample remains invariant given the ev-
idence of the other gene in the gene-gene interaction. This
helps in eliminating the interactions that might not be happen-
ing at all from biological perspective. To confirm the compu-
tational results wet lab experiments are needed. See table 3
for reversible and irreversible interactions.

Next, duplicate interactions are removed from the network
for normal samples. This is repeated for the network based
on tumor samples also. This is achieved by removing one of
the interactions from the following pairs (gj <> − <> gi
and gi <> − <> gj), (gj <> −|gi and gi|− <> gj),
(gj |− <> gi and gi <> −|gj) and (gj | − |gi and gi| − |gj).
This process is done to remove redundant interactions that are
recorded via steps mentioned in construction of gene-gene in-
teraction network. Figure 8 shows one such network after
complete network construction, interaction labeling, consid-
eration of reversible interactions and removal of duplicate in-
teractions using Normal test samples with ETGN of 90% in
MPBK+EI . For the case of Tumor test samples with ETGN
90% inMPBK+EI , only the reversal of interactions need to
be done. Table 4 represents these interactions in figures 8 and
9 in a tabulated form.

Finally, different networks were generated by varying the
effect of TRCMPLX (ETGN) and compared for the normal
test samples. Table 5 represents the different interactions that
were preserved in network from ETGN 90% with respect to
networks obtained from ETGN with values of 80%, 70%, 60%
and 50%. It was found that most of the genetic interactions
depicted in figures 8 and 9 were found to be preserved across
the different variations in ETGN as shown in table 5. Out of
the total n genes which construct a fully connected graph of
n×(n−1)

2 , it was observed that lesser number of interconnec-
tions were preserved. This preservation indicates towards the
robustness of the genetic contributions in the Wnt signaling
pathway in both normal and tumor test samples. Note that
these observations are made from static models and dynamic
models might reveal greater information.

Deviation study for SFRP3 and MYC for normal case
β ∆β ∆β

β log(1 + ∆β
β ) ∆γ ∆γ

Pr(SFPR3|MYC)Pr(MYC|SFPR3)
0.8 0.1 0.125 0.117783 0.003014287 0.00324456
0.7 0.1 0.1428571 0.1335314 0.002766111 0.00324456
0.6 0.1 0.1666667 0.1541507 0.002504868 0.00324456
0.5 0.1 0.2 0.1823216 0.002228110 0.00324456
0.8 0.1 0.125 0.117783 0.010513376 0.01297824
0.7 0.2 0.2857143 0.2513144 0.007499089 0.00973368
0.6 0.3 0.5 0.4054651 0.004732978 0.00648912
0.5 0.4 0.8 0.5877867 0.002228110 0.00324456

Table 6 Deviation study for Pr(SFRP3|MYC) and
Pr(MYC|SFRP3) for normal case

Deviation study for SFRP3 and MYC for tumor case
β ∆β ∆β

β log(1 + ∆β
β ) ∆γ ∆γ

Pr(SFPR5|MYC)Pr(MYC|SFPR5)
0.8 0.1 0.125 0.117783 -0.006463410 0.000000e+00
0.7 0.1 0.1428571 0.1335314 -0.006967724 5.551115e-17
0.6 0.1 0.1666667 0.1541507 -0.007515486 -5.551115e-17
0.5 0.1 0.2 0.1823216 -0.008112496 0.000000e+00
0.8 0.1 0.125 0.117783 -0.029059115 0.000000e+00
0.7 0.2 0.2857143 0.2513144 -0.022595705 0.000000e+00
0.6 0.3 0.5 0.4054651 -0.015627982 -5.551115e-17
0.5 0.4 0.8 0.5877867 -0.008112496 0.000000e+00

Table 7 Deviation study for Pr(SFRP3|MYC) and
Pr(MYC|SFRP3) for tumor case

6 Results and discussion on observations 2 & 3

6.1 Logarithmic-power deviations in prediction of gene-
gene interactions

In the previous section, it was found that some of the inter-
actions remain preserved as there was change in the affect of
transcription complex. The first observation of this work was
that deviations in the activity of the transcription complex fol-
lowed a logarithmic-power psychophysical law. The manifes-
tation of these laws at transcriptional levels can be attributed
to the fold changes in β-catenin levels and the prevalence of
Weber’s law observed by Goentoro and Kirschner17. In this
perspective, it would be interesting to observe if these laws
are prevalent among the gene-gene interactions in the network
or not.

Case: <> −| or |− <> with θ = θN
In Sinha1, the unknown behaviour of SFRP3 in the Wnt

pathway has been revealed slightly using computational causal
inference. In figure 8, SFRP3 shows preservation in the net-
work and it’s interaction with other genetic factors involved
in the model proposed in Sinha1 has been depicted. In one
such paired interaction between SFRP3 andMYC, SFRP3
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showed activation (repression) and MYC showed repression
(activation) in normal (tumor) samples. As the change in the
effect of transcription complex was induced by changing the
initially assigned cpt values for TRCMPLX node, the devi-
ations in the prediction of the gene-gene interaction network
was observed to follow the logarithmic-power law crudely.
What this means is that deviations or fold changes might also
be prevalent at the gene-gene interaction level due to the up-
stream fold changes in β-catenin that induces transcriptional
activity. More specifically, the deviation in the joint interac-
tion that is represented by the degree of belief via the condi-
tional probability of status of one gene given the evidence or
activation status regarding another gene i.e Pr(gi|gj), is influ-
enced by the fold changes upstream of the pathway and thus
exhibit similar psychophysical laws.

Table 6 and 7 show these deviations in the prediction of the
interactions for both the normal and the tumor cases. The ta-
bles show how deviations are affected when the changes in
the effect of the transcription complex are done at constant
and incremental rate. To summarize the results in these ta-
bles, graphs were plotted in figures 10 for Pr(SFRP3|MYC)
(constant deviations), 11 for Pr(MYC|SFRP3) (constant de-
viations), 12 for Pr(SFRP3|MYC) (incremental deviations)
and 11 for Pr(MYC|SFRP3) (incremental deviations).

Considering figure 10, when deviations are constant in both
Weber and Bernoulli formulation, the deviations in the pre-
diction of Pr(SFRP3|MYC) is observed to be logarithmic
in the normal samples (apropos the Weber and Bernoulli de-
viations represented by green and cyan curves). Deviation
in predictions are depicted by the red (blue) curves for nor-
mal (tumor) samples. Such a behaviour is not observed for
Pr(MYC|SFRP3) as is depicted in figure 11. Note that
the interaction for SFRP3 given MYC was observed to
be reversible in normal and tumor cases. But this is not
so with the interaction for MYC given SFRP3. It might
be expected that the non conformance of logarithmic-power
law for Pr(MYC|SFRP3) may be due to the non preser-
vation/existence of the interaction of MYC given SFRP3.
This is so because Pr(SFRP3|MYC) depicts a reversible
SFRP3 <> −|MYC (MYC <> −|SFRP3) in the net-
work on normal (tumor) samples, while Pr(MYC|SFRP3)
does not depict a reversibleMYC|− <> SFRP3 (MYC|−
|SFRP3) in the network on normal (tumor) samples.

Similar behaviour was observed in the case of in-
cremental deviations as depicted in figures 12 and 13.
Analysis of the behaviour of other gene-gene interac-
tions showing <> −| or |− <> can be observed in
a similar way and can be produced by executing the R
code in Weber Fechner law.r provided in Google drive
https://drive.google.com/folderview?id=
0B7Kkv8wlhPU-T05wTTNodWNydjA&usp=sharing.
Note that plots need manual axis and title adjustments. Some
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Fig. 10 Constant deviations in β i.e ETGN and corresponding
deviations in Pr(SFRP3|MYC) for both normal and tumor test
samples. Corresponding Weber and Bernoulli deviations were also
recorded. Note that the plots and the y-axis depict scaled deviations
to visually analyse the observations. The model used is
MPBK+EI . Red - deviation in Pr(SFRP3|MYC) in Normal case
using Weber’s law, Blue - deviation in Pr(SFRP3|MYC) in
Tumor using Weber’s law, Green - constant deviation in Webers law,
Cyan - constant deviation in Bernoullis law.

of the plot results has been compressed in the zip file titled
Results-2015.zip.

Case: | − | or <> − <> with θ = θN
Again, as pointed out in Sinha1, the unknown behaviour of

SFRP2 in the Wnt pathway has been captured using compu-
tational causal inference. In figure 9, SFRP2 shows preser-
vation in the network and it’s interaction with other genetic
factors involved in the model proposed in Sinha1 has been de-
picted. In one such paired interaction between SFRP2 and
CD44, both showed repression (activation) in normal (tumor)
samples. As the change in the effect of transcription complex
was induced via sensitizing the initially assigned cpt values,
the deviations in the prediction of the gene-gene interaction
network was observed to follow the logarithmic-power law
crudely.

Table 8 and 9 show these deviations in the prediction of the
interactions for both the normal and the tumor cases. The ta-
bles show how deviations are affected when the changes in
the effect of the transcription complex are done at constant
and incremental level. To summarize the results in these ta-
bles, graphs were plotted in figures 14 for Pr(SFRP2|CD44)
(constant deviations), 15 for Pr(CD44|SFRP2) (constant de-
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Fig. 11 Same as figure 10 but for Pr(MYC|SFRP3).
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Fig. 12 Same as figure 10 but for Pr(SFRP3|MYC). Instead of
constant deviations, incremental deviations are represented.

viations), 16 for Pr(SFRP2|CD44) (incremental deviations)
and 15 for Pr(CD44|SFRP2) (incremental deviations).

Considering figure 14, when deviations are constant in both
Weber and Bernoulli formulation, the deviations in the pre-
diction of Pr(SFRP2|CD44) is observed to be logarithmic
in the normal samples (apropos the Weber and Bernoulli de-
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Fig. 13 Same as figure 10 but for Pr(MYC|SFRP3). Instead of
constant deviations, incremental deviations are represented.

viations represented by green and cyan curves). Deviation
in predictions are depicted by the red (blue) curves for nor-
mal (tumor) samples. Such a behaviour is not observed for
Pr(CD44|SFRP2) as is depicted in figure 15. Even though
Pr(CD44|SFRP2) was computationally estimated through a
model, the interaction for CD44 given SFRP2 was not ob-
served in both normal and tumor cases while the interaction
for SFRP2 given CD44 was observed to be reversible. This
points to a crucial fact that the interactions interpretated from
conditional probabilities are not always two sided. Thus the
interpretation for Pr(gi|gj) is investigated in both directions as
giIRgj and gjIRgi to get a full picture. Not that the results
are wrong, but all angles of interpretations need to be inves-
tigated to get the picture between any two genes. Similar be-
haviour was observed in the case of incremental deviations as
depicted in figures 16 and 17. Note that graph for incremen-
tal deviation in Pr(CD44|SFRP2) is just a cumulative effect
and does not state anything about the logarithmic law.

Finally, note that the predicted conditional probability a
gene i given evidence for gene j does not change but the
inferred gene-gene interactions do change depending on the
choice of the threshold. These changes are depicted in the fig-
ures 8 and 9 and table 4. Dual interactions were inferred using
the weighted mean as a discretization factor, as is shown next.
These are dual interactions are marked in red colour in figure
9.

Case: Dual interactions with θ = θN

The dual interactions revealed using weighted means indi-
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Deviation study for SFRP2 and CD44 for normal case
β ∆β ∆β

β log(1 + ∆β
β ) ∆γ ∆γ

Pr(SFRP2|CD44)Pr(CD44|SFRP2)
0.8 0.1 0.125 0.117783 -0.0007505445 0.0002943409
0.7 0.1 0.1428571 0.1335314 -0.0009398116 0.0002943409
0.6 0.1 0.1666667 0.1541507 -0.0011360011 0.0002943409
0.5 0.1 0.2 0.1823216 -0.0013397022 0.0002943409
0.8 0.1 0.125 0.117783 -0.004166059 0.0011773636
0.7 0.2 0.2857143 0.2513144 -0.003415515 0.0008830227
0.6 0.3 0.5 0.4054651 -0.002475703 0.0005886818
0.5 0.4 0.8 0.5877867 -0.001339702 0.0002943409

Table 8 Deviation study for Pr(SFRP2|CD44) and
Pr(CD44|SFRP2) for normal case

Deviation study for SFRP2 and CD44 for tumor case
β ∆β ∆β

β log(1 + ∆β
β ) ∆γ ∆γ

Pr(SFRP2|CD44)Pr(CD44|SFRP2)
0.8 0.1 0.125 0.117783 0.02291329 0.01491512
0.7 0.1 0.1428571 0.1335314 0.02132802 0.01491512
0.6 0.1 0.1666667 0.1541507 0.01962443 0.01491512
0.5 0.1 0.2 0.1823216 0.01779600 0.01491512
0.8 0.1 0.125 0.117783 0.08166175 0.05966047
0.7 0.2 0.2857143 0.2513144 0.05874846 0.04474535
0.6 0.3 0.5 0.4054651 0.03742044 0.02983024
0.5 0.4 0.8 0.5877867 0.01779600 0.01491512

Table 9 Deviation study for Pr(SFRP2|CD44) and
Pr(CD44|SFRP2) for tumor case

cate an important phenomena between any two genes. These
interactions reveal that gene activation interplay might not al-
ways be constant for normal (tumour) samples. These in sil-
ico observations imply that a gene that was found to be ac-
tively expressed in normal sample might reverse activity at
some stage or the other (an vice versa). Here, one such inter-
action is discussed in detail. Interpretations of the other dual
interactions can be done in the same way. Results for other
interactions are available but not presented here.

Also, a point to be observed is that the weighted means
show much more crisp discretization during inference of gene-
gene interaction in comparison to use of an arbitrary value of
0.5. To determine this distinction between the inferred gene-
gene interactions obtained via weighted threshold and the arbi-
tray threshold of 0.5, the receiver operator curves (ROC) along
with its corresponding area under the curve (AUC) are plotted.
The ROCs are plotted using the discretized predicted values
and the discretized labels obtained using the thresholds (com-
puted from the training data) on the test data. The ROC graphs
and their respective AUC values indicate how the predictions
on the test data behaved under different values assigned to the
TRCMPLX while training. Ideally, high values of AUC and
steepness in ROC curve indicate good quality results. Finally,
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Fig. 14 Constant deviations in β i.e ETGN and corresponding
deviations in Pr(SFRP2|CD44) for both normal and tumor test
samples. Corresponding Weber and Bernoulli deviations were also
recorded. Note that the plots and the y-axis depict scaled deviations
to visually analyse the observations. The model used is
MPBK+EI . Red - deviation in Pr(SFRP2|CD44) in Normal case
using Weber’s law, Blue - deviation in Pr(SFRP2|CD44) in
Tumor using Weber’s law, Green - constant deviation in Webers law,
Cyan - constant deviation in Bernoullis law.
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Fig. 15 Same as figure 14 but for Pr(CD44|SFRP2).
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Fig. 16 Same as figure 14 but for Pr(SFRP2|CD44). Instead of
constant deviations, incremental deviations are represented.
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Fig. 17 Same as figure 15 but for Pr(CD44|SFRP2). Instead of
constant deviations, incremental deviations are represented.

two sample Kolmogorov-Smirnov (KS) test was employed to
measure the statistical significance between the distribution of
predictions. If the cumulative distributions are not similar the
KS test returns a small p-value. This small p-value indicates
the existing statistical significance between the distributions
under consideration.

Finally the ROC plots and AUC values for dual gene-gene
interactions are also plotted and KS test is conducted to find
the existence of statistical significance if any. These reveal the
significance of existence of dual interactions in the signaling
pathway which might not have been revealed using the arbi-
trary threshold value of 0.5. Plots are made using functions
from the PRROC package provided by Grau et al.70.

Interaction between DKK1 and DACT2 using θ ∈
{θN , θT } - Dual interactions DACT2 <> − <> DKK1
and DKK1|− <> DACT2 (DACT2| − |DKK1 and
DKK1 <> −|DACT2) in normal (tumor) sample were
found as depicted in figure 9. Figure 18 shows the ker-
nel density estimate of the predicted conditional probabilities
for both normal and tumor test cases. Using the weighted
mean of the discretized values of the test samples (discretiza-
tion done using median estimated from the training data as
mentioned before), the predicted Pr(DKK1|DACT2) and
Pr(DACT1|DKK1) are classified as active or passive. It
might be useful to note that instead of using 0.5 as an arbitrary
value, the weighted mean captures the distribution of labels
in a much more realistic manner and helps infer interactions
among the factors in the Wnt pathway.

Note the distributions depicted in figure 18. In the first col-
umn of the figure, the median for Pr(DKK1|DACT2) in nor-
mal (tumor) case is 0.4853088 (0.5006437). These medians
point to the mid value of the belief in the gene-gene interac-
tion depicted by the range of predicted conditional probabil-
ities. The weighted threshold θDKK1

N (θDKK1
T ) based on la-

bels for normal (tumor) test case was estimated at 0.5138889
(0.4861111). The estimations come from the following com-
putations in equation 9 -

θDKK1
N =

1× n1,N + 2× n2,N

(1 + 2)× (n1,N + n2,N )

=
1× 264 + 2× 312

3× 576
= 0.5138889

θDKK1
T =

1× n1,T + 2× n2,T

(1 + 2)× (n1,T + n2,T )

=
1× 312 + 2× 264

3× 576
= 0.4861111

(9)

Similarly, in the second column of the figure, the median for
Pr(DACT2|DKK1) in normal (tumor) case is 0.5606946
(0.2985911). The weighted threshold θDACT2

N (θDACT2
T )

based on labels for normal (tumor) test case was estimated
at 0.4583333 (0.5416667). The estimations come from the
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Fig. 18 Kernel density estimates for predicted Pr(DKK1|DACT2) and Pr(DACT2|DKK1) in Normal and Tumor cases. Gaussian kernel
is used for smoothing the density estimate. The bandwidth of the kernel is selected using the pilot estimation of derivative as proposed by
Sheather and Jones 71 and implemented in R programming language.

following computations in equation 10 -

θDACT2
N =

1× n1,N + 2× n2,N

(1 + 2)× (n1,N + n2,N )

=
1× 360 + 2× 216

3× 576
= 0.4583333

θDACT2
T =

1× n1,T + 2× n2,T

(1 + 2)× (n1,T + n2,T )

=
1× 216 + 2× 360

3× 576
= 0.5416667

It can be observed that the discretization is more realistic and
strict using the weighted threshold rather than using the arbi-
trary value of 0.5. The multiple peaks point to the different fre-
quencies at which the predicted probabilities were recorded.
Note that the probabilities here represent the belief in the acti-
vation status and the discretization only caliberates the belief
into active and repressed state. To evaluate the results further

wet lab tests are needed.
Using these distributions and distributions obtained using

artbitrary value, the respective ROC are plotted and corre-
sponding AUC values estimated. Finally, KS test is used to
find the existence of statistical significance between the valid
permutations of the distributions. These estimates further help
derive insights about the interactions at a computational level.
Figure 19 shows the ROC plots and the respective AUC values
for the dual interactions observed via the in silico experiments.
The following are compared -

1. labels of test data geN and discretized values of
Pr(DKK1|DACT2) and Pr(DACT2|DKK1) using
weighted mean in Normal case

2. labels of test data geT and discretized values of
Pr(DKK1|DACT2) and Pr(DACT2|DKK1) using
weighted mean in Tumor case

In figure 19 column wise the ROCs for Pr(DKK1|DACT2)
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(b) DKK1|− <> DACT2 in Normal
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(c) DACT2| − |DKK1 in Tumor
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Fig. 19 Column wise ROCs for Pr(DKK1|DACT2) (1st column) and Pr(DACT2|DKK1) (2nd column) have been plotted with ETGN
value for the 90%. Row wise the plots depict the curves generated using weighted mean for Normal case and weighted mean for Tumor case.
Respective AUC values for the ROC curves appear on the title of each of the graphs.

(1st column) and Pr(DACT2|DKK1) (2nd column) have
been plotted with ETGN value for the 90%. Row wise
the plots depict the curves generated using weighted mean
for Normal case and weighted mean for Tumor case. It
can be seen that using the weighted mean, the subfigure
19(a) and 19(d) convey a good guess regarding the type
of interaction prevailing in normal and tumor case. Thus

DACT2 <> − <> DKK1 i.e Pr(DKK1|DACT2)
is highly favoured in Normal case while DKK1 <>
−|DACT2 i.e Pr(DACT2|DKK1) is highly favoured in
Tumor case. Why this is so is becuase the normal cases
show better results in terms of prediction in comparison to
the tumor cases. This points to the fact that the interaction
DACT2 <> − <> DKK1 is strongly supported in the
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normal case in comparison to DACT2| − |DKK1 which is
weakly supported in the tumor case. Even though the algo-
rithm showed that interaction was reversible at computational
level, ROC curves and corresponding AUC values indicate
weakness in the belief that DACT2| − |DKK1 prevails in
tumor cases. On the other hand, the interaction depicted by
Pr(DACT2|DKK1) shows higher predictive quality in the
tumor case with respect to the normal case. This means that
DKK1 <> −|DACT2 has more weight in tumor case than
its reversible DKK1|− <> DACT2 counter part in the nor-
mal case. Taken together, the dual interactions do exist but
with different strengths of belief as shown conditional prob-
ability values. The curves in subfigure 19(b) and 19(c) in-
dicate a bad guess and thus do not support the interactions
DKK1|− <> DACT2 i.e Pr(DACT2|DKK1) in Normal
case andDACT2|− |DKK1 i.e Pr(DKK1|DACT2) in Tu-
mor case.

Interaction between DKK1 and DACT2 using θ = 0.5
In comparison to use of the weighted θ, the analysis of

single interaction using θ = 0.5 is also presented. Figure
8 shows the interaction between DKK1 and DACT2 as
DACT2 <> −|DKK1, i.e Pr(DKK1|DACT2). Using
a 0.5 threshold on 18 it is possible to see that discretization
of kernel density estimates of Pr(DKK1|DACT2) induces
a degree of belief which is not exactly 0(1). This is not the
case with Pr(DACT2|DKK1), were the discretization leads
to an exact 0(1) which removes the degree of belief. Bayesian
networks often represent the degree of belief in terms of some
real valued number and exact probabilites of 0(1) are consid-
ered with suspision.

Figure 20 shows the ROC plots and the respective AUC val-
ues for the dual interactions observed via the in silico experi-
ments. The following are compared -

1. labels of test data geN and discretized values of
Pr(DKK1|DACT2) and Pr(DACT2|DKK1) using
arbitrary value of 0.5 in Normal case

2. labels of test data geT and discretized values of
Pr(DKK1|DACT2) and Pr(DACT2|DKK1) using
arbitrary value of 0.5 in Tumor case

In figure 20 column wise the ROCs for Pr(DKK1|DACT2)
(1st column) and Pr(DACT2|DKK1) (2nd column) have
been plotted with ETGN value for the 90%. Row wise the
plots depict the curves generated using arbitrary threshold of
0.5 for Normal case and Tumor case. It can be seen that us-
ing the a value of 0.5, the subfigure 20(a) conveys a negligibly
good guess regarding the type of interaction prevailing in nor-
mal. Thus DACT2 <> −|DKK1 i.e Pr(DKK1|DACT2)
is highly favoured in Normal case. On the other hand the 20(c)
conveys a very bad guess regarding the reversal of interaction
in Tumor case for Pr(DKK1|DACT2). Finally, it was noted

that the degree of belief in Pr(DACT2|DKK1) was not at
all recorded via thresholding. Thus even though 20(b) and
20(d) show recorded ROCs but the discretization of 0.5 does
not capture the involved interaction. Thus the arbitrary value
of 0.5 is not a good factor for inferring interactions.

Comparing figures 20 and 19, it is clear that the later gives
a better guess in terms of the interpretation of the interac-
tion obtained by discretizing the kernel density estimates of
inferred conditional probabilities. To evaluate the statistical
significance of the predicted probabilities, the values of the
KS test are tabulated and analyzed. Table 10 represents the
computed values. The first four rows show the existing sig-
nificance between the predictions for which the ROC curves
have be plotted and described earlier. The next describes the
significance between predictions based on thresholds for both
normal and tumor cases. Note that some tests show no sig-
nificance at all as is the case with Pr(DACT2|DKK1). In
general, significance values differ depending on different in-
teractions. Finally, significance values between interactions
are also tabulated. It was found that there exists statistical
difference between the inferred dual interactions as shown by
the low p-values. Similar intepretations can be derived and
respective measures can be plotted from the in silico observa-
tions.

7 Caveats

This work does not take into account the time series data
which contains much more crucial information rather than the
static data of gene expression. The inferences have been made
regarding a natural phenomena based on the exploration of a
computational causal model via sensitivity analysis. The re-
sults discussed are based on deviations of inferred conditional
probabilities which encode a degree of belief in the occurrence
of an event. Even if dynamic bayesian models are used, the
observations will be made on degree of beliefs only. Also, the
current bayesian network model does not encode the cyclic
feedback loops. This has serious implications in the fact that
the model might not capture correct interactions. The problem
can be overcome to a certain extent by encoding the biological
knowledge such that concepts of d-connectivity/separability
exploit the inherent prior knowledge and thus help in proper
inferences. More specifically, the model captures a snapshot
in time but by varying the parameters or the prior/conditional
probability tables, it is possible to verify the natural phenom-
ena under investigation.

8 Future directions

In context of the above observations, dynamic models might
reveal greater information regarding the psychophysical laws.
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(c) DACT2|− <> DKK1 in Tumor
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(d) Pr(DKK1|DACT2) not recorded in Tumor

Fig. 20 Column wise ROCs for Pr(DKK1|DACT2) (1st column) and Pr(DACT2|DKK1) (2nd column) have been plotted with ETGN
value for the 90%. Row wise the plots depict the curves generated using arbit value of 0.5 for Normal case and arbit value of 0.5 for Tumor
case. Respective AUC values for the ROC curves appear on the title of each of the graphs.

Work by Goentoro and Kirschner17 employs sensitivity anal-
ysis methods to reveal such laws by tuning single parameters.
There might be a few ways to measure fold change in sin-
gle an multi parameter settings. Future work might involve
deeper study of the phenomena based on multi-parameter set-
ting in a dynamic bayesian network model. If one incorpo-
rates nodes in between two time snapshots of β-catenin con-

centration in a dynamic bayesian network, one might be able
to measure the changes at different phases of the signaling
pathway. For example, in figure 21 a set of nodes measur-
ing the different concentrations of β-catenin (say N ) are de-
picted. In a dynamic bayesian network, the previous concen-
tration at t is connected to the next concentration at t + 1.
Also, to measure the effect of difference (∆N ), a change in
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Kolmogorov-Smirnov test
Sr. No. Discretized Val. vs Labels p-value Discretized Val. vs Labels p-value

Pr(DKK1|DACT2) Pr(DACT2|DKK1)
1. wtd. mean (N) vs geN D = 0.5417 wtd. mean (N) vs geN D = 0.625

p-value < 2.2e−16 p-value < 2.2e−16

2. wtd. mean (N) vs geN D = 0.1059 wtd. mean (N) vs geN D = 0.625
p-value = 0.003129 p-value < 2.2e−16

3. wtd. mean (N) vs geT D = 0.5417 wtd. mean (T) vs geT D = 0.625
p-value < 2.2e−16 p-value < 2.2e−16

4. wtd. mean (N) vs geT D = 0.4844 wtd. mean (T) vs geT D = 0.625
p-value < 2.2e−16 p-value < 2.2e−16

KS test between predictions using wtd. mean and arbitrary value of 0.5

Sr. No. Pr(DKK1|DACT2) KS value Pr(DKK2|DACT1) KS value
1. wtd. mean vs arbit. (N) D = 0.4358 wtd. mean vs arbit. (N) D = 0

p-value < 2.2e−16 p-value = 1
2. wtd. mean vs arbit. (T) D = 0.0573 wtd. mean vs arbit. (T) D = 0

p-value = 0.3009 p-value = 1

KS test between predictions of interactions I1 and I2
1. wtd. mean - I1 (N) vs I2 (N) D = 1 wtd. mean - I1 (T) vs I2 (T) D = 1

p-value < 2.2e−16 p-value < 2.2e−16

2. arbit. - I1 (N) vs I2 (N) D = 0.5642 arbit. - I1 (T) vs I2 (T) D = 0.9427
p-value < 2.2e−16 p-value < 2.2e−16

Table 10 Kolmogorov-Smirnov test indicating statistical
significance between the distribution of predictions. Statistical
significance is evaluated by observing the p-value. Small p-value
indicates that significant difference. Significance test is conducted
between (1) discretized values of predictions and existing test labels
(2) discretized values of predictions based on weighted threshold
and discretized values of predictions based on arbit threshold and (3)
between predictions representing the dual interactions (obtained
using both thresholds). I1 and I2 correspond to interactions inferred
from Pr(DKK1|DACT2) and Pr(DACT2|DKK1), respectively.

concentration can be measured. Computations regarding fold
change (∆N ) could then be estimated as posterior probabil-
ities given the two concentrations, which the Bayesian net-
works can easily handle. In case more parameters need to
be involved (say the effect of Wnt and APC together), nodes
might be added as shown below. Then the fold change is con-
ditional onN(t+1),N(t+2), ∆Wnt and ∆APC and is esti-
mated as Pr(∆N(t+1)|N(t+1), N(t+2),∆Wnt,∆APC).

Regarding sensitivity analysis, in nonlinear problems, it
might be useful to use Sobol’72 indices to estimate the sen-
sitivity of the parameters. These indices are a way to esti-
mate the changes in a multiparameter setting thus helping one
to conduct global sensitivity analysis instead of local sensi-
tivity analysis (Glen and Isaacs73). Finally, with respect to
the robustness of the gene-gene interaction network, the cur-
rent work employs a very simple algorithm to construct the
network and infer preserved interactions across the range of
values set for a particular parameter. This helps in eliminat-
ing interactions that do not contribute enough biological in-
formation in the pathway or are non existant and require fur-
ther analysis by integration of more data. Work in these lines
would require incorporation of bigger datasets.

dN(t) dN(t+1)
APC(t+1) APC(t+2)

dAPC(t+1)

N(t) N(t+1) N(t+2)

WNT(t+1) WNT(t+2)

dWNT(t+1)

Fig. 21 A schematic diagram of a dynamic bayesian network model
that might help study the fold change and the logarithmic
psychophysical laws behind the changes.

9 Availability

Code with dataset is made available under GNU
GPL v3 license at google code project on https:
//sites.google.com/site/shriprakashsinha/
shriprakashsinha/projects/
static-bn-for-wnt-signaling-pathway
and https://code.google.com/p/
static-bn-for-wnt-signaling-pathway. Please
use the scripts in R as well as the files in zipped directory
titled Results-2015.

10 Conclusion

In this preliminary work via sensitivity analysis, the variation
in predictive behaviour of β-catenin based transcription com-
plex conditional on gene evidences follows logarithmic psy-
chophysical law crudely. This implies deviations in output are
proportional to increasing function of deviations in the input
and show constancy for higher values of input. This points
towards stability in the behaviour of transcriptional activity
downstream of the Wnt pathway. As a further development,
this stability reflects the preserved gene-gene interactions of
the Wnt pathway inferred from conditional probabilities of in-
dividual gene activation given the status of another gene acti-
vation derived using biologically inspired Bayesian Network.
The prevalence of power-logarithmic psychophysical law is
reported for interaction between pairs of (SFRP3, MYC),
(SFRP2, CD44) and (DKK1, DACT2) Finally, based on
the sensitivity analysis it was observed that the psychophysical
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laws are prevalent among the gene-gene interactions network
also.
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Appendix

10.1 Steps for construction of gene gene interaction net-
works

Before starting the construction of interactions from the con-
ditional probabilities, assign a variable ggI as an empty list
(say in R language). Then ∀i genes, execute the following -

1. ∀ 576 runs iterated by a counter j

(a) append xN with the vector whose elements are
Pr(gi = active|gk evidence) ∀k genes in the jth run
for Normal test sample. This creates a matrix at the
end of the runs.

(b) append xT with the vector whose elements are Pr(gi
= active|gk evidence) ∀k genes in the jth run for
Tumor test sample. This creates a matrix at the end
of the runs.

(c) append geN with the vector whose elements are gek
evidence ∀k genes in the jth run for Normal test
sample. This creates a matrix at the end of the runs.

(d) append geT with the vector whose elements are gek
evidence ∀k genes in the jth run for Tumor test
sample. This creates a matrix at the end of the runs.

2. assign variables ge, aaN , arN , raN , rrN , aaT , arT ,
raT , rrT , PggN , PggT to an empty vector c() (say in
R language). Note - a (r) means activation (repression).

3. compute mean across columns of xN and xT to obtain
averaged P̂rN (gi|gk) and P̂rT (gi|gk) ∀k gene evidences
and ∀i genes. Note k, i ∈ 1, ..., n if n is the total number
of genes.

4. assign a vector of P̂rN (gi|gk) ∀k genes to PggN and a
vector of P̂rT (gi|gk) ∀k genes to PggT

5. ∀k genes except the ith one

(a) if(k 6= i)

i. assign variables tmpaaN , tmparN , tmpraN ,
tmprrN , tmpaaT , tmparT , tmpraT and
tmprrT to 0.

ii. assign threshold values θ to either a fixed value
(say 0.5) or a weighted mean.

iii. if assigning a weighted mean, compute the
threshold θN as the weighted mean of the la-
bels of the test data i.e evidences for the ith

gene, in the case of Normal samples (top for-
mula in equation 8). Similarly, compute the
threshold θT as the weighted mean of the la-
bels of the test data i.e evidences for the ith

gene, in the case of Tumor samples (bottom
formula in equation 8).

iv. ∀ 576 runs iterated by a counter l
A. if(geN [l,k] == 1 and xN [l,k] < θ) incre-

ment tmprrN by 1
B. else if(geN [l,k] == 1 and xN [l,k] >= θ)

increment tmparN by 1
C. else if(geN [l,k] == 2 and xN [l,k] < θ)

increment tmpraN by 1
D. else if(geN [l,k] == 2 and xN [l,k] >= θ)

increment tmpaaN by 1
E. if(geT [l,k] == 1 and xT [l,k] < θ) incre-

ment tmprrT by 1
F. else if(geT [l,k] == 1 and xT [l,k] >= θ)

increment tmparT by 1
G. else if(geT [l,k] == 2 and xT [l,k] < θ) in-

crement tmpraT by 1
H. else if(geT [l,k] == 2 and xT [l,k] >= θ)

increment tmpaaT by 1
v. Comment - store results

vi. append ge with gk, rrN with tmprrN ,
arN with tmparN , raN with tmpraN , aaN
with tmpaaN , rrT with tmprrT , arT with
tmparT , raT with tmpraT and aaT with
tmpaaT

(b) store the variables in the previous step to a data
frame (say in R language) to a variable stats.

(c) Comment - 1 means aa, 2 means ar, 3 means ra, 4
means rr

(d) assign variables ggIN and ggIT as empty vector []

(e) ∀j gene except the ith one under consideration

i. find the index idxN in stats that corresponds to
1 or 2 or 3 or 4
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ii. if(idxN == 1) append ggIN with interaction
string stats§gj <> − <> gi

iii. else if(idxN == 2) append ggIN with interac-
tion string stats§gej |− <> gi

iv. else if(idxN == 3) append ggIN with interac-
tion string stats§gj <> −|gi

v. else if(idxN == 4) append ggIN with interac-
tion string stats§gj | − |gi

vi. find the index idxN in stats that corresponds to
1 or 2 or 3 or 4

vii. if(idxT == 1) append ggIT with interaction
string stats§gj <> − <> gi

viii. else if(idxT == 2) append ggIT with interac-
tion string stats§gj |− <> gi

ix. else if(idxT == 3) append ggIT with interac-
tion string stats§gj <> −|gi

x. else if(idxT == 4) append ggIT with interac-
tion string stats§gj | − |gi

(f) assign stats§ggIN with ggIN
(g) assign stats§ggIT with ggIT
(h) Comment - ith gene influenced
(i) ggI [[i]] < − list(ig = gi, stats = stats, PggN =

PggN , PggT = PggT )
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