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ABSTRACT9

We recently described rapid quantitative pharmacodynamic imaging, a novel method for estimating sensitivity
of a biological system to a drug. We tested its accuracy in simulated neuroimaging signals with varying receptor
sensitivity and varying levels of random noise, and presented initial proof-of-concept data from functional
MRI (fMRI) studies in primate brain. However, the initial simulation testing used a simple iterative approach
to estimate pharmacokinetic-pharmacodynamic (PKPD) parameters, an approach that was computationally
efficient but returned parameters only from a small, discrete set of values chosen a priori.

Here we revisit the simulation testing using a Bayesian method to provide more accurate estimates of the PKPD
parameters. This produced improved accuracy, and noise without intentional signal was never interpreted as
signal. This approach improves the ability of rapid quantitative pharmacodynamic imaging to reliably estimate
drug sensitivity (EC50) from simulated data. The success with these simulated data paves the way for analyzing
experimental data acquired for rapid quantitative pharmacodynamic imaging to validate it against results
obtained by traditional methods in the same subjects.
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INTRODUCTION13

Measuring the sensitivity of an organ to a drug in vivo is a common, important research goal. The traditional14

approach is to independently measure biological responses to a range of different doses of drug. We recently15

described a novel method, rapid quantitative pharmacodynamic imaging (or QuanDynTM), for estimating16

sensitivity of a biological system to a drug in a single measurement session using repeated small doses of drug17

(Black et al., 2013). In that report we tested QuanDynTM’s accuracy in simulated data with varying receptor18

sensitivity and varying levels of random noise. The initial simulation testing used a simple iterative approach19

to estimate pharmacokinetic-pharmacodynamic (PKPD) parameters including EC50, the plasma concentration20

of drug that produces half the maximum possible effect Emax. The iterative approach was computationally21

efficient but could only select EC50 from a short list of parameter values chosen a priori. Here we revisit the22

simulation testing using a Bayesian method to provide continuous estimates of the PKPD parameters. The23

Bayesian approach also identifies data too noisy to produce meaningful parameter estimates.24
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METHODS25

Simulated data26

We used a standard PKPD model to create 6 time-effect curves that could reasonably represent BOLD signal27

from a pharmacological challenge fMRI study: one with no response to drug (Emax = 0) and five with varying28

sensitivities to drug: Emax = 10 and EC50 ∈ {0.25,0.6,
√

2,π,7.5}.29

As in the previous work, the concentration of drug in plasma over time is modeled as

C(t) =
K

∑
k=1

Dk ·u(t− ts− tk) ·2−(t−ts−tk)/t1/2

where K doses of drug, Dk, are given at times tk, u(t) is the unit step function, ts (for “time shift”) is a fixed delay
between drug concentration and effect, and t1/2 is the elimination half-life of drug from plasma (Black et al.,
2013). Drug effect is modeled as

E(C) =
EmaxCn

(EC50)n +Cn

where C is C(t) from the previous equation and n represents the Hill coefficient. Nonquantitative signal drift30

typically encountered with BOLD-sensitive fMRI was simulated by adding to each curve a quadratic function of31

time a0 +a1t +a2t2. These test curves were generated using K = 4, D1 = D2 = D3 = D4 = the dose of drug that32

produces a peak plasma concentration of 1 (arbitrary concentration units), ts = 0.5 min, t1/2 = 41 min, n = 1,33

a0 = 1000 (a typical value from brain in our lab’s BOLD analysis pipeline), a1 = 2t/(40min), and a2 = 0. The 634

resulting curves are shown in Figure 1.35

Figure 1. Test data for different levels of EC50.

Finally we added Gaussian noise to each time point. This was done 1000 times for each of the 6 curves above36

and for each of 8 noise levels from SD = 0.01Emax to 2Emax, resulting in 48,000 noisy time–signal curves plus37

the original 6 “clean” curves (see Supplemental Data).38
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Testing the method using the simulated data39

In the simulated fMRI test data described above, each of the 48,006 time courses was analyzed using the Bayesian40

Data-Analysis Toolbox (Bretthorst and Marutyan, 2014). The Toolbox implements a Markov chain Monte41

Carlo (McMC) method for analysis of a variety of problems including parameter estimation across 4d images42

(Bretthorst, 1988; Bretthorst and Marutyan, 2014). This analysis was performed with the Image Pixels Model43

Selection package, which uses Bayesian probability theory to determine which model better accounts for each set44

of data. Here the package returns a quantitative estimate of the probability p that the full PKPD model described45

above accounts for the given data set better than a simpler model consisting only of a0 +a1t +a2t2. If p > 0, the46

package also returns the values for EC50, ts, Emax, a0, a1, and a2 that best fit the data given the PKPD model.47

To provide more even sampling of parameter space across the conventional logarithmic abscissa for48

concentration-effect curves, EC50 was coded as 10q, where q = log10 EC50, and a uniform prior probability49

was assumed for q with range [−3,1.3], corresponding to EC50 values from 0.001 to 20.0. A uniform prior50

with range 0-1min was used for the time shift parameter ts. The Hill coefficient n and the drug’s elimination51

halflife—parameters that for biological data could be estimated separately, from a typical PK study—were52

fixed at n = 1 and t1/2 = 41 minutes. Emax and the coefficients of the signal drift function a0 +a1t +a2t2 were53

marginalized.54

Since tissues with high values of EC50 respond less to a given dose of drug, i.e. E � Emax, the ratio55

SD/Emax� SD/E underestimates the effect of noise relative to the observed effect. Therefore we computed56

a signal-to-noise ratio (SNR) to simplify comparisons across the various input values of EC50 and noise. We57

defined “signal” as the maximum value of E(C(t)), without added noise, for 0 ≤ t ≤ 40min, i.e. the local58

maximum of the modeled signal shortly after the last dose of drug, less the input linear drift at that same time59

point. In Figure 1 this value can be appreciated near the right side of the plot and ranges from about 3.5 for60

EC50 = 7.5 to about 9.5 for EC50 = 0.25. We define SNR as the ratio of this signal by the standard deviation of61

the added noise.62

RESULTS63

Example64

Figure 2 provides an example result from one time course, to orient the reader to the following summary. Note65

that the parameter estimates are (approximately) the best estimates to the provided noisy data, even though they66

differ slightly from the input values used to produce the data.67

Sensitivity: p(model) with signal68

The full PKPD model explained the data better than a simpler model, i.e. p(model) >0.5, except when signal was69

low (higher EC50) or noise was substantial (Figures 3, 4).70

False positives: p(model) with noise only71

For the images containing no intentional signal, i.e. noise added to the Emax = 0 line, the Toolbox never returned72

p > 0.5 for any of the 8,000 voxels. In other words, there were no false positives.73

Accuracy74

Accuracy of the EC50 estimate was considered for time courses with p(model) >0.5. Figure 5 shows the mean75

estimated EC50 as a function of the input EC50; as expected, accuracy is best with higher SNR. Figure 6 shows76

the ratio of estimated EC50 to input EC50 in terms of SNR. Perfect accuracy would produce a ratio of 1.0, and77

values >1.0 indicate overestimation of EC50, i.e. underestimation of the sensitivity to drug.78

DISCUSSION79

Bayesian parameter estimation for the QuanDynTM quantitative pharmacodynamic imaging method produces80

excellent results. The Model Select method very accurately identified time courses with a meaningful drug-related81
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Figure 2. The upper panel shows simulated fMRI data generated using Emax = 10.0, EC50 =
√

2, ts = 0.50,
added to 1000+ .05t +0t2 and Gaussian noise with SD= 2. In the lower panel, superimposed on the data is the
predicted time course of drug effect over time, drawn using the parameter values returned by the Bayesian
Data-Analysis Toolbox as most likely given these data and the PKPD model: Emax = 10.6, EC50 = 1.43,
ts = 0.451, a0 = 1000, a1 = 0.0553, a2 =−0.000149. For this time course, p(model) was estimated as 0.540,
and the SD of the residuals was 2.04.
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Figure 3. The fraction of time courses for which p(model) >0.5 is shown on the vertical axis as a function of
the EC50 and SD used to generate the time courses.

Figure 4. The mean ± SD probability of the full PKPD model is shown for each combination of EC50 and
noise as a function of that combination’s SNR as defined in Methods. Points with SNR outside the range shown
here are omitted for clarity.
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Figure 5. The mean accuracy of the estimated EC50 for time courses with p(model)> 0.5 is shown as a function
of the input EC50. SNR for each estimate is shown by the width of the marker, as indicated by the legend at
lower right. The diagonal line indicates equality, i.e., perfect accuracy.
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Figure 6. The mean ± SD accuracy of the estimated EC50 for time courses with p(model) >0.5 is shown as a
function of SNR as defined in Methods. Here accuracy is defined as the output EC50 divided by the input EC50.
The full-width horizontal lines indicate perfect accuracy (ratio = 1.0) and 3/2 and 2/3 of perfect accuracy. The
accuracy of the estimated EC50 is superb when SNR >about 6.5, and tends to be accurate for SNR as low as 0.9.
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signal, until noise overwhelmed signal, i.e. when SNR < about 3.5. The Bayesian Data-Analysis Toolbox82

successfully avoided false positives, correctly refraining from identifying a signal in every noise-only time course.83

In time courses with a signal, the errors are conservative, with EC50 usually erring on the high side (figure 6).84

Said differently, the most likely quantitative error is to report slightly lower sensitivity to drug, especially when85

sensitivity is in fact low.86

The results from the simulated data suggest that this approach should be able to determine quantitative PD87

info from nonquantitative BOLD fMRI. We recently reported EC50 from a small phMRI (pharmacological fMRI)88

study analyzed using the “gold standard” approach, i.e. replicate measurements at each dose of drug, across a89

range of doses (Miller et al., 2013). The next step will be to apply the method validated here to similar phMRI90

data acquired in the same subjects specifically for QuanDynTM analysis, i.e. from experiments in which multiple91

doses were given within a single imaging session.92

Limitations of the QuanDynTM quantitative pharmacodynamic imaging method include situations in which93

the PK/PD model, or the shape of the signal drift or noise used here, does not realistically model the data94

(discussed further in (Black et al., 2013)).95

The QuanDynTM method described here has several potential advantages compared to the traditional approach96

to quantifying a drug effect, which is to estimate the population EC50 by sampling a wide range of doses, one97

dose per subject and several subjects per dose. That approach is an excellent choice when the population under98

study is homogeneous (e.g. an inbred rodent strain), but does not apply well to single subjects. One might99

adapt the traditional approach by repeatedly scanning a single subject, one dose per scan session, but that option100

brings its own complications, including scientific concerns such as sensitization or development of tolerance with101

repeated doses in addition to the practical and safety consequences of repeated scan sessions in each subject.102

That option, like the population method, would also require that subjects receive doses substantially higher than103

the EC50, which may often be inappropriate in early human studies. Specifically, to estimate EC50, traditional104

population PKPD studies require drug doses that produce effects of at least ∼ 95%Emax (Dutta et al., 1996). For105

all these reasons, the QuanDynTM method may prove to be a better choice when single-subject responses are106

important, such as for medical diagnosis or individualized treatment dosing.107
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