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Abstract19

Imputation of genotypes in a study sample can make use of sequenced or densely genotyped20

external reference panels consisting of individuals that are not from the study sample. It can21

also employ internal reference panels, incorporating a subset of individuals from the study22

sample itself. Internal panels offer an advantage over external panels, as they can reduce23

imputation errors arising from genetic dissimilarity between a population of interest and a24

second, distinct population from which the external reference panel has been constructed.25

As the cost of next-generation sequencing decreases, internal reference panel selection is26

becoming increasingly feasible. However, it is not clear how best to select individuals to27

include in such panels. We introduce a new method for selecting an internal reference panel—28

minimizing the average distance to the closest leaf (ADCL)—and compare its performance29

relative to an earlier algorithm: maximizing phylogenetic diversity (PD). Employing both30

simulated data and sequences from the 1000 Genomes Project, we show that ADCL provides31

a significant improvement in imputation accuracy, especially for imputation of sites with low-32

frequency alleles. This improvement in imputation accuracy is robust to changes in reference33

panel size, marker density, and length of the imputation target region.34

Introduction35

Owing to the existence of genetic variation within species, geneticists routinely make choices36

about which individuals, inbred strains, or representatives of populations or breeds merit37

prioritization for genotyping or DNA sequencing. Often, such choices, though typically38

made by informal criteria, reflect an explicit or implicit goal of maximizing the potential for39

extrapolating the information in the genotyped or sequenced individuals to all members of40

a breed, population, or species of interest.41
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Genotype imputation algorithms infer unobserved genotypes by matching a set of markers42

to the haplotype patterns observed in a reference sample (Li et al. 2009; Marchini and43

Howie 2010), adding a new dimension to these choices. Reference panels that are used44

to facilitate genotype imputation in other individuals beyond the members of the panels45

themselves can often be optimally selected to formally maximize the imputed genotypic46

information obtained about those other individuals of interest (Kang and Marjoram47

2012; Zhang et al. 2013; Peil et al. 2015). The evaluation of alternative ways to select48

imputation reference panels thus provides an approach for making sample choices for major49

genotyping or sequencing studies more systematically generalizable.50

When conducting genotype imputation studies in a population sample, reference panels have51

generally been selected from databases external to the sample, such as the 1000 Genomes52

Project (1000 Genomes Project Consortium 2010) and the International HapMap53

Consortium (International HapMap Consortium 2005) databases. As a result of the54

rapidly decreasing cost of sequencing, however, it has become increasingly possible to carry55

out internal reference panel selection, in which additional sequencing is performed on a56

subset of the study sample, and the sequenced subset is then used to impute the remaining57

haplotypes. The use of reference sequences that originate from the study sample itself58

can reduce the potential mismatch of ancestral backgrounds between sample and reference59

populations, decreasing imputation errors. It also allows for genetic variants unique to the60

sample population to be successfully imputed (Fridley et al. 2010; Zhang et al. 2013).61

Previous studies have observed that a mismatch in population origins between reference62

panels and study samples can reduce imputation accuracy compared to when they originate63

from the same or similar populations (Huang et al. 2009, 2011; Li et al. 2010; Paşaniuc et64

al. 2010; Shriner et al. 2010; Surakka et al. 2010). Jewett et al. (2012) demonstrated,65

using a coalescent model, that with other variables held constant, smaller internal reference66

panels are often likely to outperform larger external reference panels, despite the difference67
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in panel size. Empirical studies have also shown that using an internal reference panel drawn68

from a subset of the sample under study, in addition to an external reference panel, gives69

rise to an increase in imputation accuracy over just using the external reference panel alone70

(Fridley et al. 2010; Sampson et al. 2012; Kreiner-Møller et al. 2015).71

The value of internal reference panels for imputation studies raises the question of how an in-72

ternal panel should be selected. Two recent studies have proposed maximizing “phylogenetic73

diversity” (PD) as a criterion for internal reference panel selection (Kang and Marjoram74

2012; Zhang et al. 2013). In this approach, the phylogenetic diversity of a set of haplotypes75

is defined as the total branch length of a tree spanned by the haplotypes (Faith 1992; Hart-76

mann and Steel 2007). Given a panel size, the goal is to select the subset of haplotypes77

whose subtree yields the longest total branch length. Conceptually, the idea of seeking a78

maximally diverse subset of haplotypes in the reference panel aims to sample haplotypes that79

best cover the full range of haplotypes observed in the sample. The maximum-PD panel, by80

choosing haplotypes from different regions of the tree of haplotypes (Figure 1B), is more81

likely than a random panel to supply the necessary diversity to impute sites localized in a82

subgroup within the entire sample population. Zhang et al. (2013) showed, using simulated83

sequence data and data from the 1000 Genomes Project, that by using the maximum-PD84

panel, higher imputation accuracy is obtained, and more sites are imputed as polymorphic in85

the sample population, than if the reference panel consists of randomly-selected haplotypes.86

Despite the utility of maximizing PD as a method for the selection of an internal reference87

panel, other approaches focusing on different principles might be preferable. Because the88

algorithm explicitly chooses haplotypes that are genetically distant from one another, long,89

pendant branches of the tree, if present, are likely to be chosen (Bordewich et al. 2008).90

The haplotypes associated with such branches might not be representative of the sample at91

large. These haplotypes might contain a large amount of sequencing error or missing data,92

and their inclusion in the reference panel might not contribute substantially to an increase93
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in imputation accuracy. Even if they have high-quality data, such haplotypes are relatively94

unique in the sample, and therefore might assist as imputation templates only for a small95

number of sampled lineages.96

PD can be viewed as emphasizing “diversity” of the internal reference panel rather than97

“representativeness.” To determine if an alternative focused on identifying the most repre-98

sentative subsample for use as the internal reference panel is preferable, we explore a new99

method: minimizing the average distance to the closest leaf (ADCL), which identifies refer-100

ence haplotypes based on their genetic proximity to the rest of the sample haplotypes. We101

compare the imputation accuracy of the maximum-PD, minimum-ADCL, and random refer-102

ence panels on both simulated data and data from the 1000 Genomes Project, and find that103

the minimum-ADCL panel consistently provides higher imputation accuracy, irrespective of104

changes to parameters such as reference panel size, marker density, and sequence length.105

Methods106

Maximizing phylogenetic diversity (PD)107

Given a tree of n haplotypes, to select a reference panel of haplotypes whose subtree spans108

the longest branch length, Zhang et al. (2013) considered a greedy algorithm that takes as109

inputs the tree and a parameter k ≤ n, the desired number of haplotypes for the panel. Let110

X be the k-element subset of the sample haplotypes chosen for the reference panel, and let111

TX be the subtree spanned by the haplotypes in X. The algorithm first selects the haplotype112

pair that is phylogenetically most distant (i.e. largest pairwise branch length), and adds both113

haplotypes to X. TX now consists of a single pair of branches. Sequentially, the haplotype114

that is the most distant from TX is placed into X, updating TX with each inclusion. This115

process continues until the required k haplotypes have been selected (Figure 1B).116
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Pardi and Goldman (2005) and Steel (2005) proved that among all possible subsets of117

size k ≤ n haplotypes from the study sample, the greedy algorithm achieves the globally118

maximal PD. Thus, the selection of the “most diverse” reference panel is computationally119

efficient, as there is no need to exhaustively examine all possible panels of size k in order120

to arrive at the correct solution. In addition, because the selection algorithm is greedy, the121

haplotypes in the reference panel can be ranked by their order of inclusion, in which every122

haplotype added contributes a non-increasing amount of PD. The maximum-PD panels of123

size 2 to k form a series of nested sets, and all previously selected haplotypes in a panel of124

size smaller than k will also be included in a panel of size k.125

Minimizing the average distance to the closest leaf (ADCL)126

Overview of ADCL: Instead of focusing on diversity in the selected set and targeting127

the potential for accurate imputation of unusual haplotypes, the minimum-ADCL algorithm128

focuses on representativeness, aiming to maximize imputation accuracy of typical haplotypes129

likely to appear in a sample. The problem can be viewed as choosing the haplotypes that are,130

on average, genealogically closest to the remaining haplotypes not included in the reference131

panel. As in the case of PD, the algorithm takes as inputs a tree of the n haplotypes in the132

study sample, and a parameter k ≤ n, indicating the desired reference panel size.133

Let H be the set of n haplotypes, and let X be the selected k-element subset of H. The134

objective is then to find X such that the branch-length distance from a randomly-chosen135

haplotype in H to its closest neighboring haplotype in X is minimized over all possible k-136

element subsets of H (Matsen et al. 2013). Note that because the haplotypes in X are also137

in H, each of these haplotypes is its own closest neighbor, and we can equivalently consider138

either H or H \X. In essence, the goal is to return a set of reference panel haplotypes that139

occupy the most central positions within clusters of the tree (Figure 1C).140
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In a detailed study of ADCL, Matsen et al. (2013) demonstrated that unlike when choosing141

the subset that maximizes PD, the greedy algorithm need not give rise to the globally-optimal142

ADCL solution. It is therefore necessary to produce alternative algorithms that seek to143

minimize ADCL. Note that because the greedy algorithm is not applicable, the haplotypes144

selected cannot be ranked by their order of inclusion, as a haplotype included in a subset of145

size smaller than k is not necessarily also included in a subset of size k (Figure 1C).146

Adapted partitioning-around-medoids (PAM) algorithm for minimizing ADCL:147

Matsen et al. (2013) described two algorithms which, for a given set of haplotypes, seek to148

produce the subset of size k that minimizes ADCL. The first approach leverages similarities149

between the problem of minimizing ADCL and the technique known as k-medoids clustering150

(Kaufman and Rousseeuw 1987). In the k-medoids problem, a set of data points is151

partitioned into k clusters, where k is predetermined. Within each cluster, a single point is152

designated as the center. The k-medoids clustering method is similar to k-means clustering.153

In the k-medoids approach, however, each cluster center is chosen from the original set of data154

points, whereas k-means has no such restriction. The objective function to be minimized in155

the k-medoids problem is the distance from a random data point to the center of the cluster156

to which it is assigned. A cluster center can be viewed as the data point most representative157

of the remainder of the data points within the cluster.158

It is then clear how the problem of minimizing ADCL is analogous to the k-medoids problem.159

A data point is a haplotype, and distances between data points are branch-length (patristic)160

distances between haplotypes. The k cluster centers are akin to the k haplotypes that are161

selected.162

As with minimizing ADCL, there is no greedy algorithm that solves the k-medoids prob-163

lem, and obtaining the globally optimal solution has been demonstrated to be NP-hard164

(Sheng and Liu 2004). A widely-used k-medoids heuristic algorithm is the partitioning-165
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around-medoids (PAM) algorithm (Theodoridis and Koutroumbas 2008), which works166

by randomly selecting k medoids from the original set of n data points, and then minimizing167

the objective function via hill-climbing. One iteration of the algorithm consists of looping168

over all k(n−k) possible pairs containing a medoid and non-medoid, exchanging the medoid169

statuses of the points in the pair, and recording the new value of the objective function from170

the updated arrangement. Among all k(n−k) proposed exchanges, the single exchange that171

leads to the lowest-cost configuration is chosen. The algorithm then enters a new iteration,172

and the process repeats until no further changes to the set of medoids take place.173

The first approach Matsen et al. (2013) considered for minimizing ADCL is an adaptation174

of the PAM algorithm. First, the set X of haplotypes included in the reference panel is175

initialized by randomly selecting, without replacement, k haplotypes from the initial set H176

of n haplotypes. Next, the following loop over the haplotypes x1, . . . , xk ∈ X is executed177

until no exchanges occur for one complete iteration over every xi ∈ X:178

(1) For a haplotype xi ∈ X, remove it from X and attempt to replace it with every other179

y ∈ H \X in its place.180

(2) Keep the best such exchange if it decreases ADCL.181

(3) Continue with xi+1 ∈ X. In the case of xk, continue with x1.182

This method for minimizing ADCL differs from the original formulation of the PAM algo-183

rithm in that it evaluates potential exchanges one medoid at a time, instead of examining184

all k(n − k) medoid/non-medoid pairs before finding the exchange that most decreases the185

objective function (Matsen et al. 2013). Because each step in the iteration causes the value186

of ADCL to either stay constant or decrease, the solution is guaranteed to converge on a187

local minimum. However, the algorithm remains a heuristic approach, and the minimum-188

ADCL solution it achieves could depend on the specific haplotypes selected during random189

initialization. Hence, the global minimum might not always be found.190
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Alongside the adapted PAM algorithm, Matsen et al. (2013) also developed a second ap-191

proach: an exact but more computationally-intensive algorithm that is guaranteed to find192

the global-minimum ADCL solution. Both algorithms were implemented in the rppr bi-193

nary in the pplacer suite of programs. Comparing between the two, Matsen et al. (2013)194

demonstrated that for their simulated test sets, the adapted PAM algorithm only rarely gets195

trapped in local minima. For computational efficiency, we therefore chose to use the adapted196

PAM algorithm rather than the slower exact algorithm, first testing that in our setting, mul-197

tiple runs of the adapted PAM algorithm with different initial seeds select a large percentage198

of the same haplotypes (see Results).199

Simulated sequence data200

To evaluate how the maximum-PD and minimum-ADCL panels perform relative to one an-201

other, we analyzed simulated data sets produced by the coalescent-based sequence sampling202

program ms (Hudson 2002), closely following the parameters used by Zhang et al. (2013)203

to ensure that the results are comparable.204

First, we independently generated 50 data sets, each consisting of 2000 1Mb haplotypes,205

assuming a constant effective population size of Ne = 10, 000, a mutation rate of µ = 10−8
206

per site per generation, and a recombination rate of ρ = 10−8 per site per generation. The207

parameter values provided to ms were as follows: nsam = 2000, nreps = 50, -t = 400, -r =208

400 and nsites = 106. From the simulated data sets, we removed all singleton sites to ensure209

that the sequence data were truly imputable. Within a data set, if the n = 2000 haplotypes210

contained q polymorphic sites after excluding the singletons, we randomly selected, without211

replacement, s = 300 of the q sites, each with minor allele frequency (MAF) greater than212

0.1. These markers were treated as genotyped. The remaining q − s sites were masked.213
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Following Zhang et al. (2013), we calculated the pairwise Hamming distances between the214

n = 2000 haplotypes in each of the 50 data sets, based on the genotype information at only215

the s = 300 randomly-selected markers. With these distances, we then used the software216

rapidnj (Simonsen et al. 2008) to construct a neighbor-joining tree (Saitou and Nei217

1987) of the haplotypes. Note that it was possible, as a result of random sampling, for two218

or more haplotypes to be identical at all s markers. In such a case, a leaf in the tree would219

represent more than one haplotype.220

Using the python library dendropy (Sukumaran and Holder 2010), we calculated the221

patristic distance matrix for each neighbor-joining tree. We then applied the greedy algo-222

rithm to select the reference panel of size k = 200 that maximizes PD. Furthermore, on each223

neighbor-joining tree, we used the rppr binary in pplacer (Matsen et al. 2013) to execute224

the adapted PAM algorithm, returning a reference panel of size k = 200 that minimizes225

ADCL. In cases for which either algorithm selected a leaf that represents more than one226

haplotype, one of the haplotypes was randomly chosen to be included in the panel.227

In order to model diploid samples, we also created diploid reference panels for use with both228

the maximum-PD and minimum-ADCL algorithms. First, we randomly paired the n = 2000229

haplotypes into 1000 diploid genomes. For the “diploid PD” panel, following Zhang et230

al. (2013), we included diploid individuals carrying at least one of the top-ranked haplotypes231

into the panel until we reached the desired panel size k. More specifically, we proceeded down232

the list of k haplotypes in the maximum-PD panel, ranked based on the order of inclusion.233

At each step, we selected both the top-ranked haplotype and the haplotype with which it234

was paired (and which was not necessarily top-ranked) for the diploid panel, if they had not235

already been picked previously. We continued this process until k/2 diploid genomes were236

selected, for a total of k haplotypes.237
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Unlike in maximum-PD panels, haplotype sets in minimum-ADCL panels are not nested.238

Therefore, we cannot use the same process to construct the “diploid ADCL” panel. To239

address this problem, we first constructed, again using rppr, a half-sized minimum-ADCL240

panel of size k/2 = 100. Each haplotype in the half-sized panel, along with the haplotype241

with which it was paired, was then included in the diploid panel. In the event that both242

haplotypes of a diploid genome were in the half-sized panel, they were each only chosen once.243

If the diploid panel was not fully filled at the end of this process, then haplotype pairs were244

randomly taken from the previously unselected diploid genomes until the requisite panel size245

of k/2 diploid genomes was reached.246

For comparison, for each of the 50 data sets, we also generated 1000 random reference panels247

by sampling, without replacement, k = 200 of the original n = 2000 haplotypes, giving a248

total of 1004 reference panels. A diagram of the simulation pipeline appears in Figure 2.249

For each of the k haplotypes in a reference panel, we unmasked the genotypes at the q − s250

masked sites and used the resulting full sequences as a reference to perform imputation, under251

the assumption that the haplotypes represent sequences with resolved phasing. Following252

Zhang et al. (2013), to avoid edge effects and to improve imputation accuracy, within each253

1Mb haplotype, we imputed only the middle 100kb segment, while still retaining the markers254

in both 450kb flanking regions (Li et al. 2010). Similar to Zhang et al. (2013), we used255

the program minimac (Howie et al. 2012) to perform imputation. The parameter values256

entered into minimac were as follows: --rounds = 5 and --states = 200.257

For each choice of reference panel, we evaluated imputation accuracy at the r imputed sites258

(masked sites within the middle 100kb segment) over the n/2 diploid genomes, applying259

a discordance metric. At imputed site j in diploid genome i, we define gij and ĝij to be260

the true and imputed genotypes respectively. Both gij and ĝij take on values in {0, 1, 2},261
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corresponding to the number of copies of an arbitrarily chosen allele at that specific site.262

The discordance rate D across all sites is given by263

D =

∑n/2
i=1

∑r
j=1 |gij − ĝij|
nr

.

We also compute the discordance rate H across all true heterozygous genotypes (gij = 1):264

H =

∑n/2
i=1

∑r
j=1 1gij=1 |gij − ĝij|

2
∑n/2

i=1

∑r
j=1 1gij=1

.

In addition, based on the MAF values of their constituent alleles, as computed in the full set265

of 2000 haplotypes, we further split the true heterozygous sites into three mutually exclusive266

MAF bins: 0 < MAF < 0.1 (low), 0.1 ≤ MAF < 0.2 (medium), and 0.2 ≤ MAF ≤ 0.5 (high).267

This separation was performed in order to evaluate how the PD and ADCL algorithms268

perform across the spectrum of rare to common variants. Note also that the calculations of269

D and H sum over all n/2 diploid genomes, irrespective whether they have one, both, or270

neither of their haplotypes represented in the reference panel.271

1000 Genomes Project sequence data272

We also applied both the PD and ADCL algorithms to sequence data from the 1000273

Genomes Project, available at http://csg.sph.umich.edu/abecasis/MACH/download/274

1000G-PhaseI-Interim.html. Following Zhang et al. (2013), we considered n = 762275

phased haplotypes from 381 diploid individuals with European ancestry: 87 Utah residents276

with Northern and Western European ancestry, 93 Finnish from Finland, 89 British from277

England and Scotland, 14 Iberians from Spain, and 98 Toscani from Italy.278
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We first removed all singleton sites from the data, and we then selected 30 1Mb segments279

that were approximately evenly spaced across chromosome 20, avoiding the centromere,280

telomeres, and adjacent areas. Study samples were then created using a similar procedure281

to that employed for the simulated data. For each of the 30 segments, we randomly selected282

s = 400 markers with MAF > 0.1 in the full set of 762 haplotypes, and masked the genotypes283

of the remaining sites. We then chose k = 120 haplotypes to include in the maximum-PD284

and minimum-ADCL reference panels, as well as in 1000 randomly-generated panels. For285

each choice of reference panel used for each segment, we imputed the middle 100kb, retaining286

the markers in both 450kb flanking regions. We then evaluated D and H analogously to the287

experiments with the simulated data.288

Results289

Stability of the adapted PAM algorithm290

Before considering the actual imputation results produced by the different algorithms for291

reference panel selection, we empirically validated the stability of the adapted PAM algorithm292

in choosing the minimum-ADCL panel. Beyond the initial run for each of our 50 simulated293

data sets, we repeated the selection of the minimum-ADCL panel five additional times. For294

each repetition, we executed the adapted PAM algorithm with a different starting seed, and295

then determined the number of haplotypes that were shared by the minimum-ADCL panels296

from both the initial run and the run with the modified seed.297

When comparing two panels of 200 reference haplotypes drawn from a set of 2000 sample298

haplotypes, let m be the number of haplotypes that are shared by both panels (0 ≤ m ≤299

200). For each of the five replicates, we calculated the mean value of m across the 50300

data sets, comparing each replicate to the initial run. All five mean values of m were301
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observed to be∼179 (Table 1); for comparison, the mean of the hypergeometric distribution302

describing the number of haplotypes shared between two panels of size 200 independently303

drawn from a pool of 2000 is 20, with standard deviation 4.03. Therefore, despite changing304

the specific haplotypes used in randomly initializing the adapted PAM algorithm, most305

haplotypes eventually chosen for inclusion in the minimum-ADCL panel remain the same.306

This result suggests that the adapted PAM algorithm is in fact stable, and in subsequent307

analysis, we consider only a single starting seed.308

Polymorphic sites in reference panels309

For each of the 1004 reference panels, we evaluated the number of masked sites within the310

imputed 100kb segment that were polymorphic. This calculation is important because only311

sites that are polymorphic in the reference panel can produce a meaningful imputation result312

for the remainder of the study sample. Summing across all 50 data sets, we detected a total313

of 12,851 masked sites within the 100kb segment of interest. We then compared how many of314

those masked sites appear as polymorphic in the maximum-PD panel, the minimum-ADCL315

panel, and a single random panel.316

Of the 12,851 masked sites, 8879 sites (69.09%) were polymorphic in all three reference-panel317

types. Of the 3972 remaining sites, 1138 (8.86%) were polymorphic in both the maximum-PD318

and minimum-ADCL panels, 244 (1.90%) were polymorphic in both the maximum-PD and319

random panels, and 374 (2.91%) were polymorphic in both the minimum-ADCL and random320

panels. In addition, 464 (3.61%), 473 (3.68%), and 391 (3.04%) sites were polymorphic in321

only the maximum-PD, minimum-ADCL, and random panels, respectively. Finally, 888322

(6.91%) of the masked sites were monomorphic in all three panels (Figure 3).323

Overall, 10,725 sites (83.46%) were polymorphic in the 50 maximum-PD panels, 10,864 sites324

(84.54%) were polymorphic in the 50 minimum-ADCL panels, and 9888 sites (76.94%) were325
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polymorphic in the 50 random panels. Using the two-tailed Wilcoxon signed-rank test, we326

found that both the maximum-PD and minimum-ADCL methods of panel selection identify327

substantially more polymorphic sites compared to choosing the reference panel randomly328

(P = 7.686× 10−10 and P = 8.175× 10−10, respectively).329

Polymorphic sites in imputed data sets330

The maximum-PD and minimum-ADCL selection algorithms result in similar numbers of331

polymorphic sites as a fraction of the total number of masked sites in their respective ref-332

erence panels. We next evaluated the number of imputed sites the two methods recovered333

as polymorphic. In each of the 50 simulated data sets, we calculated the percentage of334

masked sites that were polymorphic in the imputed sample, using the maximum-PD panel,335

the minimum-ADCL panel, the diploid PD panel, the diploid ADCL panel, and the same336

random panel used to assess the number of polymorphic sites within the reference panels.337

Figure 4 compares the proportion of polymorphic sites imputed with combinations of the338

five reference panel types. In each panel of Figure 4, the random panel is used as a baseline339

for evaluating two of the other four panel selection methods.340

We used the two-tailed Wilcoxon signed-rank test to evaluate differences in the fraction341

of sites identified as polymorphic by the different panel types. Both the maximum-PD342

and minimum-ADCL panels recover a significantly larger percentage of polymorphic sites343

compared with their respective diploid panels (P = 3.448 × 10−9 and P = 2.309 × 10−9,344

respectively). The minimum-ADCL panel also outperforms the maximum-PD panel (P =345

4.944 × 10−4). However, the percentage of imputed sites that are polymorphic shows no346

significant difference when comparing the diploid PD and diploid ADCL panels (P = 0.1625).347
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Discordance rates348

As a measure of imputation accuracy, for each of the 50 simulated data sets, we separately349

calculated the discordance rate D across all sites that were imputed with the maximum-PD350

panel, the minimum-ADCL panel, the diploid PD panel, and the diploid ADCL panel. For a351

baseline, we also calculated the mean discordance rate over the 1000 randomly-selected refer-352

ence panels. We are mainly interested in comparing the performance between the maximum-353

PD and minimum-ADCL panels, as well as between the diploid PD and diploid ADCL panels.354

The discordance rates appear in Figure 5, and their mean values are summarized in Table355

2. Again using the two-tailed Wilcoxon signed-rank test, the minimum-ADCL panel exhibits356

significantly lower discordance rates than the maximum-PD panel (P = 1.342 × 10−9).357

The diploid ADCL panel also has lower discordance rates than the diploid PD panel (P =358

2.597× 10−3). The minimum-ADCL, maximum-PD, diploid ADCL, and diploid PD panels359

all provide lower discordance rates than the mean of the 1000 randomly-selected panels360

(P = 7.789× 10−10, 9.928× 10−10, 8.797× 10−10, and 4.920× 10−7, respectively).361

To generate a discordance measure for low-frequency variants, we also calculated the dis-362

cordance rate H across the heterozygous sites with 0 < MAF < 0.1. From Figure 5363

and Table 2, we observe that the mean discordance rates are higher for low-MAF loci364

than they are for high-MAF loci. Nevertheless, compared to the maximum-PD panel, the365

minimum-ADCL panel still achieves significantly higher imputation accuracy on low-MAF366

heterozygotes (P = 1.606 × 10−9). The same relationship also holds between the diploid367

ADCL and diploid PD panels (P = 1.871 × 10−4). As was observed when considering368

all variants, the minimum-ADCL, maximum-PD, diploid ADCL, and diploid PD panels all369

have lower discordance rates than the mean of the 1000 random panels (P = 7.790× 10−10,370

1.264× 10−9, 7.790× 10−10, and 2.244× 10−6, respectively).371

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2015. ; https://doi.org/10.1101/017822doi: bioRxiv preprint 

https://doi.org/10.1101/017822
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discordance rates under different simulation settings372

Following Zhang et al. (2013), to investigate how different parameter choices might have373

affected the simulation results, we repeated the analysis taking into consideration (i) different374

reference panel sizes k, (ii) different marker densities s, and (iii) different target sequence375

lengths. When varying a parameter, we kept the other two parameters constant at their376

default values used in the initial analysis (reference panel size k = 200, number of markers377

per MB s = 300, imputation length = 100kb). The baseline for comparison here is the378

mean discordance rate over the 50 randomly-selected reference panels. Owing to runtime379

considerations, this number is smaller than the 1000 randomly-selected reference panels used380

to calculate the baseline mean discordance rate in the initial analysis. Box plots of the results381

are shown in Figure 6, and mean discordance rates of the various panel types over all sites382

and over the low-frequency variants appear in Tables 3 and 4, respectively.383

We first evaluated the influence of reference panel size on imputation accuracy, considering384

cases with k equal to 100, 300, 400, and 500 (compared to the initial analysis with k = 200).385

We observe that as the panel size k increases, discordance rates decrease across all reference386

panel types. However, we also note a decrease in the difference in performance between the387

ADCL and PD algorithms, in both the haploid (“maximum-PD” and “minimum-ADCL”)388

and diploid cases. In other words, the gain in imputation accuracy obtained by minimizing389

ADCL instead of maximizing PD diminishes with large reference panel sizes.390

Next, we examined how the initial genotyping density of the markers affected imputation391

accuracy by considering instances with s equal to 200, 400, 500, and 600 (compared to392

the initial choice of s = 300). Here, across all reference panel types, the discordance rates393

decrease slightly with increasing marker density s. Nevertheless, for all densities, both the394

haploid and diploid ADCL panels consistently outperform their PD counterparts in terms395

of imputation accuracy across all sites, as well as across only the low-frequency variants.396

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2015. ; https://doi.org/10.1101/017822doi: bioRxiv preprint 

https://doi.org/10.1101/017822
http://creativecommons.org/licenses/by-nc-nd/4.0/


Finally, we considered whether the length of the target imputation region has an effect on397

imputation accuracy. We imputed segments of length 500kb, 1Mb and 2Mb (compared to398

the initial imputation length choice of 100kb). In all cases, a flanking 450kb region was added399

to each end of the sequence in order to avoid edge effects. We observe that discordance rates400

remain relatively constant across different imputation lengths. Again, the ADCL panels401

produce significantly lower discordance rates compared to the PD panels, regardless of the402

specific choice of imputation length.403

Discordance rates with 1000 Genomes Project sequence data404

To confirm that our findings on the simulated data set are also observed when using actual se-405

quence data, we performed a similar analysis for 30 1Mb segments generated on chromosome406

20, using 381 diploid individuals with European ancestry from the 1000 Genomes Project.407

We are again interested in comparing the difference in imputation accuracy achieved by408

the minimum-ADCL and maximum-PD panels, using the mean discordance rate over 1000409

randomly-selected reference panels as a baseline for comparison. The discordance rates ap-410

pear in Figure 7, and their mean values are summarized in Table 5. For the three different411

panel types, Figure 8 compares the discordance rates examined in each of the 30 segments412

over all imputed sites, as well as over only the low-frequency variants.413

Applying the two-tailed Wilcoxon signed-rank test, we observe that across all imputed414

sites, the minimum-ADCL algorithm produces significantly lower discordance rates than415

the maximum-PD algorithm (P = 2.367 × 10−3), as shown in Table 5. In addition, when416

focusing solely on the low-frequency variants, the minimum-ADCL panel continues to pro-417

duce better imputation accuracy than the maximum-PD panel (P = 0.0234).418
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Discussion419

The decreasing cost of modern sequencing has enhanced the practicality of generating a420

reference panel from the haplotypes that are already present in the study sample. It generally421

remains prohibitive, however, to perform full sequencing for large numbers of haplotypes.422

Given this constraint in resources, what is the optimal approach for selecting the subset of423

the study sample to sequence in order to achieve the best imputation results? We explored424

two objective functions for optimization, with the aim of ensuring high imputation accuracy.425

Maximizing PD as a way of ensuring that the total genetic diversity of a sample is well-426

represented is one sensible approach. This type of panel selection method achieves lower427

imputation discordance rates than assembling reference panels from randomly-selected hap-428

lotypes (Kang and Marjoram 2012; Zhang et al. 2013). Nevertheless, it has not been429

clear whether PD represents the best objective function for panel selection.430

Minimizing ADCL attempts to ensure that the subset of the study sample selected for the431

panel is representative of the total diversity present, albeit using a different approach. It432

is conceptually similar to a clustering problem, in that the number of clusters is predeter-433

mined, and the algorithm returns the cluster to which each haplotype belongs, as well as the434

haplotype that is the most central within its cluster. This haplotype is then included in the435

reference panel. Unlike when maximizing PD, the problem of selecting non-representative436

branches is mostly avoided by ADCL, as those haplotypes are unlikely to occupy a central437

position within their clusters.438

For both simulated and actual sequence data, we observed that minimizing ADCL does in fact439

provide an improvement in imputation accuracy compared to maximizing PD. It generally440

identified a greater number of polymorphic sites, both in the reference panels as well as441

in the imputed data. When looking at the overall discordance-rate measures, minimizing442
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ADCL produces a significantly lower discordance rate over all sites compared to maximizing443

PD. This result holds across various choices of genotyping density and imputation length,444

suggesting that the observed result is robust to such changes. It is only with increasing445

panel sizes that the gain in imputation accuracy obtained by minimizing ADCL decreases446

compared to maximizing PD. This outcome could potentially be due to the diminishing447

returns, in terms of representative variants, contributed by each additional haplotype in the448

reference panel. Consider the extreme case, where all the haplotypes in the study sample449

are included in the reference panel. In such a situation, both algorithms return trivially450

identical imputation results.451

One metric that is of particular interest is the performance of an algorithm in the imputation452

of low-frequency variants. Although early genome-wide association (GWA) studies focused453

on identifying common variants associated with particular diseases or phenotypic traits, the454

focus of GWA studies has increasingly shifted toward an interest in rare genetic variants455

(Asimit and Zeggini 2010; Cirulli and Goldstein 2010; Eichler et al. 2010). As456

such studies improve in their ability to detect the effects of rare variants on phenotype (Li et457

al. 2013; Lee et al. 2014), it is paramount that the imputation process carried out alongside458

them generate reasonably accurate imputed genotypes with low-frequency variants.459

In this context, from Tables 2 and 5, we observed, based on differences in the mean460

discordance rates, that minimizing ADCL improves upon maximizing PD by the largest461

absolute amount in the low-MAF bin (0 < MAF < 0.1), in both the simulated and the actual462

data. This result might be explained by the fact that the discordance rates obtained when463

imputing low-frequency variants are relatively high to begin with, and can be potentially464

reduced to a much greater extent with an improved choice of algorithm for panel selection.465

Our analyses are consistent in suggesting that the minimum-ADCL algorithm can contribute466

to reducing imputation inaccuracies in GWA studies that seek to identify the effects of low-467

frequency variants on phenotypic traits.468
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In summary, we have demonstrated that internal reference panel selection via minimizing469

ADCL produces empirically improved imputation accuracy compared to maximizing PD,470

particularly for low-frequency variants. This finding applies to both simulated and actual471

sequence data, and is robust to changes in the choice of initial parameter values. Note472

that both ADCL and PD represent intermediate criteria that provide practical objective473

functions, where the ultimate goal is maximizing imputation accuracy or other aspects of474

imputation performance. Although both algorithms produce considerably better imputation475

performance measures than the use of random panels, neither is guaranteed to produce the476

maximal value of such measures over all possible panels. It remains to be determined whether477

a single simple criterion exists that could lead to identification of the best possible panel for478

maximizing imputation performance.479
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Figure 1: Reference panels for an example tree with n = 20 haplotypes. (A) An example
tree. (B) The maximum-PD panel. (C) The minimum-ADCL panel. In (B) and (C), the
haplotypes selected for a given panel size k are represented by a dot at the tips. In (C), each
selected haplotype is assigned a color, and all other branches share a color with the closest
selected haplotype.
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raw haplotype sequences!

generate sequences (ms)!sequence length = 1Mb!

remove singleton sites!

sequences with singletons removed!

randomly select markers!number of markers, s = 300!

sequence data of selected markers!

calculate pairwise Hamming distance!
construct neighbor-joining tree (rapidnj)!

neighbor-joining tree of haplotypes!

calculate patristic distance 
matrix (dendropy)!
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randomly select 
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panel size, 
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that maximize PD!
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identify genotypes with 
a top-ranked haplotype!

diploid PD panel!

1000 random panels!
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panel size, 
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min ADCL panel!half-sized min ADCL panel!

diploid ADCL panel!

identify genotypes with a haplotype in the 
half-sized panel; fill remaining slots randomly!

Figure 2: A schematic diagram of the pipeline used to generate the simulated data. The
red boxes each represent a parameter choice, and the blue boxes represent the 1004 reference
panels used in our evaluation.
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Figure 3: A Venn diagram showing the number of polymorphic sites returned by each
panel type, out of a total of 12,851 masked sites. 888 sites were monomorphic in all three
panels.
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Figure 4: Fraction of masked sites imputed as polymorphic, using five different types of
reference panels. Data are split into various graphs for ease of comparison. (A) ADCL versus
ADCL diploid. (B) PD versus PD diploid. (C) ADCL versus PD. (D) ADCL diploid versus
PD diploid. The 50 replicate data sets are sorted in decreasing order by the percentage of
polymorphic sites recovered by imputations using the random reference panel.
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Figure 5: Box plots of discordance rates between imputed and simulated genotypes using
the five different reference panel types. The mean discordance rate across the 50 replicates
for each comparison group is indicated by a diamond, and the median discordance rate
is indicated by a horizontal line. The x-axis separates the comparison over all sites, all
heterozygous sites, and heterozygous sites falling into three different MAF groups.
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Figure 6: Box plots of discordance rates between imputed and simulated genotypes using
the five different reference panel types. (A) Varying reference panel size, all sites. (B)
Varying reference panel size, heterozygous sites with 0 < MAF < 0.1. (C) Varying marker
density, all sites. (D) Varying marker density, heterozygous sites with 0 < MAF < 0.1. (E)
Varying imputation length, all sites. (F) Varying imputation length, heterozygous sites with
0 < MAF < 0.1.
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Figure 7: Box plots of discordance rates between imputed and actual genotypes using the
minimum-ADCL, maximum-PD, and random panels. The data consist of 30 1Mb segments
from 762 haplotypes of European ancestry obtained from the 1000 Genomes Project. The
mean discordance rate across the 30 replicates for each comparison group is indicated by
a diamond, and the median discordance rate is indicated by a horizontal line. The x-axis
separates the comparison over all sites, all heterozygous sites, and heterozygous sites falling
into three different MAF groups.
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Figure 8: Discordance rates between imputed and actual genotypes using the minimum-
ADCL, maximum-PD, and random panels, showing an alternative presentation of the same
data used to generate Figure 7. (A) All sites. (B) Heterozygous sites with 0 < MAF < 0.1.
The 30 segments are sorted in decreasing order by the mean discordance rate over 1000
random panels.
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Table 1: Mean and standard deviation of the number of shared haplotypes across 50 data
sets in each of five replicates

Replicate Mean Standard deviation

1 179.40 4.1991

2 178.56 4.9494

3 179.38 4.5888

4 179.00 4.7208

5 178.58 4.8910

For the five replicates, each with a different starting seed, we compared the minimum-ADCL
panels from the initial run of the adapted PAM algorithm and the minimum-ADCL panels
using the different seed. The table shows the mean (out of 200) and standard deviation of
the number of shared haplotypes across the 50 data sets.
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Table 2: Mean discordance rates between imputed and simulated genotypes, using the
maximum (haploid) PD, minimum (haploid) ADCL, diploid PD, and diploid ADCL panels

Haploid panels Diploid panels

PD (%) ADCL (%) P -value PD (%) ADCL (%) P -value

All 0.2003 0.1476 1.342× 10−9 0.2648 0.2304 2.597× 10−3

Heterozygotes 1.1295 0.7888 1.921× 10−9 1.4554 1.2523 1.360× 10−3

MAF (0, 0.1) 3.0374 2.1160 1.606× 10−9 3.8164 3.2103 1.871× 10−4

MAF [0.1, 0.2) 0.4363 0.3190 2.792× 10−3 0.6947 0.5582 0.0857

MAF [0.2, 0.5] 0.3518 0.2386 2.567× 10−5 0.4676 0.4335 0.4174

This table is obtained from the data in Figure 5. The comparison is performed over all
sites, all heterozygous sites, and heterozygous sites falling into three different MAF groups.
Also shown are the P -values of the two-tailed Wilcoxon signed-rank tests comparing the
discordance rates of the PD and ADCL reference panels.
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Table 3: Mean discordance rates between imputed and simulated genotypes for all sites,
using the maximum (haploid) PD, minimum (haploid) ADCL, diploid PD, and diploid ADCL
panels, under different input parameter choices

Haploid panels Diploid panels

PD (%) ADCL (%) P -value PD (%) ADCL (%) P -value

Reference panel size, k

k = 100 0.5150 0.3502 5.213× 10−9 0.6174 0.5284 2.257× 10−5

k = 200 0.2003 0.1476 1.342× 10−9 0.2648 0.2304 2.597× 10−3

k = 300 0.0907 0.0811 2.767× 10−3 0.1501 0.1354 0.0167

k = 400 0.0499 0.0498 0.7391 0.0924 0.0895 0.3417

k = 500 0.0298 0.0312 0.2112 0.0584 0.0605 0.1765

Number of markers per MB, s

s = 200 0.2561 0.1810 1.378× 10−8 0.3409 0.2901 1.173× 10−4

s = 300 0.2003 0.1476 1.342× 10−9 0.2648 0.2304 2.597× 10−3

s = 400 0.1647 0.1255 2.548× 10−8 0.2291 0.1946 4.176× 10−5

s = 500 0.1529 0.1193 9.347× 10−10 0.2105 0.1863 7.284× 10−4

s = 600 0.1503 0.1138 4.130× 10−9 0.1970 0.1746 6.975× 10−5

Imputation length

100kb 0.2003 0.1476 1.342× 10−9 0.2648 0.2304 2.597× 10−3

500kb 0.2104 0.1494 7.789× 10−10 0.2650 0.2307 5.575× 10−6

1Mb 0.2159 0.1538 7.790× 10−10 0.2755 0.2392 2.040× 10−8

2Mb 0.2495 0.1653 7.789× 10−10 0.2914 0.2551 8.263× 10−9

The table is obtained from the data in Figures 6A, C and E. Also shown are the P -values
of the two-tailed Wilcoxon signed-rank tests comparing the discordance rates of the PD and
ADCL reference panels. The discordance rates and P -values from the initial analysis using
k = 200, s = 300 and imputation length = 100kb are given in bold, with the values obtained
from Table 2.
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Table 4: Mean discordance rates between imputed and simulated genotypes for all het-
erozygous sites with 0 < MAF < 0.1, using the maximum (haploid) PD, minimum (haploid)
ADCL, diploid PD, and diploid ADCL panels, under different input parameter choices

Haploid panels Diploid panels

PD (%) ADCL (%) P -value PD (%) ADCL (%) P -value

Reference panel size, k

k = 100 7.2099 5.0056 3.358× 10−8 8.5331 7.3942 3.960× 10−4

k = 200 3.0374 2.1160 1.606× 10−9 3.8164 3.2103 1.871× 10−4

k = 300 1.4783 1.2425 1.484× 10−4 2.1964 1.9086 3.817× 10−4

k = 400 0.8394 0.8156 0.2972 1.3786 1.2816 0.0757

k = 500 0.5494 0.5413 0.7502 0.9160 0.9010 0.7138

Number of markers per MB, s

s = 200 3.4597 2.3336 3.467× 10−9 4.3339 3.5993 8.581× 10−6

s = 300 3.0374 2.1160 1.606× 10−9 3.8164 3.2103 1.871× 10−4

s = 400 2.6079 1.9485 3.270× 10−9 3.5185 2.9342 1.173× 10−5

s = 500 2.4951 1.8300 1.810× 10−9 3.4146 2.8719 7.874× 10−5

s = 600 2.4121 1.7891 7.368× 10−9 3.2507 2.7438 1.528× 10−5

Imputation length

100kb 3.0374 2.1160 1.606× 10−9 3.8164 3.2103 1.871× 10−4

500kb 2.8998 2.0484 7.790× 10−10 3.5755 3.0995 1.605× 10−6

1Mb 3.0180 2.1204 7.790× 10−10 3.7531 3.2439 1.231× 10−8

2Mb 3.4652 2.2648 7.790× 10−10 3.9769 3.4637 9.806× 10−9

The table is obtained from the data in Figures 6B, D and F. Also shown are the P -values
of the two-tailed Wilcoxon signed-rank tests comparing the discordance rates of the PD and
ADCL reference panels. The discordance rates and P -values from the initial analysis using
k = 200, s = 300 and imputation length = 100kb are given in bold, with the values obtained
from Table 2.
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Table 5: Mean discordance rates between imputed and 1000 Genomes genotypes, using
the maximum-PD and minimum-ADCL panels

PD (%) ADCL (%) P -value

All 0.8643 0.8087 2.367× 10−3

Heterozygotes 3.9253 3.6041 9.301× 10−3

MAF (0, 0.1) 11.3202 10.2176 0.0234

MAF [0.1, 0.2) 3.1695 2.7525 0.0274

MAF [0.2, 0.5] 1.7302 1.5598 8.035× 10−4

The table is obtained from the data in Figures 7 and 8. The comparison is performed
over all sites, all heterozygous sites, and heterozygous sites falling into three different MAF
groups. Also shown are the P -values of the two-tailed Wilcoxon signed-rank tests comparing
the discordance rates of the PD and ADCL reference panels.
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