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Background

Statistical methods for determining transcriptional changes between (replicated) groups of cell popu-
lations using RNA sequencing (RNA-seq) data are now quite mature. Several themes that emerged
from the past decade of modeling microarray data apply analogously to RNA-seq data: parameter
moderation is critical, multiple testing corrections are necessary and flexible frameworks (e.g. linear
models) to account for the effect of covariates are essential. In RNA-seq data, popular packages such
as edgeR, DESeq and DESeq2 [8, 1, 5] perform detailed modeling of the dispersion-mean relationship,
with variations on fitting a dispersion by mean trend and moderating estimates toward the trend.
Likewise, careful modeling of the mean-variance relationship of transformed data has been proven
effective, essentially “unlocking” the world of heteroskedastic linear regression [3].

A recent report in Genome Biology from Rapaport and co-authors claimed that some methods,
namely PoissonSeq [4] and limma [9], “have improved modeling of genes expressed in one condition”,
where they showed a striking difference in the ability to separate differential expression [7]. From
a methodological perspective, this result caught our interest and prompted us to understand how
aspects of all-zero-in-one-condition manifest undesirable properties in count-based models. Briefly,
we: i) found that Rapaport et al. made an error in the signal-to-noise (S/N) calculation for edgeR;
and, ii) a re-analysis suggests that count-based methods perform as well or better than other methods,
counter to the original conclusion.

The Rapaport manuscript is an excellent model of modern bioinformatics research, in terms of
making processed data and code available that reproduce figures from their manuscript. In many
cases, the small details can be important and this open source model facilitates quick access to
understand precisely what settings were used. We fully support this model and by default, also
make our code available. In this Correspondence, we investigate the genesis of differences in method
performance that Rapaport and co-authors observed and provide our view of how performance results
can be sensitive to decisions made.

Genes expressed in only one condition

We first briefly summarize the analysis that Rapaport and colleagues reported, with respect to the
all-zero-in-one-condition case.

Using gene-level read counts, they isolated genes that exhibit zero counts across all replicates of
a single condition; in general, the number of such genes is related to the depth of sequencing dedi-
cated to each sample, with deeper sequencing resulting in fewer such cases. The dataset in question,
comparing GM12892 cells to H1-hESC cells [13], with 3 and 4 replicates, respectively, had typical
read depths (16-39 million mapped reads) for such experiments. They used the following pipeline: i)
from the count table, generate DE P-values for several methods; ii) calculate S/N using “normalized”
data; iii) plot negative log P-value versus S/N, where they expect a monotonic positive dependency
(correlation); and, iv) generate receiver operating characteristic (ROC) curves with thresholds on the
S/N to illustrate the ability to separate low S/N (<3) from high S/N (>3).

They highlighted that count-based methods such as DESeq and edgeR, which infer changes in
expression via the negative binomial (NB) model, do not perform very well in this case. It is worth
noting that this is a non-standard use of ROC curves: here, all genes are strictly DE, but they vary
in their magnitude of change. So, the ROC curve represents the ability to separate low S/N from
high S/N. Rapaport and colleagues postulated that the NB model reduces to Poisson (dispersion ≈
0) and lacks the ability to handle the “wide variations” in gene counts among replicate libraries. Our
aim with this report is to understand the origins of this result, whether it be a shortcoming of the
dispersion estimation strategy or in the inference machinery since parameter estimates are on the
boundary of the parameter space.
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Signal-to-noise has some potential limitations

We became interested in the suitability and robustness of the S/N metric itself, since it forms the basis
for the “truth” in Rapaport’s ROC result. In theory, the S/N of the non-zero observations should
accurately reflect the significance of model-based P-values for the expressed-in-one-condition versus
zero differences. In practice, however, there are some potential difficulties: the sample sizes are small
and therefore, the S/N itself is subject to considerable estimation uncertainty; it is well known in
count data that the variance is intimately tied to the mean, so it is not clear whether S/N should
be calculated on the linear scale. In addition, a notable aspect of the Rapaport ROC comparison is
that while the same S/N cutoff (=3) is used across all methods, different sets of true and false DE
labels are used; this makes the curves difficult to compare, since both the truth and score change by
method. We explore these issues here.

Table 1 and Figure 1 give illustrative examples of the differences in the originally-calculated S/N
between edgeR and voom. Figure 1 gives a scatter plot of S/N calculated on each method’s normalized
data, highlighting in some cases large differences. Table 1 shows the top 10 genes each, in terms of
edgeR’s (estimated) false discovery rate (FDR) and calculated S/N, respectively (The full table of zero
counts, differential statistics and S/N is given in Additional file 1). Here, it is evident that several
genes that show little evidence for differential expression, have very high S/N for edgeR but not for
voom (e.g. C17orf66, TM4SF19, NPY1R). However, the P-values seem to appropriately reflect the
magnitude of evidence for DE, although they are on drastically different scales between edgeR and
voom (see Discussion for further commentary on this). In addition, several genes that show the largest
evidence against the null hypothesis (e.g., PLEK, MS4A1, etc.) show relatively low S/N for edgeR
and would be counted as false discoveries (according to a S/N=3 cutoff), while voom’s higher S/N
would result in these counted as true positives. Therefore, it is not clear whether the ROC curve is
reflecting the accuracy of the S/N calculation itself or of the statistical method’s capabilities. Upon
investigation, the differences in S/N exhibited in Figure 1 resulted from a code error in the original
report (See Additional file 2, Figure 1).

Another aspect to understand is the scale on which the S/N is calculated on. As is well known
with count data, the variance is related to the mean. In particular, using the NB parameterization
with mean µ and variance µ(1 + µ · φ), the theoretical S/N is then:

S/N =
1√

1/µ+ φ
,

which implies S/N→ φ−
1
2 with sufficiently large µ. Thus, depending on the mean, the S/N calculation

is capturing (inverse square root of) dispersion. For the ENCODE data, this relationship is shown
in Additional file 2, Figure 2. Since the S/N calculations are most relevant when the variance is
independent of the mean, we explored how transforming the data, which alters the mean-variance
relationship, affects the results of the ROC comparisons that Rapaport and co-authors performed.
Figure 2 (a)-(c) show mean-variance relationships for S/N calculated on different scales and (d)-(f)
highlight their corresponding ROC performances. In all cases, the true/false labels for the ROC curves
are the same across methods; specifically, counts-per-million from edgeR are used to base the S/N
calculation. Since the scale of data changes the scale of S/N, true genes are selected according to S/N
> 40th percentile and false as the lowest 20% of S/N to give a grey zone of uncertainty in the middle
(Additional file 2, Figure 3 gives alternative settings for these cutoffs, but results are unaffected).
Figure 2 (d) shows similar results to the original Rapaport study, whereas Figure 2 (e),(f) show a
remarkable reversal in performance, giving clear evidence for our earlier concern regarding the S/N
calculation.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 20, 2015. ; https://doi.org/10.1101/017673doi: bioRxiv preprint 

https://doi.org/10.1101/017673
http://creativecommons.org/licenses/by-nc-nd/4.0/


Count-based methods perform well on zero-in-one-condition
simulation

Given recent efforts in simulating RNA-seq count table [11, 10, 12], we tried to create a representative
simulation for the zero-in-one-condition situation. The simulation was designed as follows: i) generate
a dataset with no DE, ii) randomly select genes across the spectrum of expression levels and set counts
for one condition (chosen at random) equal to zero to represent “true” DE genes. As previously, we
sampled NB mean and dispersion estimates from the joint distribution of estimates using a large
dataset (here, from [6]) and filtered out extreme dispersion values. Altogether, 30, 000 features were
generated, in a 5 versus 5 two-group comparison and zero counts were introduced to 5% of the features.
To reflect the fact that zeros occur somewhat more often at lower expression across various datasets
(See Additional file 2, Figure 4), we increased the frequency of zero-counts at low expression value.

Based on the results of this simulation (Figure 3), ROC curves with the method’s 5% FDR high-
lighted (panel a) and plots of true positive rate versus achieved FDR (panel b), we again see that
count-based models perform well in the zero-in-one-condition situation. In addition, we explored the
postulation that the NB model gets reduced to Poisson in these zero-count situations. By comparing
the dispersion estimates calculated from the single non-zero condition to the original non-zero-in-
both conditions data, it does not appear that the dispersion estimates are drastically reduced (see
Additional file 2, Figure 5).

Discussion

As developers and users of bioinformatics strategies, we are particularly interested in the metrics and
methods that differentiate performance between the available tools. In this paper, we claim that
count-based methods perform well in the situation where genes are only expressed in one condition,
in contrast to an earlier report. We showed that a code error and the chosen scale of S/N resulted
in the earlier conclusion that count-based methods suffer performance in this situation. By calcu-
lating the S/N on a different scale and using the same set of labels across methods, a reversal of
method performance was observed. This highlights a sensitivity to decisions made in constructing the
benchmark.

Using a customized simulation that introduces zero-counts in one experimental condition, we
demonstrated that the performance of count-based is actually on par or better than other methods.
We also debunked the postulation that poor performance is related to dispersion estimation in count
models.

In the process of seeking out the origins of this statistical performance difference, we discovered
another potentially interesting phenomenon that may affect the interpretation of results. Looking at
Table 1 and Additional file 1, it is evident that the scale of P-values is drastically different between
edgeR and voom. Although this observation appears rather unrelated to the ability to separate true
from false DE genes, it is an indication that the scale of observations modeled affects the magnitude
of statistical evidence derived. Not surprisingly, method performance is ultimately dependent on the
scales, parameters, datasets used for the evaluation.

Supplementary material

Additional Supplementary material is available from:
http://imlspenticton.uzh.ch/robinson_lab/zero_count/
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Figures

Figure 1: Scatter plot of S/N (signal-to-noise) for limma-voom and edgeR for the ENCODE dataset,
where S/N is calculated from the non-all-zero condition. More information for the colored points is
given in Table 1.

Tables

Additional Files

Additional file 1 — Table of statistics for zero-count genes

table of zero counts, differential statistics and S/N for the ENCODE dataset

Additional file 2 — Supplementary Figures

This file contains the mentioned Supplementary Figures

Additional file 3 — R code and data

This file contains R code and necessary data used to reproduce the figures in the main manuscript
and in the supplement.
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Figure 2: Panels (a)-(c) give mean-variance relationships for different scales of the original all-zero-in-
one-condition data. Panels (d)-(f) give corresponding ROC curves for the ENCODE dataset (GM12892
cells to H1-hESC), using S/N to set the true labels. Here, the signal-to-noise (S/N) is calculated from
(TMM-normalized) counts-per-million and used for all methods. “linear” is equivalent to Rapaport’s
method, where S/N is calculated on the counts-per-millions. “log” represents S/N calculated on log-
transformed counts-per-million. “vsn” represents S/N calculated on variance-stabilized data ([2]).
ROC curves employ the same labels across all methods: the top 40% of S/N are used as true DE
genes whereas the lowest 20% as false. Each method’s P-value is used for ranking the genes.
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Figure 3: (a) ROC curves and (b) true positive rate (TPR) versus “achieved” FDR curves of DE
methods for the simulation dataset with zero-counts introduced as the true DE genes (overall per-
formance of 3 simulations); achieved FDR is the actual rate of false discoveries at the corresponding
cutoff and this rate should ideally be controlled at the desired level. For the ROC curves, the X on
each curve represents the method’s TPR at the (estimated) 5% FDR cutoff. For the TPR versus
achieved FDR curves, points are plotted at the following cutoffs: 0.01, 0.05 and 0.1; filled-in points
represent that the method has correctly controlled the error rate at the cutoff.

id A1 A2 A3 B1 B2 B3 B4 edgeR S/N edgeR FDR voom S/N voom FDR

MIPOL1 0.0 0.0 0.0 237.1 232.5 226.0 227.5 45.75 7.47e-31 3.79 3.32e-07
AQP4 0.0 0.0 0.0 46.1 45.0 46.7 44.4 43.87 1.44e-14 3.90 1.99e-06

FAM19A4 0.0 0.0 0.0 142.1 131.1 143.8 131.4 20.21 1.91e-24 4.06 4.72e-07
C17orf66 2.3 2.1 2.1 0.0 0.0 0.0 0.0 16.96 1.89e-02 2.72 7.40e-04
TM4SF19 3.5 3.2 3.2 0.0 0.0 0.0 0.0 16.96 3.00e-03 2.72 2.39e-04

SOX1 0.0 0.0 0.0 7.5 6.7 6.5 6.3 13.02 8.37e-05 4.33 1.27e-04
HPGD 0.0 0.0 0.0 22.6 21.0 19.6 19.0 12.97 5.08e-09 4.56 7.48e-06

LOC100131176 0.0 0.0 0.0 17.9 15.3 18.7 17.2 12.02 5.14e-08 3.51 1.49e-05
ZNF385D 0.0 0.0 0.0 135.5 155.0 155.0 132.3 11.80 2.60e-25 4.67 3.70e-07
NPY1R 0.0 0.0 0.0 209.8 179.9 179.3 208.5 11.38 1.33e-27 2.95 6.77e-07

PLEK 25082.8 12622.5 11394.8 0.0 0.0 0.0 0.0 2.16 1.79e-216 16.11 9.36e-09
MS4A1 25455.1 14937.7 12886.8 0.0 0.0 0.0 0.0 2.63 2.62e-215 7.26 1.60e-08

SLAMF1 7407.2 4859.3 4283.2 0.0 0.0 0.0 0.0 3.32 2.98e-165 5.11 2.53e-08
CCL3 11057.5 3413.1 3544.1 0.0 0.0 0.0 0.0 1.37 4.62e-165 5.13 2.15e-08

FCRLA 7742.0 2979.1 3879.8 0.0 0.0 0.0 0.0 1.92 1.01e-161 6.08 1.84e-08
RGS1 9939.5 9967.3 7741.6 0.0 0.0 0.0 0.0 7.22 4.53e-159 2.66 1.44e-07

DPPA4 0.0 0.0 0.0 14580.2 15215.1 14745.3 10617.3 6.47 2.37e-158 12.02 1.84e-08
TDGF1 0.0 0.0 0.0 15699.8 15481.1 13374.5 8522.5 3.98 6.37e-157 15.48 1.84e-08
SFRP2 0.0 0.0 0.0 14673.3 15229.5 13067.2 7234.4 3.43 1.84e-153 9.87 2.15e-08

BLK 9943.0 2954.7 2351.8 0.0 0.0 0.0 0.0 1.20 2.98e-147 3.28 5.17e-08

Table 1: A table of selected genes according to the top 10 originally-calculated S/N (for edgeR-
normalized data; first 10 rows) and top 10 FDR for differential expression (edgeR P-values; second
10 rows). The table includes the count-per-million table (A=GM12892, B=H1-hESC), S/N and
estimated false discovery rate (FDR) for edgeR and limma-voom for the ENCODE dataset comparing
3 replicates of GM12892 to 4 replicates of H1-hESC.
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