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Abstract  

To explore the interplay between new mutation, transmission, and gender bias in genetic disease 

requires formal quantitative modeling. Autism spectrum disorders offer an ideal case: they are 

genetic in origin, complex, and show a gender bias. The high reproductive costs of autism ensure 

that most strongly associated genetic mutations are short-lived, and indeed the disease exhibits 

both transmitted and de novo components. There is a large body of both epidemiologic and 

genomic data that greatly constrain the genetic mechanisms that may contribute to the disorder. 

We develop a computational framework that assumes classes of additive variants, each member 

of a class having equal effect. We restrict our initial exploration to single class models, each 

having three parameters. Only one model matches epidemiological data. It also independently 

matches the incidence of de novo mutation in simplex families, the gender bias in unaffected 

siblings in simplex populations, and rates of mutation in target genes. This model makes strong 

and as yet not fully tested predictions, namely that females are the primary carriers in cases of 

genetic transmission, and that the incidence of de novo mutation in target genes for families at 

high risk for autism are not especially elevated. In its simplicity, this model does not account for 

MZ twin concordance or the distorted gender bias of high functioning children with ASD, and 

does not accommodate all the known mechanisms contributing to ASD. We point to the next 

steps in applying the same computational framework to explore more complex models. 

 

Author summary 

For understanding complex genetic diseases one needs both data and molecular/genetic models. 

In the absence of any model, it is impossible to do more than summarize observations. A good 

model will be consistent with much or all of the existing data and puts the data in the context of 

known genetic principles. Ideally the model will make testable predictions. Where the good 

models fail often shows the directions that require more thought about mechanisms. In this paper 

we describe a new computational framework that we use to explore a complex genetic disorder 

with many gene targets, with both de novo and transmitted variants, and with gender bias. The 

disorder we consider is autism spectrum disorder (ASD), and our framework rules out some 

previous models that make unsustainable predictions. We identify a formal model that satisfies 

diverse epidemiologic and genomic observations. This model makes strong and untested 

predictions and thereby suggests new studies that would resolve outstanding aspects of autism 

genetics.  

Introduction  

ASD refers to severe developmental defects in social response and communication often 

accompanied by inappropriate and repetitive behaviors. ASD afflicts about 1% of the population 

and has a strong male to female bias. The disabilities associated with ASD severely reduce the 
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probability that affected individuals become parents. Therefore, the population genetics of 

autism has elements in common with other pediatric or juvenile disorders that greatly reduce 

fecundity, such as pediatric cancer or congenital heart disease [1,2]. 

Over the past decade, significant progress has been made in uncovering genetic 

mechanisms which contribute to autism, in particular de novo copy number variations[3-6] and 

de novo loss-of-function mutations[5,7-10]. However, a great deal of uncertainty remains about 

the contribution of transmitted variants to ASD and their frequency in the population. Many 

genetic theories of autism have been proposed such as common additive variants [11], latent risk 

classes [12], and dominant variants of strong effects[6,13-15]. However, these theories are 

typically offered either without bounds on their relative contribution or without considering their 

fit to both genetic and population data for ASD. Here we test a class of precise genetic models by 

measuring their fit to epidemiological data. The model that closely fits the epidemiology 

independently predicts genetic features of autism and properties of ascertained collections of 

families. 

 There are several important observables in the epidemiology of ASD that greatly 

constrain the genetic models compatible with the disorder (Table 1). First is the incidence rate of 

autism. Second is the gender bias towards males, and the extreme gender bias observed in 

affected children of higher intelligence. Third is the concordance rate for monozygotic twins. 

Last is familial risk as a function of the number of affected children and the gender of the 

newborn child. The last has not been properly addressed until recently. 

As has long been known, autism risk to a newborn child rises if the family already has a 

child with autism [16,17]: in families with a single child affected with autism, the risk to the 

next-born child is about 20% if male, and 10% if female. However, it was only in 2007 that Zhao 

et al. [15] noted that in families with two previously affected children, the risk to the next-born 

child is about 45% if male, 20% if female. This result was subsequently confirmed [17]. Zhao et 

al. formulated the simplest possible theory to explain this data. In their model, all families fall 

into one of two classes: one class is composed of low-risk families and accounts for greater than 

99% of the population and half of autism incidence. The other class accounts for the remaining 

1% of the population and these families have a high risk of generating autistic children. The 

authors proposed that such a risk distribution may be the result of a single molecular-genetic 

mechanism: causative de novo mutations in low risk families, which through incomplete 

penetrance, especially in females, create carriers who then generate high risk families.  

While Zhao et al. proposed a genetic mechanism to explain the interplay of de novo and 

transmitted variants, theirs is not a population genetic model. The purpose of this paper is to 

explore genetic models that balance the dynamic forces of variation and selection, in which new 

mutation and subsequent transmission generates the observations of incidence and sibling risk.  

We considered two approaches: simulation and precise numeric evaluation. The first has 

almost inexhaustible flexibility. Given virtually any specific model with parameters, we can 

simulate the evolution of a large mating population of individuals until some stability criteria are 

met, repeating this stochastic procedure to collect robust statistics on outcomes. The problem 

with this approach is that reliable inference of low frequency observables requires very large 

populations and multiple independent replicates. This effectively prevents the exploration of 

many alternative models and parameters. The second is to adopt a probabilistic description of the 
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population and evolve it numerically to its stationary state, from which observables are exactly 

computed. The disadvantage of this method is that without simplification it is too 

computationally intensive. However, by making certain model assumptions, we can reduce the 

computation to a tractable combinatorial problem.  

In this spirit, we describe a new computational framework for testing a wide range of 

genetic models predicated on the simplifying assumption of target classes for variants. Within 

this framework, variants within a target class have equal effect on the phenotype. This 

simplification allows a compact description of the genetic state of a population, which in turn 

greatly reduces the computational costs for evolving and evaluating the population. 

Consequently, we can rapidly explore many models within a large parameter space. By 

evaluating each model for its fit to known data, we are able to reject many parameter choices 

while identifying a few that match the properties of ASD quite well. In this paper, we limit 

ourselves to models with a single target class.  

We demonstrate that with a simple model, we are able to recapitulate not only the 

currently established observables in epidemiology, but also the results of recent genomic studies 

on ascertained populations. 

 

Results 

General framework 

We define a target class as a set of variants of equal additive effect. The genotype of each 

individual is therefore determined by the gender and the number of variants (“hits”) in the target 

class. Consequently, the genotypes of each generation are described by a pair of probability 

distribution functions, one for each gender, yielding the proportion of the males and females in 

the population with a given number of hits. We can then evolve these distributions over discrete 

generations with a set of computationally efficient numeric operations for phenotypic emergence, 

selection, mating, conception and de novo mutation. We iterate until the distributions are nearly 

stationary, at which time we compute observables. In the limit, this numerical evolution yields 

the exact stationary state of an infinite population.  

 Our modeling paradigm also gives us great flexibility in choices for phenotype, selection 

and mating patterns. In this paper we restrict to models in which: (1) affected individuals do not 

mate; (2) populations mate randomly; (3) mutations segregate independently following an 

infinite site model; (4) the target class is autosomal; and (5) variant effects are strictly additive 

with no special consideration for homozygous or compound heterozygous events. The space of 

one gene class models are further characterized by three additional pieces of information. The 

first is a de novo mutation rate 𝑅 reflecting the mean number of new hits per individual that fall 

within the target class. The second and third are the selection functions: gender-specific 

functions specifying the probability that a male or female with a given number of hits in the 

target is not affected. To constrain the space of possible genotypes, we assume that there is some 

maximum number of hits, beyond which all individuals are affected. Once we have chosen a 

mutation rate and a pair of selection functions we can evolve the population to equilibrium. At 

equilibrium, we determine the family risk distribution from which we compute the incidence and 
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sibling recurrence rates and compare them to the observed rates as summarized in Table 1. We 

refer to these rates (𝑀1, 𝐹1, 𝑀2, 𝐹2, 𝑀3, 𝐹3) as the relative moments of the risk distribution (see 

Methods). 

The selection functions may be arbitrarily complex; however, in this paper, we explore 

two distinct model types. The first are “threshold models” wherein each gender can tolerate up to 

a fixed number of hits. Individuals with a tolerable number of hits are unaffected and are all 

equally likely to reproduce. Individuals with more than the allowed number of hits for their 

gender are affected and do not contribute to the next generation. The second type of models we 

consider are “penetrance models” wherein each gender has a fixed coefficient of selection 𝑝 such 

that the probability that a child with N hits is unaffected is 𝑝𝑁. In both cases, the selection 

functions are each defined by a single parameter and are monotonically decreasing with the 

number of hits. If we fix these parameters, we still have one degree of freedom in determining 

the de novo mutation rate 𝑅. 

To select a value for this free parameter, we take advantage of another property common 

to these two model types, namely, that the incidence of ASD at equilibrium increases 

monotonically with the mutation rate, crossing the full range of values from zero to one. Since 

both types of models have selection functions that decrease with the number of hits, increasing 

the mutation rate increases the incidence. Thus, for a fixed pair of selection functions and a male 

incidence rate 𝑀1, there exists a unique value for R such that the incidence of ASD in males at 

the model equilibrium is 𝑀1. Since both male and female selection functions determine the male 

incidence rate, we can constrain 𝑅 to fit 𝑀1 for any pair of selection functions. Operationally, we 

achieve this by applying Newton’s method (see Methods). Since there is some uncertainty even 

in the value of male incidence, we solve for three possible values, 𝑀1𝑙𝑜𝑤
= 1: 140, 𝑀1𝑚𝑖𝑑

=

1: 100, and 𝑀1ℎ𝑖𝑔ℎ
= 1: 70. For each value of 𝑀1, we evaluate the fit of the model to five 

remaining observables: the female to male affected ratio, and the sibling recurrence rates for 

each gender, given one or two previously affected children. 

Threshold models 

 The first space of models we consider are the threshold models in which males and 

females may each tolerate a fixed number of hits in the target class. When that number of hits is 

exceeded, the individual is affected and does not reproduce. This space of models is 

parameterized by the mutation rate 𝑅 and the maximum number of hits tolerable in unaffected 

males and females, denoted 𝑁𝑥 and 𝑁𝑦 respectively. For each pair of integer values 𝑁𝑦 and 𝑁𝑥 

satisfying 0 ≤  𝑁𝑦, 𝑁𝑥  ≤  18, and for each target rate for male incidence 

(𝑀1𝑙𝑜𝑤
, 𝑀1𝑚𝑖𝑑

, 𝑀1ℎ𝑖𝑔ℎ
), we solve for the unique value of 𝑅 that yields those rates. We then 

determine the remaining population level observables such as female incidence and sibling 

recurrence rates. The results for 𝑀1𝑚𝑖𝑑
 are represented in Figure 1. The other two cases yield 

similar representations and are not shown. The color scale shows the percent error to the target 

value for each of the five observables and points that fall within the error bounds of that target 

are boxed in black. 

 This class of models fails to produce a solution that satisfies the established observables 

in ASD epidemiology. Notably, the high risk to males born into families with two affected 

children is not observed for any situation except for the case where females are tolerant of 
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mutation and males are completely intolerant. Unfortunately, all of these solutions overwhelming 

underestimate the female rate of ASD.  

 Threshold models with high 𝑁𝑥 and 𝑁𝑦 values are a near analogue to the “multi-factorial 

liability threshold models” that were proposed for complex disorders [18]. These threshold 

models assume a Gaussian distribution of risk alleles in the population such that their cumulative 

genetic burden triggers pathology on passing a threshold. While our threshold models have a 

discrete space of hits, the number of hits in the population at equilibrium is roughly Gaussian and 

becomes increasingly so as the threshold increases. The threshold models provide solutions that 

conform to the gender imbalance observed in autism when 𝑁𝑥  =  𝑁𝑦  +  1 for 𝑁𝑦 in the range of 

5 to 9 hits. However, these models under-predict all of the higher risk moments and so would 

require an additional mechanism to explain sibling recurrence risk. Thus, the threshold models 

alone fail any reasonable quantitative assessment. 

Penetrance models 

The second model type we consider acknowledges that mutation is not destiny but merely 

sets the probabilities of a random process that determines affected status. Individuals with more 

hits will be at higher risk. One way to express this numerically with a single parameter for each 

gender is what we call the “penetrance models.” Each model specifies two values, 𝑝𝑦 and 𝑝𝑥, for 

males and females respectively. The probability that an individual with N hits is not affected is 

𝑝𝑦
𝑁 for males and 𝑝𝑥

𝑁 for females. We explore this space of models by considering all pairs of 

values 0.01 ≤  𝑝𝑦, 𝑝𝑥  ≤  0.95 for a sufficiently fine grid (see Methods). As described above, we 

determine de novo mutation rates 𝑅 such that the computed male incidence M1 matches the three 

targeted male incidence rates, 𝑀1𝑙𝑜𝑤
, 𝑀1𝑚𝑖𝑑

, and 𝑀1ℎ𝑖𝑔ℎ
, and report the remaining observables.  

The match to 𝑀1𝑚𝑖𝑑
 is shown in Figure 2. Targeting the higher and lower incidence rates 

does little to perturb the higher moments and those plots are included in the Supplement. In 

contrast to the threshold models, the penetrance models yield viable solutions that satisfy all six 

observables to within their error range (yellow circle in Figure 2). This occurs for the values near 

𝑝𝑥  =  0.72 and 𝑝𝑦  =  0.12, and a mutation rate R = 0.0067. The resulting models match the 

lower bound estimates for sibling recurrence and the female to male ratio. Further, the target 

mutation rate is consistent with a per gene de novo mutation rate of 10-5 for about 600 target 

genes, in close agreement with the rates of causative mutation and gene target size[19]. 

Predictions from an optimal model 

Each set of parameters determines an equilibrium population in which we can explore 

other features beyond the relative moments. We select a specific set of parameters for the 

penetrance model (𝑝𝑥  =  0.72, 𝑝𝑦  =  0.12, 𝑅 =  0.0067) and consider the distribution of hits 

in affected and unaffected children, the distribution of family types and their risk, and the 

proportion of autism due to de novo and transmitted events. 

The population dynamics of the optimal model result in almost all individuals having two 

or fewer hits. Nearly all affected children are the result of a single hit. Only 0.6% of affected 

males and 1% of affected females have two or more hits (Figure 3). Males with a single hit have 

an 88% chance of developing an ASD while females have a much lower risk of 28%. Those 
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individuals who carry mutations and are asymptomatic comprise 0.1% of the male population 

and 0.8% of the females. These carriers contribute to the next generation and give rise to a small 

proportion of families with a high risk of having affected children. 

In any single class model, family risk is completely determined by the de novo mutation 

rate and the number of hits carried by the parents. Consequently, we can partition families into 

types: those with zero hits (Type 0), those with exactly one hit (Type 1), and those with two or 

more hits (Type 2). Most families (99%) are free of target class variants and have a 0.6% risk 

that a male newborn will develop an ASD, and a 0.2% risk for females (Figure 4a). In these 

families, affected children are exclusively the result of a de novo mutation. Nearly all the 

remaining families have a single hit with a 50% chance of passing on that mutation to a child. 

The result is a 44% risk that their male newborn will develop an ASD and a 14% risk for a 

female newborn. 86% of the time the transmitted variant is carried by the mother. While these 

families represent a small minority of the population, their high risk of producing an affected 

child results in their contributing to 42% of all ASD cases.  

In order to measure the proportions of family types within ascertained collections, we 

computationally generate three distinct sample populations (Figure 4b). The first is a “general 

population” comprised of all families assuming a uniform brood size. The second is a “singleton 

population” composed of families with one affected child and no information about additional 

children. The third collection is a “multiplex population” made up of families with two children 

who are both affected. Integrating the risk functions in Figure 4a over the population 

distributions in Figure 4b determines the relative moments. For example, (0.006 × 0.5755)  +
 (0.443 × 0.4212)  + (0.689 × 0.0033)  =  0.192 is the relative risk to a newborn male in a 

family with one affected child. In the general population, nearly all families are low risk; in the 

singleton population about half of families are low risk; and in the multiplex population nearly 

all families are high risk. 

Given an ascertained collection, we can also query the source of target variants, be they 

transmitted or de novo. For each population, we examine the expected number of hits in the next 

born child conditioned on its gender and affected status (Figure 4c). An affected child from the 

general population has, on average, 1.01 hits in target class, in the proportion of 0.58 de novo and 

0.42 transmitted, irrespective of gender. If there is already one affected child in the family, the 

next born unaffected male and female siblings have 0.03 and 0.16 transmitted variants 

respectively, but if the next born child is affected, he or she is very likely to carry to a 

transmitted variant in the target class. The probability of a transmitted variant in an affected child 

rises to near certainty in families which already have two affected children. 

Lastly, we model a population which approximates the properties of the Simons Simplex 

Collection (SSC) [20]  by simulating families with two children, and aggregating those with 

exactly one affected child. Compared to the singleton population, the simplex population is 

slightly more enriched for Type 0 families (66% compared to 58%); however, it still contains a 

significant proportion of high risk families. Since the male children of high risk families are 

more likely to be affected than the female children, the ascertainment of unaffected children 

induces a bias in the sibling gender. In the simulated simplex population the expected gender 

bias in unaffected siblings is 53.7% female (Figure 5a). In the SSC, the observed gender bias in 

families of this type is 53.5% (1229 unaffected female siblings in 2295 SSC families with two 

children). When we examine the role of de novo and transmitted variants observed in these 
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families conditioned on affected status and gender, we find that there is little difference between 

the affected male and female children, with an expectation of 1.01 hits in the target class, 0.66 de 

novo and 0.34 transmitted (Figure 5b). In fact, in an exome study of the SSC collection, females 

and lower IQ males (nvIQ ≤ 90, see Discussion) have similar differential rates for de novo LoF, 

missense and CNV mutations, estimated to range between 0.40-0.70 [19,21].  

Discussion 

We have developed a computational framework for modeling the combined roles of de 

novo and transmitted genetic variants in the etiology of disease. We begin by considering 

variants as falling into distinct classes wherein each variant is of equal effect. This allows us to 

rapidly explore a wide space of parameters to determine if models exist which fit observations 

generated by epidemiologic and genetic studies. In this paper we consider only single class 

models.  

Some simple genetic models fail outright to generate a satisfactory match to the known 

epidemiology of the disorder. For example, we exhaustively explored the space of single class 

threshold models wherein each individual can tolerate up to a fixed number of hits. We can 

account for the different rates of autism in males and females by setting a different threshold for 

each gender. When the number of tolerable hits is large, the distribution of mutations per 

individual in the population approaches a Gaussian distribution and approximates the multi-

factorial liability threshold models. As we have demonstrated, such a model alone simply cannot 

explain the sibling recurrence rates observed in autism while staying close to the observed 

incidence. 

On the other hand, the penetrance models succeed. With proper choices for just three 

parameters, the model can match six observables: male and female incidence, male and female 

sibling recurrence risk, and male and female recurrence risk in families with multiple affected 

children. This model gains further support by making additional verified predictions. The rate of 

de novo target class mutations is consistent with target size and mutation rate estimates from 

existing genetic studies [9,19]. The proportion of children in a simplex collection with a 

contributory de novo mutation is also well approximated [19]. Finally, the bias in sibling gender 

from the ascertained population is a near perfect match to that observed in simplex families from 

the SSC.  

A good model can makes predictions that are as yet untested and thereby suggests future 

studies. Either success or failure to verify can shed light on the puzzles that remain. Our model 

makes two very strong predictions. The first is that the rate of de novo mutations in affected 

children from multiplex families will be barely above that of an unaffected control population. 

On this point, the literature presently has conflicting reports [3,6,22]. The samples needed to 

resolve this question properly, namely blood derived DNAs from multiplex families, has either 

not yet been collected or sequenced. The second prediction made by our model is that there will 

be a high rate of transmission of strong alleles in multiplex families, typically from the mother, 

and in the same genes targeted by de novo mutation in simplex autism. While there is some 

indirect support for a female carrier effect based on half-sibs [23], a genetic study of 

transmission based on the targets of de novo mutation is only now possible [21]. 
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In spite of its successes, the optimal single class penetrance model falls short on three 

major counts. First, the model does not distinguish the special status of monozygotic twins. 

Rather, it predicts a twin concordance rate for males and females identical to that for any two 

males or any two females with the same number of hits: 88% for males with a single hit and 28% 

for females with a single hit. While the male twin concordance rate is close to the observed rate 

of roughly 80%, the values for females is low compared to the observed rate of roughly 50% 

[16,24]. Secondly, the penetrance model provides no measure of “severity”. Using nvIQ as a 

surrogate, the model is unable to explain two observations regarding affected children with 

higher IQ: the extreme male to female gender bias in these children [19], and a different pattern 

of causal de novo events in higher IQ males [21]. Lastly, the model leaves no room for what 

must be a genetic mechanism: the accumulation of mutations of modest effect. 

These shortcomings may share a common solution. Consider a threshold model with two 

target classes, one a weak class of modest effect and one a strong class of large effect. The 

variants from the weak class will be ubiquitous in the human population, and have an 

approximately Gaussian distribution. With a gender-specific weighting on the effects of weak 

class variants, the accumulation of hits in this class will function as a modifying event for the 

strong hit class. The net result would be a high concordance between MZ twins, a model of 

severity proportionate to the number of weak hits, and a secondary mechanism for autism due to 

weak hits alone, while still matching the epidemiological data. Preliminary exploration of two 

class models appears to support this solution. 

 

Materials & Methods  

We define an individual in a population by the number of hits in the target class. The 

population is defined by the probability distribution 𝑃(ℎ, 𝑡) of total hits ℎ of individuals in the 𝑡-

th generation. This probabilistic description is exact in the infinite population limit.  Our 

computational framework defines population evolution—mating, conception, mutation and 

selection— as operations manipulating 𝑃(ℎ, 𝑡) at every generation 𝑡 until the stationary state is 

reached where 𝑃(ℎ, 𝑡) is stationary under the sequence of these evolution operations. The 

framework requires an upper bound on the maximum number of hits, and hence, the domain of ℎ 

is [0, 𝐻] where 𝐻 = 200 is the maximum number of hits considered. This upper bound is very 

generous: for the penetrance model the upper value of 𝑝 = 0.95 whereby unaffected status is 

exceedingly improbable beyond 200 hits, 𝑝𝑁 = 0.95200 = 3.5 × 10−5.   

We begin with a pristine population where all individuals have zero hits. At generation t, 

we have the distribution of hits in the population, denoted by 𝑃(ℎ, 𝑡). In the rest of the section, 

we suppress the generation index 𝑡 whenever doing so is unambiguous. 

Selection: The male and female selection functions are denoted by 𝑆𝑌(ℎ) and 𝑆𝑋(ℎ) 

respectively. These functions assign probabilistic weights to whether individuals with ℎ hits will 

be unaffected, either in a binary fashion (as in the threshold model where up to a certain number 

of hits are allowed) or in a graded fashion (where an individual with more hits will have a 

diminishing chance of reproducing).  For example, in the penetrance model, 𝑆 = [0, 𝑝,
𝑝2, 𝑝3, … 𝑝𝐻] where 𝑝  is a gender dependent parameter. The probability distribution of hits in 
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unaffected males is given by  𝑃𝑌(ℎ) =  𝑃(ℎ)𝑆𝑌(ℎ)/ ∑ 𝑃(ℎ)𝑆𝑌(ℎ)ℎ , and similarly for females. 

Selection generates the parental distributions, 𝑃𝑌(ℎ) and 𝑃𝑋(ℎ). 

Mating: Mating is random among unaffected individuals. Therefore, all possible mating 

pairs are generated, where males are drawn from 𝑃𝑌(ℎ) and females from 𝑃𝑋(ℎ). The probability 

distribution 𝐹(𝑓) of total hits f in the collection of mating pairs (“family”) is the given by the 

convolution 𝐹(𝑓) =  ∑ 𝑃𝑋(ℎ) 𝑃𝑌(𝑓 − ℎ)ℎ . 

Conception: Given that a family has 𝑓 hits, independent segregation of alleles dictate that 

the “zygote” (individual with only inherited hits, before de novo mutations are introduced) 

inherits from 0 to 𝑓 hits according to a binomial distribution with probability 0.5. The total 

number of hits in the family determines the distribution of hits in the zygote. The conditional 

probability of a zygote inheriting 𝑧 hits from a family with 𝑓 hits is the binomial distribution 

𝑃(𝑧|𝑓). Therefore, the distribution 𝑃𝑍(𝑧) of hits in the zygote population is 𝑃𝑍(𝑧) =
 ∑ 𝑃(𝑧|𝑓)𝐹(𝑓).𝑓  

Mutation: When the target class size greatly exceeds the average number of hits in the 

population, we can safely ignore the case of multiply-hit loci or homozygous mutations. 

Therefore, we consider the rate R of new hits in the target class per individual. New hits are 

introduced by a Poisson process denoted by the probability 𝜇(𝑘; 𝑅), where 𝑘 is the number of de 

novo mutations. We call the zygote after mutation the “newborn”. The distribution of hits in the 

newborn population is identical to the probability distribution of the next generation, 𝑃(ℎ, 𝑡 + 1). 

The distribution of hits in the population of newborns is given by the convolution, 𝑃(ℎ, 𝑡 + 1) =
 ∑ 𝜇(𝑘; 𝑅) 𝑃𝑧(ℎ − 𝑘)𝑘 . 

The above four nonlinear operations performed in sequence generate the next generation 

from the previous one. This process is repeated until the distributions 𝑃(ℎ, 𝑡) is stationary within 

numerical tolerance. The stationary distribution is used for computing all observables, including 

the moments.  

The risk distribution and the relative moments: Central to the definition and computation 

of the relative moments, introduced in the main text and in Table 1, is the risk distribution. The 

risk distribution 𝑅(𝑠|𝑓) over a family with f hits is the probability that the family generates 

newborn status 𝑠 where the four possible statuses are: unaffected male (𝑠 = 0), unaffected 

female (𝑠 = 1), affected male (𝑠 = 2), affected female (𝑠 = 3). These probabilities are 

generated assuming that gender is determined at random with a probability of 0.5 and the 

probability that the child is affected is determined by integrating the gender selection function 

over the binomial distribution on f hits. For example, in the case of the optimal model, the risk 

vector for a family with 0 hits is [0.497, 0.499, 0.003, 0.001] and for a family with 1 hit is 

[0.278, 0.429, 0.222, 0.071].  

The moments of the risk distribution are related to the sibling recurrence rates. For 

example, consider the incidence rates 𝑀1 and 𝐹1 of autism in males and females respectively. 

The male incidence rate is given by 𝑀1 = 2 ∑ 𝑅(𝑠 = 2|𝑓)𝐹(𝑓)𝑓  and similarly for females 𝐹1 =

2 ∑ 𝑅(𝑠 = 3|𝑓)𝐹(𝑓)𝑓 —these are the first moments of the risk distribution conditioned (by a 

factor of 2) on the gender of the newborn. 
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The second moments of the risk distribution determine the population averaged rates of 

observing specific family structure of two children. For example, the rate of observing a family 

structure of one affected male and one affected sibling of either gender is given 

by ∑ 𝑅(𝑠 = 2|𝑓) 𝑅(𝑠 = 2,3|𝑓)𝐹(𝑓)𝑓 . The male second relative moment 𝑀2 is the population 

averaged risk to a male newborn in all families with brood size of two, conditioned on the other 

sibling (irrespective of gender) being autistic. Therefore,  

𝑀2 =  
∑ 𝑅(𝑠 = 2|𝑓)𝑅(𝑠 = 2,3|𝑓)𝐹(𝑓)𝑓

1

2
∑ 𝑅(𝑠 = 2,3|𝑓)𝐹(𝑓)𝑓

,  

and similarly for females.  

The remaining two sibling recurrence rates are the third relative moments. The male third 

relative moment 𝑀3 is the population averaged risk to a male newborn in families with brood 

size of three, conditioned on the other two siblings being autistic. Therefore, 

   𝑀3 =  
∑ 𝑅(𝑠 = 2|𝑓) 𝑅(𝑠 = 2,3|𝑓)

2
𝐹(𝑓)𝑓

1

2
∑ 𝑅(𝑠 = 2,3|𝑓)

2
𝐹(𝑓)𝑓

  

The two incidence rates and the four relative moments are the first six observables summarized 

in Table 1.  

  

Generating family collections 

In order to generate collections of families, like the singleton, multiplex and simplex 

populations, we use the risk distribution 𝑅(𝑠|𝑓) to determine the proportions of families with a 

certain “family structure”. For example, every family in a simplex collection has the same family 

structure of “one affected and one unaffected child”. The risk distribution conditioned on the 

simplex collection, and weighted by the family distribution 𝐹(𝑓), is given by  

𝑄𝑠𝑖𝑚𝑝𝑙𝑒𝑥(𝑠𝐴, 𝑠𝑁 , 𝑓) =
𝑅(𝑠𝑁 = 1,2|𝑓)𝑅(𝑠𝐴 = 2,3|𝑓)𝐹(𝑓)

∑ 𝑅(𝑠𝑁 = 1,2|𝑓) 𝑅(𝑠𝐴 = 2,3|𝑓)𝐹(𝑓)𝑓
 

 

where 𝑠𝐴 is an affected child (𝑠𝐴 = {2, 3}) and 𝑠𝑁is an unaffected child (𝑠𝑁 = {1,2}). The 

distribution of hits 𝐹𝑠𝑖𝑚𝑝𝑙𝑒𝑥(𝑓) in a simplex collection is therefore the sum over all possible 

combinations of children in a simplex collection, 𝐹𝑠𝑖𝑚𝑝𝑙𝑒𝑥(𝑓) = ∑ 𝑄𝑠𝑖𝑚𝑝𝑙𝑒𝑥(𝑠𝐴, 𝑠𝑁 , 𝑓)𝑠𝐴,𝑠𝑁
. This 

distribution generates the data shown in Fig. 5. Other family collections like singleton and 

multiplex are generated similarly.  

Optimization over mutation rate parameter R 

In exploring the three dimensional parameter space in each model type, we search over a 

grid of selection parameters. We then optimize the mutation rate R at each grid point to obtain a 

fixed value for the male incidence. For the threshold models, the grid is over the integer values 

of the number of tolerated hits in males and females (𝑁𝑦and 𝑁𝑥) in the range of [0,18]. Higher 
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values only perform worse in fitting the moments. For the penetrance models the grid is over the 

continuous parameters 𝑝𝑥 and 𝑝𝑦 in increments of 0.01 in the range [0.01, 0.95]. For each choice 

of the selection parameters, we perform Newton’s method of optimization to find the optimal 𝑅. 
The objective function is the quadratic error of reproducing the male incidence, 𝐿(𝑅) =
 (𝑀1

𝐶(𝑅) −  𝑀1
𝑇)2, where 𝑀1

𝐶(𝑅) is the computed male incidence for the value of 𝑅 in the 

iteration, and the 𝑀1
𝑇 is the target male incidence rate. We explore all three target rates for male 

incidence listed in Table 1.  

For each iteration of Newton’s Method, we compute the gradient of 𝐿(𝑅). The gradient is 

defined as (𝐿(𝑅 + 𝜖) − 𝐿(𝑅 − 𝜖))/𝜖 where 𝜖 is the step size. Increasingly refined step sizes 𝜖 

are considered in the optimization process. The coarsest step is 5 × 𝑅𝑠 and the finest is 0.0005 ×
𝑅𝑠, where 𝑅𝑠 = 0.01 is the scale of the mutation parameter. If 𝐿 can be lowered, a step in 𝑅 is 

taken in the gradient descent direction. If not, 𝜖 is lowered and the gradient is recomputed. If 𝐿 

cannot be lowered even for the finest 𝜖,  the optimization terminates with a success flag. We 

observed that the incidence rate is a monotonic function of 𝑅 for the monotonic selection 

functions under consideration; therefore, our simple optimization protocol is sufficient and 

always terminates successfully before the maximum number of iterations is reached. 

 

Acknowledgments 

This work was supported by a grant from the Simons Foundation (Award SFARI 235988, to 

M.W.). 

Figure Legends 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 30, 2015. ; https://doi.org/10.1101/017301doi: bioRxiv preprint 

https://doi.org/10.1101/017301


Page | 12  

 

 

Figure 1 Moments generated from the threshold model. In each panel, the x and y axes are 𝑁𝑥 and 𝑁𝑦, the 

selection parameters (maximum number of hits tolerated in unaffected females and males, respectively). 

For each pair of selection parameters, we identify a mutation rate R such that the model fits the male 

incidence. The five heatmaps show the percent error difference between the model prediction for the other 

relative moments and their observed target values. The boxed regions show where the percentage error is 

within the bounds listed in Table 1. M2. The percentage error in male second relative moment. Note that 

the fit is good only when unaffected males tolerate 0, 1 or 2 hits. M3. The percentage error in the male 

third relative moment. The fit is good only when unaffected males are completely intolerant of mutations 

in the target. F1. The percentage error in male to female ratio of incidence. F2. The percentage error in 

female second relative moment. F3. The percentage error in female third relative moment. Last Panel. 

The overlap of the individual regions where each observable is within error bounds. Significantly, the 

regions are non-overlapping for all observables—the threshold model fails to fit all observables, within 

error bounds, for any parameter choices. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 30, 2015. ; https://doi.org/10.1101/017301doi: bioRxiv preprint 

https://doi.org/10.1101/017301


Page | 13  

 

 

Figure 2 Moments generated from the penetrance model. In each panel, the x and y axes are 𝑝𝑥 and 𝑝𝑦, 

the penetrance parameter for females and males respectively. For a given value of p, the probability that 

an individual of that gender with N hits is unaffected is given by pN. For each choice of these two 

selection parameters, we determine the mutation rate R that fits a male incidence of 1:100. The heatmaps 

show the percentage error of the model prediction from target values of the observables. The contours 

define regions where the percentage error is within the bounds listed in Table 1. M2. The percentage error 

in male second relative moment. M3. The percentage error in male third relative moment. F1. The 

percentage error in male to female ratio of incidence. F2. The percentage error in female second relative 

moment. F3. The percentage error in female third relative moment. Last panel. The overlap of the 

individual regions where each observable is within error bounds. The regions overlap (marked in yellow 

circle)—the penetrance model succeeds in fitting all observables, within error bounds, in the 

neighborhood of  𝑝𝑥  =  0.72,  𝑝𝑦  =  0.12, 𝑅 =  0.0067. 
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Figure 3 The proportion (log scale) of the population with the designated number of hits for the optimal 

penetrance model (𝑝𝑥  =  0.72, 𝑝𝑦  =  0.12, 𝑅 =  0.0067). Most normal individuals have zero hits and 

most affected individuals have a single hit. One in a thousand unaffected males carries a single hit, while 

the rate is 8-fold higher among unaffected females. Fewer than one in a hundred affected individuals have 

two hits and very few individuals, affected or not, harbor three or more hits. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 30, 2015. ; https://doi.org/10.1101/017301doi: bioRxiv preprint 

https://doi.org/10.1101/017301


Page | 15  

 

 

Figure 4 The risk and the hit distributions by family type generated by the optimal penetrance model 

(𝑝𝑥  =  0.72, 𝑝𝑦  =  0.12, 𝑅 =  0.0067) over ascertained populations. A. Probability (risk) of affected 

child for the family types with 0, 1, and 2 hits. For the family type with zero hit, the risk of ASD is 

derived entirely from de novo mutations. Families harboring one or more hits have a high risk of 

producing an affected child if the gender is male and a proportionately lower risk for female children. B. 

The proportional of family types with 0, 1, and 2 hits in the general, singleton and multiplex population. 

In the general population, 99% of families carry no hits. The singleton population is composed of families 

with one child who is affected. 42% of families in this population have 1 hit, and virtually all of the rest 

have zero hits. However, in the multiplex population, 97% of families have 1 hit and less than 2% have 

zero hits. C. The expected number of hits in the next born child. The average de novo and transmitted hits 

in normal and autistic males and females in the general, singleton and the multiplex families. The 

italicized numbers are de novo rates. Because most affected individuals have one hit (see Fig. 3), the sum 

of de novo and transmitted hits is slightly higher than 1. The probability that this hit is transmitted when 

the next born child is affected is very high in families which already have one affected child. 
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Figure 5 Features of the simplex population. A. Low risk families with zero hits in the parents comprise 

65.7% of the population while high risk families, where the parents carry one or more mutations in the 

target genes, account for 34.3%. By collecting families with a single unaffected child, the gender bias in 

penetrance results in a greater ascertainment of unaffected female siblings from the high risk families. 

The prediction is that female siblings will account for 53.7% of the population, very near the observed 

rate of 53.5% in the Simons Simplex Collection. B. The expected de novo and transmitted hits for all 

children in the simplex collection. 
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Table 1  

Observables  Values Lower 

bound 

Upper bound 

Male incidence (𝑀1)a 1/100  1/140 1/70 

Female to male ratio (𝐹1: 𝑀1)a 1:4 1:5 1:3 

1 affected, risk to next born male (𝑀2)a 23%  19% 27% 

1 affected, risk to next born female (𝐹2)a 8% 6% 10% 

2 or more affected, risk to next born male (𝑀3)a 47% 37% 57% 

2 or more affected, risk to next born female (𝐹3)a 20% 14% 28% 

Twin concordanceb 75% 60% 90% 

(a) From [17]. (b) From [16,24]  
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