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Abstract

Motivation

Deep sequencing based ribosome footprint profiling can provide novel insights into the regulatory
mechanisms of protein translation. However, the observed ribosome profile is fundamentally
confounded by transcriptional activity. In order to decipher principles of translation regulation,
tools that can reliably detect changes in translation efficiency in case-control studies are needed.

Results

We present a statistical framework and analysis tool, RiboDiff, to detect genes with changes in
translation efficiency across experimental treatments. RiboDiff uses generalized linear models to
estimate the over-dispersion of RNA-Seq and ribosome profiling measurements separately, and
performs a statistical test for differential translation efficiency using both mRNA abundance
and ribosome occupancy.

Availability

RiboDiff webpage http://bioweb.me/ribodiff. Source code including scripts for preprocess-
ing the FASTQ data are available at http://github.com/ratschlab/ribodiff.

Contact

zhongy@cbio.mskcc.org and |Gunnar.Ratsch@ratschlab.org,.

1 Introduction

The recently described ribosome footprinting technology [I] allows the identification of mRNA
fragments that were protected by the ribosome. It provides valuable information on ribosome
occupancy and, thereby indirectly, on protein synthesis activity. This technology can be leveraged
by combining the measurements from RNA-Seq estimates in order to determine a gene’s translation
efficiency (TE), which is the ratio of the abundances of translated mRNA and available mRNA
[2]. The normalization by mRNA abundance is designed to remove transcriptional activity as a
confounder of RF abundance. The TEs in treatment/control experiments can then be compared
to identify genes most affected w.r.t. translation efficiency. For instance, [3] considered a ratio
(fold-change) of the TEs of treatment and control. However, what these initial approaches only
take into account partially is that one typically only obtains uncertain estimates of the mRNA and
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ribosome abundance. In particular for lowly expressed genes, the error bars for the ratio of two TE
values can be large. As in proper RNA-Seq analyses, one should consider the uncertainty in these
abundance measurements when testing for differential abundance. For RNA-Seq, this has been
described in various ways often based on generalized linear models taking advantage of dispersion
information from biological replicates [4} 5, [6]. In [7] and [8], a way to adopt an approach for RNA-
Seq analysis for this problem was described that had several conceptual and practical limitations.
Here, we describe a novel statistical framework that also uses a generalized linear model to detect
effects of a particular treatment on mRNA translation. Additionally, our approach accounts for the
fact that two different sequencing protocols with distinct statistical characteristics are used. We
compare it to the Z-score based approach [3], DESeq2 [9] and a recently published tool Babel [10]
that is based on errors-in-variables regression. Shell and Python scripts for trimming RF adaptor,
aligning reads, removing rRNA contamination and counting reads are also included in the RiboDiff
package.

2 Methods

In sequencing-based ribosome footprinting, the RF read count is naturally confounded by mRNA
abundance (Fig. ) We seek a strategy to compare RF measurements taking mRNA abundance
into account in order to accurately discern the translation effect in case-control experiments. We
model the vector of RNA-Seq and RF read counts yfnRN A and yﬁF, respectively, for gene i with
Negative Binomial (NB) distributions, as described before [4] @, 6], for instance,]: y* ~ NB(u’, k%),
where i’ is the expected count and «’ is the estimated dispersion across biological replicates. Here
y' denotes the observed counts normalized by the library size factor (Supplemental Section A).
Formulating the problem as a generalized linear model (GLM) with the logarithm as link function,
we can express expectations on read counts as a function of latent quantities related to mRNA
abundance B¢ in the two conditions (C' = {0,1}), a quantity Srna that relates mRNA abundance
to RNA-Seq read counts, a quantity Srr that relates mRNA abundance to RF read counts and a
quantity Ba ¢ that captures the effect of the treatment on translation. In particular, the expected
RNA-Seq read count p gy A 1s given by the equation log (1! rn AC) = BE+ Bana-

We assume that transcription and translation are successive cellular processing steps and that
abundances are linearly related. The expected RF read count, /‘%{F,O is given by 10{-’;(#{{1:,0) =
Be + Brp + ﬁ&c- A key point to note is that ¢, is revealed to be a shared parameter between the
expressions governing the expected RNA-Seq and RF counts. It can be considered to be a proxy for
shared transcriptional /translation activity under condition C' in this context. Then, ﬁiA’C indicates
the deviation from that activity under condition C, with ﬂiA’C = 0 for C = 0 and free otherwise
(See Supplemental Section B for more details).

Fitting the GLM consists of learning the parameters 3* and dispersions «° given mRNA and RF
counts for the two conditions C' = {0,1}. We perform alternating optimization of the parameters
B¢ given dispersions s’ and the dispersion parameters s’ given 3%, similar to the EM algorithm
(Supplemental Sections B and C):

B = argmax Ly, (B'ly', k') and k' = argmaxlyp(K'|y’, 1)
gi ki
As experimental procedures for measuring mRNA counts and RF counts differ, we enable the
estimating of separate dispersion parameters for the data sources of RNA-Seq and RF profiling to
account for different characteristics (Supplemental Section E).
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As in [5], with raw dispersions estimated from previous steps, we regress all £’ given the mean
counts to obtain a mean-dispersion relationship f(u) = A\/pu + A\g. We perform empirical Bayes
shrinkage [9] to shrink ! towards f(u) to stabilize estimates (see Supplemental Section D). The
proposed model in RiboDiff with a joint dispersion estimate is conceptually identical to using the
following GLM design matrix protocol4-condition+condition : protocol (for instance, in conjunction
with edgeR or DESeql/2).

In a treatment/control setting, we can then evaluate whether a treatment (C' = 1) has a
significant differential effect on translation efficiency compared to the control (C' = 0). This is
equivalent to determining whether the parameter Sa 1 differs significantly from 0 and whether the
relationship denoted by the dashed arrow in Fig. is needed or not. We can compute significance
levels based on the y? distribution by analyzing log-likelihood ratios of the Null model (ﬁ&l =0)

and the alternative model (5271 # 0).
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Figure 1: (A) Graphical model representing RidoDiff (Gray circle: observable variables; empty
circle: unobservable variables; black square: functions; r denotes biological replicates; 7 denotes a
gene and G is the number of genes). The dashed line denotes the relationship that we aim to test
(see Methods for details). (B) Receiver operating characteristic (ROC) curve of RiboDiff (with two
separate dispersions), DESeq2 (with interaction model), Z-score method and Babel on simulated
data with large difference between dispersions of RF and RNA-seq counts (see also Supplementary
Figure S-4). (C) Comparison of the distribution of TE ratios of genes that were detected to have a
significant change in translation efficiency by RiboDiff (w/ joint dispersion), Z-score based analysis
and Babel. DESeq2 was very similar to RiboDiff (w/ joint dispersion) and was omitted. Data was
taken from GEO accession (GSEH6887.

3 Results and Discussion

We simulated data with different dispersions applied to mRNA and RF counts (see Supplemental
Section F). We illustrate the performance of our method RiboDiff (with separate dispersion esti-
mates) as well as Babel and the Z-score method. Although conceptually closely related to RiboDiff
with joint dispersion estimates, we also include DESeq2 with a GLM that includes an interaction
term (GLM condition + protocol + condition : protocol) to model RNA-seq and RF counts. Fig-
ure shows the receiver operating characteristic (ROC) curve for a case with large dispersion
differences between RF and RNA-seq counts. RiboDiff exhibits a superior detection accuracy com-
pared to DESeq2, Babel and Z-score method, which is less pronounced when RF and RNA-seq
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dispersions are more similar (see Supplementary Figure S-4). We obtained close to identical results
for RiboDiff with joint dispersion and DESeq2 with interaction term (data not shown). Our ex-
periments illustrate that it can be beneficial to use the RiboDiff model with separate dispersions,
in particular, when the dispersions of RF and RNA-seq data differ considerably.

We also re-analyzed previously released ribosome footprint data (GEO accession GSE56887).
After multiple testing correction, RiboDiff detected 601 TE down-regulated genes and 541 up-
regulated ones with FDR < 0.05, which is about twice as many as reported previously. The new
significant TE change set includes more than 90% genes identified in the previous study. RiboDiff
is also compared to Z-score method and we find major differences (see Fig. ) Supplemental
Section G provides the evidences showing that the Z-score based method is biased towards genes
with low read count, whereas RiboDiff identifies more plausible differences. Babel identifies only
very few genes with differential TE. We ran the differential test of RiboDiff on a machine with 1.7
GHz CPU and 4GB RAM, it took 23 mins of computing time to finish (10,474 genes having both
mRNA and RF counts).

In summary, we propose a novel statistical model to analyze the effect of the treatment on
mRNA translation and to identify genes of differential translation efficiency. A major advantage of
this method is facilitating comparisons of RF abundance by taking mRNA abundance variability
as a confounding factor. Moreover, RiboDiff is specifically tailored to produce robust dispersion
estimates for different sequencing protocols measuring gene expression and ribosome occupancy that
have different statistical properties. The described approach is statistically sound and identifies a
similar set of genes from a less developed method that was used in recent work [7]. The release of
this tool is expected to enable proper analyses of data from many future RF profiling experiments.
The described model assumes that RNA-seq and RF samples are unpaired and it is future work to
extend the flexibility of the tool to a broader range of experimental settings.

Acknowledgements We thank A. Burcul and & M. Kloft for help. Funding from the Marie Curie
ITN framework (Grant # PITN-GA-2012-316861), National Cancer Institute (R01-CA142798-01,
H.-G.W.) and the Experimental Therapeutics Center (H.-G.W.).

A Library Size Normalization

Due to differences in sequencing depth, the read count of the same gene can vary in different
samples (or replicates), even if no biological effect exists. Therefore, in a first step, the raw count
data needs to be normalized by a library size factor in a first step. We calculate the normalization
constant (a.k.a. size factor) S similar to [11I] with modifications:

@7 1
S = median ( __Vr * ) (1)
[1 )

f BT n ,J
wyp >0 jzl(yT +1

The size factors of RNA-Seq and ribosome footprinting (RF) libraries are calculated separately.
Here, T denotes data type (RNA-Seq or RF); r denotes the r-th sample in data type T that includes
replicates of both experimental treatments. yéf is the observed count of type T for gene ¢ in sample
r. For all genes in all replicates, we add one to their count value to avoid the degenerate case of
setting the geometric mean across all replicates (indexed by j) in the denominator to zero. We
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calculate the ratios of observed counts of all genes in a given sample to the geometric means and
determine the median of these ratios whose count is greater than zero as the size factor.
The raw counts of gene ¢ in sample r are normalized by the corresponding size factor.

B The Explanatory Matrix of GLM

As described in the main text, we decompose the expected count into multiple latent quantities.
For RNA-Seq, it is given by 10g(,ufnRNA’C) = B4+ B% v 4, Whereas for RF it is given by log(,uiRRc) =
B+ Brp + B - We use a generalized linear model (GLM) to learn the latent quantities 8s from
the observed count data, and then calculate the means. To control the observed read counts fitting
into the GLM system, an n x 5 explanatory matrix X is designed, where n equals to the total
number of replicates in both experimental conditions for RNA-Seq and RF. Here we show it in the
context of linear predictor 7 of GLM (Equation 2), where n = X x S.

In X matrix, the first two columns represent the baseline mRNA abundance /Bé in the two
conditions. The third and fourth columns (8% 4 and B%y) define whether the counts are from
RNA-Seq or RF, respectivelyﬂ The fifth column (5&0) relates the RF count to the potential
translational effect. Each row of X is used to control how the observed count of a specific sample
should be decomposed into latent quantities in order to fit the GLM models. In this example, as
indicated by the third column, the first four rows (marked in blue) model RNA-Seq counts with
two replicates for each condition, C0O and C1, while the last six rows (marked in green) model RF
counts with three replicates for each condition. Note the first and second columns in X are shared
between mRNA and RF counts, where we couple the two different data sets. The linear predictor
7 then is linked with negative binomial distributed mean ,uiRF’C and ,ufnRN A,c through logarithm as
the link function, namely log(u) =n = X x 8. The s are estimated by maximizing the likelihood
of GLM [12].

In our model, the RNA and RF replicates are assumed to be independent of each other. The
flexible configuration allows different numbers of replicates to be analyzed. To extend RiboDiff
to integrate pairing information, we could modify the GLM model where the pairing term B; (p
indexes the mRNA and RF pair for each condition) is added to the linear equation. In this way, the
pairing signal contributed from a pair of mRNA and RF is absorbed by this term in GLM fitting.

Another possible extension to RiboDiff is to handle time series comparison. Assuming we
have data at different time points and the goal is to test whether time point n is significantly
different from others in treatment in a subset of genes. The GLM model for mRNA and RF
abundance can be modified as following: log(ufrna.c) = 86+ Brna + Bh + Blise and log(ugp o) =
Be + Brr + Br + Bise + Ba,caun» Where B, and ;. are the latent quantities of time series effects
and 5270&71 captures the possible TE change at time point n under treatment condition.

After the 3¢ is estimated for each gene, the expected RNA-Seq and RF counts, ,umeN AC and
M%%F,C’ can be obtained. The next step is to estimate the dispersion parameter s by maximizing
the negative binomial likelihood function with the observed read counts and the expected counts
of both RNA and RF. See details in the next section.

In the implementation, in order to keep full rank of X, we do not include the fourth column %, as it is linearly
dependent with the third column.
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C Negative Binomial Likelihood Function

Because the count data are assumed to be sampled from a negative binomial distribution with
parameter mean i and dispersion k, we estimate x given observed counts and the estimated mean
by maximizing the NB likelihood function (equation 4).

The probability mass function of the negative binomial distribution is given by

. ij ij ij /K53 i\j y*
Pr(yi) = <y +1/k 1>< 1/k > (1 1/k > ’ 3)

yid 1/kbd 4 s 1 KB i

where 37 is the observed RF or mRNA read count of j replicate of gene i; k%7 is the dispersion
parameter of the NB distribution where y*7 is drawn from; p™/ is the estimated count of j™*

replicate. Thus the logarithmic likelihood of negative binomial of gene i is given by
log {np =Y log(Pr(y™)) — = log(det(X' - diag(—"——) - X)). 4
£ = Y ToR(Pr(/) g og(det (X' ding( /7)) 4
Note that the likelihood function is adjusted by a Cox-Reid term as suggested by Robinson
et al. [13] to compensate bias from estimating coefficients in fitting GLM step. Again, X is the
explanatory matrix with dimension n X 4 or n x 5, depending on Hy or Hi, where n is the total
number of RNA-Seq and RF replicates; u® is the vector of estimated counts; &’ is the dispersion

vector.

In the previous section, we estimate s by starting with an arbitrary value of dispersion. After
we update the dispersion from NB likelihood function, the new dispersion is plugged into the GLM
again to start a new optimization cycle. This process ends when the EM-like method converges or

an iteration maximum is reached.

D Empirical Bayes Shrinkage for Obtaining Final Dispersion

From previous steps, we obtain the dispersion for each gene. However, it is estimated only based on
the read counts of the gene itself, thus it is less reliable due to the limited replicates. Therefore, we
need a systematic method to adjust the raw dispersions. This can be accomplished by the following
two steps:
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1) Obtain the mean-dispersion relationship by regressing all raw dispersions x' given mean
counts under assumption: kg = f(u) = A1/ + Ao [5]. Namely, for each gene with mean count p?,
a fitted dispersion f@% can be calculated.

2) To get the final dispersion /ifg, we follow the approach published recently [9]. This approach
is based on the observation that the dispersion follows a log-normal prior distribution [I4] centered
at the fitted dispersion /@’F. The /ifg can be estimated by maximizing the following equation:

» S log k% — log K%,)?
v = argma (Ll ) — 2SS 2L )
Ky Ip
where Ug is the variance of the logarithmic residual between prior and the fitted dispersion

K. Moreover, the variance (c2) of the logarithmic residual between raw dispersion % and % is
comprised of 1) the variance of sampling distribution of the logarithmic dispersion o2 and 2) ag .
The 02 can be approximately obtained from a trigamma function:
9 m—d
oy = (=), (6)
where m is the number of samples and d is the number of coefficients. Whereas, the o2 is
calculated as the median absolute deviation (mad) of logarithmic residuals between pairs of k% and
Ky

02 = mad(log k% — log k). (7)

(2

Therefore, we can get the crg by
2 2 2
0, =0y — Og, (8)

and obtain the final dispersion /ig by maximizing the posterior in equation 5.

E Estimating Dispersion for Different Sequencing Protocols Sep-
arately

Because RNA-Seq and ribosome footprinting are different sequencing protocols, the properties of
the read counts from these two protocols can vary. Therefore, we enable RiboDiff to infer dispersion
parameters « for different data sources. Here we show an example where estimating x separately
may be needed. The example data are from a recent publication [15].

The empirical dispersion estimates for RNA-Seq and RF counts are calculated from the following
equation [9, [4] 1T, [16]:

o = p+ Kyt (9)

Fig. [2] shows the mean-dispersion relationship. It demonstrates the deviation of the empirical
dispersion of RNA-Seq and ribosome footprint data in this experimental setting. The deviation
between these two data sets becomes small when read count increases.
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Figure 2: Scatter plot of empirical dispersions. The X-axis is split into several bins and the median
k in each bin is highlighted and connected. The empirical x smaller than zero are plotted at the
bottom of the figure.
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F Data Simulation

To test the performance of RiboDiff and compare it to other methods, we simulated the RF and
RNA-Seq read count for 2,000 genes with 500 genes showing down regulated translation efficiency
(TE) and 500 genes showing up regulated translation efficiency. There are three replicates for each
of the two conditions (i.e., treatment and control) for RNA-Seq and RF. Therefore, count matrix
dimensions are 2,000 x 12.

We first generated the mean counts for two treatments of both RF and RNA-Seq across all 2,000
genes assuming their mean counts are randomly drawn from a negative binomial distribution with
parameter n and p, where n = 1/ and p = n/(n+p). Then, for each mean count ’, we generated
three count values as three replicates from a negative binomial distribution with parameter ;¢ and
k', where k' is calculated as k' = f(u’) = A/’ + Xo. To simulate the genes with TE changes in
two treatments, we multiply the fold difference to the mean count of the target genes, assuming
the fold changes follow a gamma distribution that is observed from real data (GEO accession
GSE56887). The gamma distribution has a shape parameter « and a scale parameter s, and its
mean pug = «-S. In the following simulation, we fix s and only change « to obtain different means
for the two treatments and simulate genes having different fold changes using these two means.
The fold increase FT is obtained by

Fr=Xg(o,s) + 1, (10)

where X is a random vector containing 500 elements generated from a gamma density function.
And the fold decrease Fp is obtained by

1

Fp=—.
D=5

(11)
Here, we simulated five groups of count data. In each group, 1,000 out of 2,000 genes showing TE
changes:

e mean count has a fold change only for RF count, with o« = 0.8;
e mean count has a fold change only for mRNA count, with a = 0.6;
e mean count has a fold change only for RF count, with o = 1.5;
e mean count has a fold change only for mRNA count, with a = 1.5;

e mean count has a fold change for RF with o = 0.8 AND for mRNA with o = 0.6, referred as
“combined” in Fig.

Note that in the last group, if the gene has fold increase in RF, it must have a fold decrease in
RNA-Seq. By doing this, the effect at the mRNA level is added to the TE change outcome instead
of offsetting the effect caused by RF. Other simulation parameters are as follow: for all RF and
RNA-Seq, n = 1, A; = 0.1, A\g = 0.0001, s = 0.5. The parameter p controls the scale of the count.
We use 0.008 for RF and 0.0002 for mRNA. We run RiboDiff with the five dataset to estimate its
sensitivity and specificity (Fig. [3).

To evaluate how the number of replicates influences the dispersion estimation, RF and RNA-
Seq counts for 5,000 genes with two to ten replicates for each condition were simulated using the
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Figure 3: Sensitivity and specificity of RiboDiff on simulated data.

same way as described above. For instance, two replicates for condition A and two replicates for
condition B in RF, and the same number of replicates for condition A and B in RNA-Seq. In total,
we have 9 data sets, and each of them has a certain number of replicates ranging from two to ten.
Next, we run RiboDiff on these 9 data sets:

RiboDiff firstly estimates the raw dispersion x* for each gene based on their RF and RNA-Seq
counts. Then, a mean-dispersion relationship kr = f(u) = A1/p + Ao is obtained by regressing
the raw dispersion s given the mean count u’ using GLM to learn A\; and \g. Fig. shows the
mean-dispersion relationship function for different number of replicates. From this plot we can see
that the estimated mean-dispersion relationships, using three to ten replicates, are rather similar
to each other, whereas the result using only two replicates deviates from the rest. This indicates
that the raw dispersion s’ estimated using two replicates is less reliable. We observed that the
dispersion estimates of high read count genes are larger if only two replicates are used, which can
decreases true positive rate.

We use the same simulated data set to show how the number of replicates affects the latent
quantity 8. For each gene, there are multiple 8’s that represent different latent quantities, and
these Bs are summed up to obtain the estimated counts of RNA-Seq or RF. Hence, we compare the
estimated RF count (u%) of every gene i against their mean counts (theoretical means) that are
used to generate the negative binomial counts in the data simulation. In Fig.[dB, each subplot is the
comparison of estimated counts (Y axis) from n replicates against the theoretical means (X axis).
As we can see, the theoretical means and the estimated means correlate well in all 9 experiments
(all 7 > 0.99).

Fig. [IC and D show how sensitivity and specificity depend on a chosen p-value threshold. For
the sensitivity, the area under curves for 2 to 10 replicates increases when the number of replicates

10
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Figure 4: Evaluation of RiboDiff by using different number of replicates. (A) Mean-dispersion
relationship. (B) Comparison between the theoretical mean and estimated mean. (C) and (D)
Sensitivity and specificity of RiboDiff calculated under different number of replicates.
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Figure 5: Comparison of ROC curves of RiboDiff and DESeq2 using simulated data. (A-C) The
left panel are the dispersions of mRNA and RF; the right panel are the corresponding ROC curves.
From the top to the bottom, the differences of dispersion are large, moderate and small, respectively.
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increase, whereas the specificities from the same data set do not have large difference among them.
This illustrates that the test is well-calibrated and that one can recommend using three replicates
to achieve a close-to-best sensitivity.

As RiboDiff uses similar technical concept as DESeq2 [9], we compare the performances of
the two methods. Here, DESeq2 uses a specific design formula: condition + protocol + con-
dition:protocol. The interaction term between sequencing protocol and experimental condition
represents the possible condition differences controlling for protocol type.

We simulated three data sets of RNA-Seq and RF counts where gradient differences of dispersion
between mRNA and RF were applied to the two data types. The same simulation strategy was
used as we described before with modifications. Briefly, 1,000 out of 2,000 genes were chosen to
show ATE fold change by altering their mean counts of mRNA and RF. The following parameters
were used to generate the mRNA count: n=1,p=0.5x10"%, A\; = 0.1, A\ = 0.1 x 1073, o = 0.8,
s = 0.5. And for RF count, we used n = 1, p = 0.1 x 1072, A\; = 10.0, Ay = 0.01, o = 0.8,
s = 0.5. Next, we multiplied the mRNA dispersion of every gene in the first data set by a factor
of 10, and used the new dispersion to generate mRNA counts for the second data set. Similarly,
to obtain the third data set, the original mRNA dispersions were multiplied by 100. We used the
same parameters to generate the RF counts for all three data sets. In Fig. [5] from the top to the
bottom, the three dispersion plots on the left side show the three simulated data sets where mRNA
dispersions are approaching to merge with RF dispersions. The ROC curves on the right side
are the corresponding performances of RiboDiff with joint and separate dispersion estimates and
DESeq2. Although RiboDiff with joint dispersion estimate performs similar to DESeq2, estimating
dispersion separately yields better results under the condition of different dispersions of the two
protocols.

G Results from Real Biological Data

We use previously published ribosome footprint and RNA-Seq data (GEO accession GSE56887)
to compare RiboDiff with a Z-score based method [3]. The sequencing data were processed in a
similar way as before [7], which includes trimming the adapter tail in the reads, aligning the reads,
filtering the ribosomal RNA contamination, and counting the reads for genes, etc. For gene i, the
change of translation efficiency ATE" is calculated by

i i
KRF,A/KRNA,A

ATE! = ,  with Klic = m?an(yzjg), (12)

i i
KRF,B/KRNA,B

where ¢ denotes the data type, as t = {RF, RNA-Seq}; ¢ denotes the treatment condition A or B,
as ¢ = {A, B}; j indexes the replicates. yzg means the t type of read count y of gene i in its j**
replicate under condition c. A Z-score was then calculated for each gene as following:

)

. ATE —
_ UATE : (13)

z
OATE

where uarg is the mean of ATE of all genes; oarg is the standard deviation. The genes with

| ' | > 1.5 are selected as significant. Fig. @A and B show the overlap of significant genes between

RiboDiff and Z-score based method are limited in both TE down and up regulated gene sets.

Further analysis indicates most of the significant genes detected by the Z-score based method
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Figure 6: Comparison between RiboDiff and a Z-score based method on real biological data. (A and
B) Venn diagrams showing the number of overlapping and self specific genes detected by RiboDiff
and Z-score based method. (A) TE down regulated genes. (B) TE up regulated genes. Red ellipse:
results from RiboDiff; blue ellipse: results from Z-score based method. (C and D) Scatter plot
of mean RF count against the | ATE |. (C) Result of RiboDiff. Significant genes are labeled as
red. (D) Result of Z-score based method. Significant genes are labeled as blue. The narrow panels
above the scatter plots are the estimated density functions of significant genes on x-axes by using
non-parametric kernel density estimation.

having their mean RF counts smaller than 100 with only a few exceptional cases. In contrast, the
significant genes detected by RiboDiff scatter over a wide range of mean RF count (Fig. @C and D).
It is rational that for highly translated genes, it is more confident to identify significant TE change
between two treatments due to enough supported read counts. This is the reason that RiboDiff
can detect highly translated genes as significant ones even though their absolute value of Z-score
are less than 1.5 (| ATE | below the dashed lines in Fig. [flC and D). This comparison indicates
RiboDiff identifies more sensible hits and is not biased towards genes with low mean count that
inherently have more uncertainty rather than statistically significant differences.

Here, we also compare the new TE change gene sets detected by RiboDiff and the previous
corresponding gene sets published in [7] (Fig. [7)). RiboDiff detected twice as many as before, and
more than 90% genes from the old study are included in the new gene sets.

H Pipeline of Ribosome Footprinting and RNA-Seq Data Pro-
cessing

The deep sequencing based ribosome footprinting has many unique features compared to regular
RNA-Seq data. Here we discuss its distinct features at each step of data processing before running
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Figure 7: Comparison of results from RiboDiff and Wolfe et al. (A) TE down regulated genes.
(B) TE up regulated genes. Red circle: results from RiboDiff; purple circle: results reported in
previous study [7].

RiboDiff's differential test on the count input. The relevant scripts that specifically aim for doing
each data processing tasks can be found in the RiboDiff package.

e Sequencing procedure can introduce bias to the library of replicates. It is always helpful to
check the quality of the FASTQ file. Statistics on sequence GC content, length distribution,
duplication level, adaptor content and kmer enrichment can provide information from different
angles to identify outliers from usable libraries. Publically available tools for doing these tasks
are well established and can easily be obtained online.

e In the raw FASTQ file of footprinting, rRNA contamination can take up 25 to 70% of the
entire sequences of a library. We construct rRNA databases for specific organisms by collecting
their rRNA sequences from SILVA [I7]. Both footprint and RNA-Seq reads are aligned to
the rRNA database to identify rRNA reads that need to be filtered.

e Next, we use STAR [I8] to align both footprint and RNA-Seq reads to the reference genome
to get mapping information. STAR is an ultrafast and accurate aligner that also supports
junction reads crossing exon splicing site. It also trims the linker sequence (CTGTAGGCAC-
CATCAAT) on the 3’ of footprint reads while aligning them to the reference. Ribosome
protected mRNA sequences are short (normally from 20 to 40 nt), therefore, to minimize the
effect of multiple mapping, only uniquely aligned reads are used.

e The identified rRNA reads from step 2 are removed from the alignment of footprint and RNA-
Seq. It is also recommended to check whether footprint reads are clipped even after trimming
the linker sequence. Over-clipped short reads are prone to produce ambiguous alignments.

e The last step of preprocessing the data is counting reads for each gene. We add a counting
script that only takes the reads mapping the exonic regions guided by an annotation GTF
file.
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