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The rapidly expanding body of available genomic and protein structural data provides a rich resource
for understanding protein dynamics with biomolecular simulation. While computational infrastructure has
grown rapidly, simulations on an omics scale are not yet widespread, primarily because so�ware infrastruc-
ture to enable simulations at this scale has not kept pace. It should nowbe possible to study protein dynam-
ics across entire (super)families, exploiting both available structural biology data and conformational simi-
larities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in
the genomics era. Ensembler takes any set of sequences—froma single sequence to an entire superfamily—
and shepherds them through various stages ofmodeling and refinement to produce simulation-ready struc-
tures. This includes comparative modeling to all relevant PDB structures (which may span multiple confor-
mational states of interest), reconstruction of missing loops, addition of missing atoms, culling of nearly
identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refine-
ment and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an
ensemble of structures ready for subsequentmolecular simulations using computer clusters, supercomput-
ers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-
consuming process of preparing protein models suitable for simulation, while allowing scalability up to en-
tire superfamilies. A particular advantage of this approach can be found in the construction of kinetic mod-
els of conformational dynamics—such as Markov state models (MSMs)—which benefit from a diverse array
of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the
power of this approach by constructingmodels for all catalytic domains in the human tyrosine kinase family,
using all available kinase catalytic domain structures from any organism as structural templates.
Ensembler is free and open source so�ware licensed under the GNU General Public License (GPL) v2. It is

compatible with Linux and OS X. The latest release can be installed via the conda packagemanager, and the
latest source can be downloaded from https://github.com/choderalab/ensembler.
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I. INTRODUCTION6

Recent advances in genomics and structural biology have7

helped generate an enormous wealth of protein data at8

the level of amino-acid sequence and three-dimensional9

structure. However, proteins typically exist as an ensem-10

bleof thermally accessible conformational states, and static11

structures provide only a snapshot of their rich dynam-12

ical behavior. Many functional properties—such as the13

ability to bind small molecules or interact with signaling14

partners—require transitions between states, encompass-15

inganything fromreorganizationof sidechainsatbinding in-16

terfaces to domain motions to large scale folding-unfolding17

events. Drug discovery could also benefit from a more ex-18

tensive consideration of protein dynamics, whereby small19

molecules might be selected based on their predicted abil-20

ity to bind and trap a protein target in an inactive state [1].21

Molecular dynamics (MD) simulations have the capabil-22

ity, in principle, to describe the time evolution of a pro-23

tein in atomistic detail, and have proven themselves to be24

a useful tool in the study of protein dynamics. A number25

of mature so�ware packages and forcefields are now avail-26

able, and much recent progress has been driven by ad-27

vances in computing architecture. For example, many MD28
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packages are now able to exploit GPUs [2, 3], which pro-29

vide greatly improved simulation e�iciency per unit cost rel-30

ative to CPUs, while distributed computing platforms such31

as Folding@home [4], Copernicus [5, 6], andGPUGrid [7], al-32

low scalability on an unprecedented level. In parallel, meth-33

ods for building human-understandable models of protein34

dynamics from noisy simulation data, such as Markov state35

modeling (MSM) approaches, are now reachingmaturity [8–36

10]. MSM methods in particular have the advantage of be-37

ing able to aggregate data from multiple independent MD38

trajectories, facilitating parallelization of production simu-39

lations and thus greatly alleviating overall computational40

cost. Therealsoexist anumberofmature so�warepackages41

for comparative modeling of protein structures, in which42

a target protein sequence is modeled using one or more43

structures as templates [11, 12]. One such piece of so�ware,44

MODELLER, has also been used recently to study protein45

allostery by generating and refining configurational mod-46

els, sampled by interpolating between two user-defined47

metastable structures [13].48

However, it remains di�icult for researchers to exploit the49

full variety of available protein sequenceand structural data50

in simulation studies, largely due to limitations in so�ware51

architecture. For example, the set up of a biomolecular sim-52

ulation is typically performedmanually, encompassinga se-53

ries of fairly standard (yet time-consuming) steps such as54

the choice of protein sequence construct and starting struc-55

ture(s), addition of missing residues and atoms, solvation56
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with explicit water and counterions (and potentially bu�er57

components and cosolvents), choice of simulation param-58

eters (or parameterization schemes for components where59

parameters do not yet exist), system relaxation with energy60

minimization, and one or more short preparatory MD sim-61

ulations to equilibrate the system and relax the simulation62

cell. Due to the laborious and manual nature of this pro-63

cess, simulation studies typically consider only one or a few64

proteins and starting configurations. Worse still, studies (or65

collections of studies) that do considermultiple proteins of-66

ten su�er from the lack of consistent best practices in this67

preparation process, making comparisons between related68

proteins unnecessarily di�icult.69

The ability to fully exploit the large quantity of available70

protein sequence and structural data in biomolecular sim-71

ulation studies could open upmany interesting avenues for72

research, enabling the study of entire protein families or su-73

perfamilies within a single organism or across multiple or-74

ganisms. The similarity between members of a given pro-75

tein family could be exploited to generate arrays of confor-76

mational models, which could be used as starting configu-77

rations to aid sampling in MD simulations. This approach78

would be highly beneficial for many MD methods, such as79

MSMconstruction,which require global coverageof the con-80

formational landscape to realize their full potential, and81

would also be particularly useful in cases where structural82

data is present for only a subset of the members of a pro-83

tein family. It would also aid in studying protein families84

knowntohavemultiplemetastable conformations—suchas85

kinases—forwhich the combined body of structural data for86

the family may cover a large range of these conformations,87

while the available structures for any individual member88

might encompass only one or two distinct conformations.89

Here, we present the first steps toward bridging the90

gap between biomolecular simulation so�ware and omics-91

scale sequence and structural data: a fully automated open92

source framework for building simulation-ready protein93

models in multiple conformational substates scalable from94

single sequences to entire superfamilies. Ensembler pro-95

vides functions for selecting target sequences and homolo-96

gous template structures, and (by interfacing with a num-97

ber of external packages) performs pairwise alignments,98

comparativemodeling of target-template pairs, and several99

stages of model refinement. As an example application, we100

have constructed models for the entire set of human tyro-101

sine kinase (TK) catalytic domains, using all available struc-102

tures of protein kinase domains (from any species) as tem-103

plates. This results in a total of almost 400,000 models,104

and we demonstrate that these provide wide-ranging cov-105

erage of known functionally relevant conformations. By us-106

ing these models as starting configurations for highly par-107

allel MD simulations, we expect their structural diversity to108

greatly aid in sampling of conformational space. We further109

suggest that models with high target-template sequence110

identity are the most likely to represent native metastable111

states, while lower sequence identity models would aid112

in sampling of more distant regions of accessible phase113

space. It is also important to note that some models (es-114

pecially low sequence identity models) may not represent115

natively accessible conformations. However, MSM meth-116

ods benefit from the ability to remove outlier MD trajec-117

tories which start from non-natively accessible conforma-118

tions, andwhichwould thus beunconnectedwith thephase119

space sampled in other trajectories. These methods essen-120

tially identify the largest subset of Markov nodeswhich con-121

stitute an ergodic network [14, 15].122

We anticipate that Ensembler will prove to be useful in123

a number of other ways. For example, the generated mod-124

els could represent valuable data sets even without subse-125

quent production simulation, allowing exploration of the126

conformational diversity present within the available struc-127

tural data for a given protein family. Furthermore, the au-128

tomation of simulation set up provides an excellent oppor-129

tunity tomake concrete certain "best practices", such as the130

choice of simulation parameters.131

II. DESIGN AND IMPLEMENTATION132

Ensembler is written in Python, and can be used via a133

command-line tool (ensembler) or via a flexible Python134

API to allow integration of its components into other135

applications. All command-line and API information in136

this article refers to the version 1.0.2 release of Ensem-137

bler. Up-to-date documentation can be found at ensem-138

bler.readthedocs.org.139

The Ensembler modeling pipeline comprises a series of140

stages which are performed in a defined order. A visual141

overviewof thepipeline is shown inFig. 1. Thevarious stages142

of this pipeline are described in detail below.143

A. Target selection and retrieval144

The first stage entails the selection of a set of target pro-145

tein sequences—the sequences for which the user is in-146

terested in generating simulation-ready structural models.147

This may be a single sequence—such as a full-length pro-148

tein or a construct representing a single domain—or a col-149

lection of sequences, such as a particular domain from an150

entire family of proteins. The output of this stage is a FASTA-151

formatted text file containing the desired target sequences152

with corresponding arbitrary identifiers.153

The ensembler command-line tool allows targets to154

be selected from UniProt—a freely accessible resource for155

protein sequence and functional data (uniprot.org) [16]—156

via a UniProt search query. To retrieve target sequences157

from UniProt, the subcommand gather_targets is used158

with the --query flag followed by a UniProt query string159

conforming to the same syntax as the search function160

available on the UniProt website. For example, --query161

‘mnemonic:SRC_HUMAN’ would select the full-length hu-162

man Src sequence, while the query shown in Box 1 would163

select all human tyrosine protein kinases which have been164

reviewed by a human curator. In this way, the user may se-165

lect a single protein, many proteins, or an entire superfam-166
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FIG. 1. Diagrammatic representation of the stages of the Ensembler pipeline and illustrative statistics for modeling all human
tyrosine kinase catalytic domains. On the le�, the various stages of the Ensembler pipeline are shown. The red labels indicate the
corresponding text description provided for each stage in the Design and Implementation section. On the right, the number of viable
models surviving each stage of the pipeline is shown for the 93 target TK domains and for two representative individual TK domains (SRC
and ABL). Typical timings on a computer cluster (containing Intel Xeon E5-2665 2.4GHz hyperthreaded processors and NVIDIA GTX-680 or
GTX-Titan GPUs) is reported to illustrate resource requirements permodel for modeling the entire set of tyrosine kinases. Note that CPU-h
denotes the number of hours consumed by the equivalent of a single CPU hyperthread and GPU-h on a single GPU—parallel execution via
MPI reduces wall clock time nearly linearly.

ily from UniProt. The program outputs a FASTA file, setting167

the UniProtmnemonic (e.g. SRC_HUMAN) as the identifier for168

each target protein.169

In many cases, it will be desirable to build models of an170

isolated protein domain, rather than the full-length pro-171

tein. The gather_targets subcommand allows protein172

domains tobe selected fromUniProt databypassing a regu-173

lar expression string to the --uniprot_domain_regex flag.174

For example, the above --query flag for selecting all hu-175

man protein kinases returns UniProt entries with domain176

annotations including "Protein kinase", "Protein kinase 1",177

"Protein kinase 2", "Protein kinase; truncated", "Protein ki-178

nase; inactive", "SH2", "SH3", etc. The regular expression179

shown in Box 1 selects only domains of the first three types.180

If the --uniprot_domain_regex flag is used, target identi-181

fiers are setwith the form[UniProt mnemonic]_D[domain182

index], where the latter part represents a 0-based index for183

the domain—necessary because a single target proteinmay184

contain multiple domains of interest (e.g. JAK1_HUMAN_D0,185

JAK1_HUMAN_D1).186

Target sequences can also be defined manually (or from187

another program) by providing a FASTA-formatted text file188

containing thedesired target sequenceswith corresponding189

arbitrary identifiers.190

B. Template selection and retrieval191

Ensembler uses comparative modeling to build models,192

and as such requires a set of structures to be used as tem-193

plates. The second stage thus entails the selection of tem-194

plates and storage of associated sequences, structures, and195

identifiers. These templates can be specified manually, or196

using the ensembler gather_templates subcommand to197

automatically select templates based on a search of the198

Protein Data Bank (PDB) or UniProt. A recommended ap-199

proach is to select templates from UniProt which belong to200

the same protein family as the targets, guaranteeing some201

degree of homology between targets and templates.202

The ensembler gather_templates subcommand pro-203

videsmethods for selecting template structures from either204

UniProt or the PDB (http://www.rcsb.org/pdb), speci-205
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fied by the --gather_from flag. Both methods select tem-206

plates at the level of PDB chains—a PDB structure contain-207

ing multiple chains with identical sequence spans (e.g. for208

crystal unit cellswithmultiple asymmetric units)would thus209

give rise to multiple template structures.210

Selection of templates from the PDB simply requires211

passing a list of PDB IDs as a comma-separated string,212

e.g. --query 2H8H,1Y57. Specific PDB chain IDs can213

optionally also be selected via the --chainids flag.214

The program retrieves structures from the PDB server,215

as well as associated data from the SIFTS service216

(www.ebi.ac.uk/pdbe/docs/si�s) [17], which provides217

residue-level mappings between PDB and UniProt entries.218

The SIFTS data is used to extract template sequences,219

retaining only residues which are resolved and match220

the equivalent residue in the UniProt sequence—non-221

wildtype residues are thus removed from the template222

structures. Furthermore, PDB chains with less than a223

given percentage of resolved residues (default: 70%) are224

filtered out. Sequences are stored in a FASTA file, with iden-225

tifiers of the form [UniProt mnemonic]_D[UniProt226

domain index]_[PDB ID]_[PDB chain ID], e.g.227

SRC_HUMAN_D0_2H8H_A. Matching residues then ex-228

tracted from the original coordinate files and stored as229

PDB-format coordinate files.230

Selection of templates fromUniProt proceeds in a similar231

fashion as for target selection; the --query flag is used to232

select full-length proteins from UniProt, while the optional233

--uniprot_domain_regex flag allows selection of individ-234

ual domains with a regular expression string (Box 1). The235

returned UniProt data for each protein includes a list of as-236

sociated PDB chains and their residue spans, and this infor-237

mation is used to select template structures, using the same238

method as for template selection from the PDB. Only struc-239

tures solved by X-ray crystallography or NMR are selected,240

thus excluding computer-generated models available from241

the PDB. If the --uniprot_domain_regex flag is used, then242

templates are truncated at the start and end of the domain243

sequence.244

Templates can also be defined manually. Manual speci-245

fication of templates simply requires storing the sequences246

and arbitrary identifiers in a FASTA file, and the structures247

as PDB-format coordinate files with filenamesmatching the248

identifiers in the sequence file. The structure residues must249

also match those in the sequence file.250

C. Template refinement251

Unresolved template residues can optionally bemodeled252

into template structureswith theloopmodel subcommand,253

which employs a kinematic closure algorithm provided via254

the loopmodel tool of the Rosetta so�ware suite [18, 19].255

Weexpect that in certain cases, pre-building template loops256

with Rosetta loopmodel prior to the main modeling stage257

(with MODELLER) may result in improved model quality.258

Loop remodeling may fail for a small proportion of tem-259

plates due to spatial constraints imposed by the original260

structure; the subsequent modeling step thus automati-261

cally uses the remodeled version of a template if available,262

but otherwise falls back to using the non-remodeled ver-263

sion. Furthermore, the Rosetta loopmodel programwill not264

model missing residues at the termini of a structure—such265

residue spans are modeled in the subsequent stage.266

D. Modeling267

In the modeling stage, structural models of the target se-268

quence are generated from the template structures, with269

the goal of modeling the target in a variety of conforma-270

tions that could be significantly populated under equilib-271

rium conditions.272

Modeling is performed using the automodel function of273

the MODELLER so�ware package [20, 21] to rapidly gener-274

ate a single model of the target sequence from each tem-275

plate structure. MODELLER uses simulated annealing cy-276

cles along with a minimal forcefield and spatial restraints—277

generally Gaussian interatomic probability densities ex-278

tracted from the template structure with database-derived279

statistics determining the distribution width—to rapidly280

generate candidate structures of the target sequence from281

the provided template sequence [20, 21].282

While MODELLER’s automodel function can generate its283

own alignments automatically, a standalone function was284

preferable for reasons of programming convenience. As285

such, we implemented pairwise alignment functionality us-286

ing the BioPython pairwise2 module [22]—which uses a287

dynamic programming algorithm—with the PAM 250 scor-288

ing matrix of Gonnet et al. [23]. The alignments are car-289

ried out with the align subcommand, prior to the model-290

ing step which is carried out with the build_models sub-291

command. The align subcommand also writes a list of292

the sequence identities for each template to a text file,293

and this can be used to select models from a desired294

range of sequence identities. The build_models sub-295

command and all subsequent pipeline functions have a296

--template_seqid_cutoff flag which can be used to se-297

lect only models with sequence identities greater than the298

given value. We also note that alternative approaches could299

be used for the alignment stage. For example, multiple se-300

quence alignment algorithms [24], allow alignments to be301

guided using sequence data from across the entire protein302

family of interest, while (multiple) structural alignment al-303

gorithms such asMODELLER’s salign routine [20, 21], PRO-304

MALS3D [25], and Expresso and 3DCo�ee [26, 27], can addi-305

tionally exploit structural data. Ensembler’smodular archi-306

tecture facilitates the implementation of alternative align-307

ment approaches, andwe plan to implement some of these308

in future versions, to allow exploration of the influence of309

di�erent alignment methods onmodel quality.310

Models are output as PDB-format coordinate files. To311

minimize file storage requirements, Ensembler uses the312

Pythongzip library toapply compression toall sizeable text313

files from the modeling stage onwards. The restraints used314

by MODELLER could potentially be used in alternative ad-315
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ditional refinement schemes, and Ensembler thus provides316

a flag (--write_modeller_restraints_file) for option-317

ally saving these restraints to file. Thisoption is turnedo�by318

default, as the restraint files are relatively large (e.g. ∼400319

kBpermodel forprotein kinasedomain targets), andarenot320

expected to be used by the majority of users.321

Filtering of nearly identical models322

Because Ensembler treats individual chains from source323

PDB structures as individual templates, a number of mod-324

els may be generated with very similar structures if these325

individual chains are nearly identical in conformation. For326

this reason, and also to allow users to select for high di-327

versity if they so choose, Ensembler provides a way to fil-328

ter out models that are very similar in RMSD. The cluster329

subcommandcan thusbeused to identifymodelswhichdif-330

fer from other models in terms of RMSD distance by a user-331

specified cuto�. Clustering is performed using the regular332

spatial clusteringalgorithm[9], as implemented in theMSM-333

Builder Python library [14], which uses mdtraj [28] to calcu-334

late RMSD (for Cα atoms only) with a fast quaternion char-335

acteristic polynomial (QCP) [29–31] implementation. Amin-336

imum distance cuto� (which defaults to 0.6 Å) is used to re-337

tain only a single model per cluster.338

E. Refinement of models339

Anumberof refinementmethodshavebeendeveloped to340

help guide comparative modeling techniques toward more341

"native-like" and physically consistent conformations [32,342

33], of which MD simulations are an important example.343

While long-timescale unrestrained MD simulations (on the344

orderof 100µs)havebeen found tobe ine�ective for recapit-345

ulating native-like conformations, possibly due to forcefield346

issues [34], even relatively short simulations can be useful347

for relaxing structural elements such as sidechain orienta-348

tion [33].349

Ensembler thus includes a refinement module, which350

uses short molecular dynamics simulations to refine the351

models built in the previous step. As well as improving352

model quality, this also prepares models for subsequent353

production MD simulation, including solvation with explicit354

water molecules, if desired.355

Models are first subjected to energy minimization (using356

the L-BFGS algorithm [35], followed by a short molecular357

dynamics (MD) simulation with an implicit solvent repre-358

sentation. This is implemented using the OpenMMmolecu-359

lar simulation toolkit [2], chosen for its flexible Python API,360

andhighperformanceGPU-acclerated simulationcode. The361

simulation is run for a default of 100 ps, which in our exam-362

ple applicationshasbeen su�icient to filter out poormodels363

(i.e. those with atomic overlaps unresolved by energy mini-364

mization, which result in an unstable simulation), as well as365

helping to relax model conformations. As discussed in the366

Results section, our example application of the Ensembler367

pipeline to the human tyrosine kinase family indicated that368

of the models which failed implicit solvent MD refinement,369

the vast majority failed within the first 1 ps of simulation.370

The simulation protocol and default parameter values371

have been chosen to represent current "best practices"372

for the refinement simulations carried out here. As such,373

the simulation is performed using Langevin dynamics,374

with a default force field choice of Amber99SB-ILDN [36],375

along with a modified generalized Born solvent model [37]376

as implemented in the OpenMM package [2]. Any of377

the other force fields or implicit water models imple-378

mented in OpenMM can be specified using the --ff and379

--water_model flags respectively. The simulation length380

can also be controlled via the --simlength flag, and many381

other important simulation parameters can be controlled382

from either the API or CLI (via the --api_params flag). The383

default values are set as follows—timestep: 2 fs; temper-384

ature: 300 K; Langevin collision rate: 20 ps−1; pH (used385

by OpenMM for protonation state assignment): 7. We also386

draw attention to a recent paper which indicates that lower387

Langevin collision rates may result in faster phase space ex-388

ploration [38].389

F. Solvation and NPT equilibration390

While protein-only models may be su�icient for struc-391

tural analysis or implicit solvent simulations, Ensembler392

also provides a stage for solvating models with explicit wa-393

ter and performing a round of explicit-solvent MD refine-394

ment/equilibration under isothermal-isobaric (NPT) condi-395

tions. The solvation step solvates each model for a given396

target with the same number of waters to facilitate the in-397

tegration of data frommultiple simulations, which is impor-398

tant for methods such as the construction of MSMs. The399

target number of waters is selected by first solvating each400

model with a specified padding distance (default: 10 Å),401

then taking apercentile value from thedistribution (default:402

68th percentile). This helps to prevent models with par-403

ticularly long, extended loops—such as those arising from404

template structures with unresolved termini—from impos-405

ing very large box sizes on the entire set of models. The406

TIP3P water model [39] is used by default, but any of the407

other explicit water models available in OpenMM, such as408

TIP4P-Ew [40], can be specified using the --water_model409

flag. Models are resolvated with the target number of wa-410

ters by first solvating with zero padding, then incrementally411

increasing the box size and resolvating until the target is ex-412

ceeded, then finally deleting su�icient waters to match the413

target value. The explicit solvent MD simulation is also im-414

plementedusingOpenMM,using theAmber99SB-ILDN force415

field [36] and TIP3P water [39] by default. The force field,416

water model, and simulation length can again be specified417

using the --ff, --water_model, and --simlength flags418

respectively. Further simulation parameters can be con-419

trolled via the API or via the CLI --api_params flag. Pres-420

sure control is performedwith aMonte Carlo barostat as im-421

plemented in OpenMM, with a default pressure of 1 atm and422
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a period of 50 timesteps. The remaining simulation param-423

eters have default values set to the same as for the implicit424

solvent MD refinement.425

Packaging426

Ensembler provides a packaging module which427

can be used to prepare models for other uses. The428

package_models subcommand currently provides func-429

tions (specified via the --package_for flag) for com-430

pressing models in preparation for data transfer, or for431

organizing them with the appropriate directory and file432

structure for production simulation on the distributed433

computing platform Folding@home [4]. The module could434

easily be extended to add methods for preparing models435

for other purposes. For example, production simulations436

could alternatively be run using Copernicus [5, 6]—a frame-437

work for performing parallel adaptive MD simulations—438

or GPUGrid [7]—a distributing computing platform which439

relies on computational power voluntarily donated by the440

owners of nondedicated GPU-equipped computers.441

Other features442

Tracking provenance information443

To aid the user in tracking the provenance of eachmodel,444

each pipeline function also outputs a metadata file, which445

helps to link data to the so�ware version used to generate it446

(both Ensembler and its dependencies), and also provides447

timing and performance information, and other data such448

as hostname.449

Rapidly modeling a single template450

For users interested in simply using Ensembler to rapidly451

generate a set ofmodels for a single template sequence, En-452

sembler provides a command-line tool quickmodel, which453

performs the entire pipeline for a single target with a small454

numberof templates. For largernumbersofmodels (suchas455

entire protein families), modeling time is greatly reduced by456

using the main modeling pipeline, which is parallelized via457

MPI, distributing computation across eachmodel (or across458

each template, in the case of the loop reconstruction code),459

and scaling (in a “pleasantly parallel” manner) up to the460

number of models generated.461

III. RESULTS462

Modeling of all human tyrosine kinase catalytic domains463

As a first application of Ensembler, we have built mod-464

els for the human TK family. TKs (and protein kinases in465

general) play important roles inmanycellularprocessesand466

are involved in a number of types of cancer [41]. For exam-467

ple, a translocation between the TK Abl1 and the pseudok-468

inase Bcr is closely associated with chronic myelogenous469

leukemia [42], while mutations of Src are associated with470

colon, breast, prostate, lung, and pancreatic cancers [43].471

Protein kinase domains are thought to havemultiple acces-472

siblemetastable conformation states, andmuch e�ort is di-473

rected at developing kinase inhibitor drugs which bind to474

and stabilize inactive conformations [44]. Kinases are thus475

a particularly interesting subject for study with MSM meth-476

ods [45], and this approach stands to benefit greatly from477

the ability to exploit the full body of available genomic and478

structural data within the kinase family, e.g. by generating479

large numbers of starting configurations to beused in highly480

parallel MD simulation.481

We selected all human TK domains annotated in UniProt482

as targets, and all available structures of protein kinase do-483

mains (of any species) as templates, using the commands484

shown in Box 1. This returned 93 target sequences and485

4433 template structures, giving a total of 412,269 target-486

template pairs. The templates were derived from 3028 indi-487

vidual PDB entries and encompassed 23 di�erent species,488

with 3634 template structures from human kinase con-489

structs.490

The resultant models are available as part of a supple-491

mentary dataset which can be downloaded from the Dryad492

Digital Repository (DOI: 10.5061/dryad.7fg32).493

Ensembler modeling statistics494

Crystallographic structures of kinase catalytic domains495

generally contain a significant number of missing residues496

(median 11, mean 14, standard deviation 13, max 102) due to497

thehighmobility of several loops (Fig. 2, top),withanumber498

of thesemissing spans being significant in length (median 5,499

mean 7, standard deviation 6,max 82; Fig. 2, bottom). To re-500

duce the reliance on the MODELLER rapid model construc-501

tion stage to reconstruct very long unresolved loops, un-502

resolved template residues were first remodeled using the503

loopmodel subcommand. Out of 3666 templates with one504

or more missing residues, 3134 were successfully remod-505

eled by the Rosetta loop modeling stage (with success de-506

fined simply as program termination without error); most507

remodeling failures were attributable to unsatisfiable spa-508

tial constraints imposed by the original template structure.509

There was some correlation between remodeling failures510

and the number of missing residues (Fig. 2, top); templates511

for which remodeling failed had a median of 20 missing512

residues, compared to a median of 14 missing residues for513

templates for which remodeling was successful.514

Following loop remodeling, the Ensembler pipeline was515

performed up to and including the implicit solvent MD re-516

finement stage, which completed with 389,067 (94%) sur-517

viving models across all TKs. To obtain statistics for the sol-518

vation stage without generating a sizeable amount of coor-519

dinate data (with solvated PDB coordinate files taking up520
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ensembler gather_targets --query ‘family:"tyr protein kinase family" AND organism:"homo sapiens" AND reviewed:yes’
--uniprot_domain_regex ‘^Protein kinase(?!; truncated)(?!; inactive)’

ensembler gather_templates --gather_from uniprot --query ‘domain:"Protein kinase" AND reviewed:yes’
--uniprot_domain_regex ‘^Protein kinase(?!; truncated)(?!; inactive)’

Box 1. Ensembler command-line functions used to select targets and templates. The commands retrieve target and template data
by querying UniProt. The query string provided to the gather_targets command selects all human tyrosine protein kinases which have
been reviewed by a curator, while the query string provided to the gather_templates command selects all reviewed protein kinases of
any species. The --uniprot_domain_regex flag is used to select a subset of the domains belonging to the returned UniProt protein en-
tries, bymatching the domain annotations against a given regular expression. In this example, domains of type "Protein kinase", "Protein
kinase 1", and "Protein kinase 2" were selected, while excluding many other domain types such as "Protein kinase; truncated", "Protein
kinase; inactive", "SH2", "SH3", etc. Target selection simply entails the selection of sequences corresponding to eachmatchingUniProt do-
main. Template selection entails the selection of the sequences and structures of any PDB entries corresponding to thematching UniProt
domains.
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FIG. 2. Distributions for the number of missing residues in the
TK templates. The upper histograms show the number ofmissing
residues per template, for all templates (blue) and for only those
templates for which template remodeling with the loopmodel
subcommand failed (red). The lower histogram shows the number
of residues in each missing loop, for all templates.

about 0.9 MB each), the solvate subcommand was per-521

formed for two representative individual kinases (Src and522

Abl1).523

The number of models which survived each stage are524

shown in Fig. 1, indicating that the greatest attrition oc-525

curred during the modeling stage. The number of refined526

models for each target ranged from 4046 to 4289, with a527

median of 4185, mean of 4184, and standard deviation of528

57. Fig. 1 also indicates the typical timing achieved on a529

cluster for each stage, showing that the build_models and530

refine_implicit_md stages are by far the most compute-531
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FIG. 3. Template-target sequence identity distribution for hu-
man tyrosine kinase catalytic domains. Sequence identities are
calculated from all pairwise target-template alignments, where
targets are human kinase catalytic domain sequences and tem-
plates are all kinase catalytic domains from any organism with
structures in thePDB, asdescribed in the text. A kernel density esti-
mate of the target-template sequence identity probability density
function is shown as a solid line with shaded region, while the cor-
responding cumulative distribution function is shown as a dashed
line.

intensive.532

The files generated for each model (up to and including533

the implicit solvent MD refinement stage) totaled∼116 kB in534

size, totalling 0.5 GB per TK target or 42 GB for all 93 targets.535

The data generated permodel breaks down as 39 kB for the536

output from themodeling stage (without saving MODELLER537

restraints files, which are about 397 kBpermodel) and 77 kB538

for the implicit solvent MD refinement stage.539

Evaluation of model quality and utility540

All tyrosine kinases541

To evaluate the variety of template sequence similarities542

relative to each target sequence, we calculated sequence543
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35-55 (n=71808)
55-100 (n=5177)

FIG. 4. Distribution of RMSDs to all TK catalytic domainmodels
relative to the model derived from the highest sequence iden-
tity template. Distributions are built from data from all 93 TK do-
main targets. Tobetter illustratehowconformational similarity de-
pends on sequence identity, the lower plot illustrates the distribu-
tions as stratified into three sequence identity classes: high iden-
tity (55–100%), moderate identity (35–55%), and remote identity
(0–35%). The plotted distributions have been smoothed using ker-
nel density estimation.

identity distributions, as shown in Fig. 3. This suggests an544

intuitive division into three categories, with 355,712 mod-545

els in the 0–35% sequence identity range, 51,330models in546

the 35–55% range, and 5227models in the 55–100% range.547

We then computed the RMSD distributions for the models548

created for each target (relative to the model derived from549

the template with highest sequence identity) Fig. 4, to as-550

sess the diversity of conformations captured by the mod-551

eling pipeline. Furthermore, to understand the influence552

of sequence identity on the conformational similarities of553

the resulting models, the RMSD distributions were strati-554

fied based on the three sequence identity categories de-555

scribed above. This analysis indicates that higher sequence556

identity templates result inmodelswith lower RMSDs, while557

templates with remote sequence identities result in larger558

RMSDs on average.559

We also analyzed the potential energies of the models560

at the end of the implicit solvent MD refinement stage.561

These ranged from -14180 kT to -3160 kT, with a median562

of -9501 kT, mean of -9418 kT, and a standard deviation563

of 1198 kT (with a simulation temperature of 300 K). The564

distributions—stratified using the same sequence identity565

14000 13000 12000 11000 10000 9000 8000 7000 6000

Final potential energy (kT)

0-35
35-55
55-100

FIG. 5. Distribution of final energies from implicit solvent MD
refinement of TK catalytic domainmodels. To illustrate how the
energies are a�ected by sequence identity, the models are sepa-
rated into three sequence identity classes: high identity (55–100%),
moderate identity (35–55%), and remote identity (0–35%). The
plotted distributions have been smoothed using kernel density es-
timation. Refinement simulations were carried out at the default
temperature of 300 K.

ranges as above—are plotted in Fig. 5, indicating that higher566

sequence identity templates tend to result in slightly lower567

energymodels. Of the4973modelswhich failed to complete568

the implicit refinement MD stage, all except 9 failed within569

the first 1 ps of simulation.570

Src and Abl1571

To provide a more complete evaluation of the models572

generated,wehaveanalyzed twoexampleTKs (SrcandAbl1)573

in detail. Due to their importance in cancer, these kinases574

have been the subject of numerous studies, encompassing575

many di�erent methodologies. In terms of structural data,576

a large number of crystal structures have been solved (with577

or without ligands such as nucleotide substrate or inhibitor578

drugs), showing the kinases in a number of di�erent confor-579

mations. These two kinases are thus also interesting targets580

for MSM studies, with one recent study focusing on mod-581

eling the states which constitute the activation pathway of582

Src [45].583

Fig. 6 shows a superposition of a set of representative584

models of SrcandAbl1. Modelswere first stratified into three585

ranges, based on the structure of the sequence identity dis-586

tribution (Fig. 3), then subjected to RMSD-based k-medoids587

clustering (using themsmbuilder clustering package [14]) to588

pick three representative models from each sequence iden-589

tity range. Each model is colored and given a transparency590

basedon the sequence identity between the target and tem-591

plate sequence. The figure gives an idea of the variance592

present in the generated models. High sequence identity593

models (in opaque blue) tend to be quite structurally sim-594

ilar, with some variation in loops or changes in domain ori-595
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FIG. 6. Superposition of clustered models of Src and Abl1. Su-
perposed renderings of nine models each for Src and Abl1, giving
some indication the diversity of conformations generated by En-
sembler. The models for each target were divided into three se-
quence identity ranges (as in Fig. 4), and RMSD-based k-medoids
clustering was performed (using the msmbuilder clustering pack-
age [14]) to select three clusters from each. Themodels shown are
the centroids of each cluster. Models are colored and given trans-
parency based on their sequence identity, so that high sequence
identity models are blue and opaque, while lower sequence iden-
tity models are transparent and red.

entation.596

The Abl1 renderings in Fig. 6 indicate one high sequence597

identity model with a long unstructured region at one of598

the termini, which was unresolved in the original template599

structure. While such models are not necessarily incorrect600

or undesirable, it is important to be aware of the e�ects they601

may have on production simulations performed under peri-602

odic boundary conditions, as long unstructured termini can603

be prone to interact with a protein’s periodic image. Lower604

sequence identity models (in transparent white or red) in-605

dicate much greater variation in all parts of the structure.606

We believe the mix of high and low sequence identity mod-607

els to be particularly useful for methods such as MSM build-608

ing, which require thorough sampling of the conformational609

landscape. The high sequence identity models could be610

considered to be themost likely to accurately represent true611

metastable states. Conversely, the lower sequence identity612

models could be expected to help push a simulation into re-613

gions of conformation space which might take intractably614

long to reach if starting a single metastable conformation.615

Toevaluate themodelsofSrcandAbl1 in thecontextof the616

published structural biology literature on functionally rele-617

vant conformations, we have focused on two residue pair618

distances thought to be important for the regulation of pro-619

tein kinase domain activity. We use the residue numbering620

schemes for chicken Src (which is commonly used in the lit-621

erature even in reference to human Src) [46, 47] and human622

Abl1 isoform A [48–50] respectively; the exact numbering623

schemes are provided in Appendix 1.624

Fig. 7 shows two structures of Src believed to repre-625

sent inactive (PDB code: 2SRC) [46] and active (PDB code:626

1Y57) [47] states. One notable feature which distinguishes627

the two structures is the transfer of an electrostatic inter-628

action of E310 from R409 (in the inactive state) to K295 (in629

FIG. 7. Two structures of Src, indicating certain residues in-
volved in activation. In the inactive state, E310 forms a salt bridge
with R409. During activation, the αC-helix (green) moves and ro-
tates, orienting E310 towards the ATP-binding site and allowing it
to instead form a salt bridge with K295. This positions K295 in
the appropriate position for catalysis. Note that ANP (phospho-
aminophosphonic acid-adenylate ester; an analog of ATP) is only
physically present in the 2SRC structure. To aid visualization of the
active site in 1Y57, it has been included in the rendering by struc-
turally aligning the surrounding homologous protein residues.

the active state), brought about by a rotation of the αC-630

helix. These three residues are also well conserved [51], and631

a number of experimental and simulation studies have sug-632

gested that this electrostatic switching process plays a role633

in a regulatorymechanism shared across the protein kinase634

family [45, 52, 53]. As such, we have projected the Ensem-635

blermodels for Src and Abl1 onto a space consisting of the636

distancesbetween these two residuepairs (Fig. 8). Themod-637

els show strong coverage of regions in which either of the638

electrostatic interactions is fully formed (for models across639

all levels of target-template sequence identity), as well as a640

wide range of regions in-between (mainly models with low641

sequence identity). We thus expect that such a set of mod-642

els, if used as starting configurations for highly parallel MD643

simulation, could greatly aid in sampling of functionally rel-644

evant conformational states.645

IV. AVAILABILITY AND FUTURE DIRECTIONS646

Availability647

The code for Ensembler is hosted on the collabora-648

tive open source so�ware development platform GitHub649

(github.com/choderalab/ensembler). The latest release can650

be installed via the conda package manager for Python651

(conda.pydata.org), using the two commands shown in652

Box 2. This will install all dependencies except for653

MODELLERandRosetta,whicharenotavailable through the654

conda package manager, and thus must be installed sep-655

arately by the user. The latest source can be downloaded656
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(a) Src (b) Abl

FIG. 8. Src and Abl1 models projected onto the distances between two conserved residue pairs, colored by sequence identity. Two
Src structures (PDB entries 1Y57 [47] and 2SRC [46]) are projected onto the plots for reference, representing active and inactive states
respectively. These structures and the residue pairs analyzed here are depicted in Fig. 7. Distances are measured between the center of
masses of the three terminal sidechain heavy atoms of each residue. The atom names for these atoms, according to the PDB coordinate
files forboth reference structures, are—Lys: NZ,CD,CE (ethylamine); Glu: OE1, CD,OE2 (carboxylate); Arg: NH1, CZ,NH2 (part of guanidine).

conda config -add channels https://conda.binstar.org/omnia
conda install ensembler

Box 2. Ensembler installation using conda.

from the GitHub repository, which also contains up-to-date657

instructions for building and installing the code. Documen-658

tation can be found at ensembler.readthedocs.org.659

A supplementary dataset can also be downloaded from660

the Dryad Digital Repository (DOI: 10.5061/dryad.7fg32).661

This contains theTKmodels described in the III section, gen-662

eral information on the targets and templates, plus a script663

and instructions for regenerating the same dataset.664

Future Directions665

Comparative proteinmodeling and MD simulation set-up666

can be approached in a number of di�erentways, with vary-667

ing degrees of complexity, and there are a number of obvi-668

ous additions and improvements which we plan to imple-669

ment in future versions of Ensembler.670

Some amino acids can exist in di�erent protonation671

states, depending on pH and on their local environment.672

These protonation states can have important e�ects on bi-673

ological processes. For example, long timescale MD simula-674

tions have suggested that the conformation of the DFGmo-675

tif of the TK Abl1—believed to be an important regulatory676

mechanism [54]—is controlled by protonation of the aspar-677

tate [55]. Currently, protonation states are assigned simply678

based on pH (a user-controllable parameter). At neutral pH,679

histidines have two protonation states which are approxi-680

mately equally likely, and in this situation the selection is681

therefore made based on which state results in a better hy-682

drogen bond. It would be highly desirable to instead use a683

methodwhich assigns amino acid protonation states based684

on a rigorous assessment of the local environment. We thus685

plan to implement an interface and command-line function686

for assigning protonation states with MCCE2 [56–58], which687

uses electrostatics calculations combinedwith Monte Carlo688

sampling of side chain conformers to calculate pKa values.689

Many proteins require the presence of various types of690

non-protein atoms andmolecules for proper function, such691

as metal ions (e.g. Mg+2), cofactors (e.g. ATP) or post-692

translational modifications (e.g. phosphorylation, methyla-693

tion, glycosylation, etc.), and we thus plan for Ensembler694

to eventually have the capability to include such entities695

in the generated models. Binding sites for metal ions are696

frequently found in proteins, o�en playing a role in cataly-697

sis. For example, protein kinase domains contain two bind-698

ing sites for divalentmetal cations, and display significantly699

increased activity in the presence of Mg2+ [59], the diva-700

lent cation with highest concentration in mammalian cells.701

Metal ions are o�en not resolved in experimental structures702

of proteins, but by taking into account the full range of avail-703

able structural data, it should be possible in many cases704

to include metal ions based on the structures of homolo-705

gous proteins. We are careful to point out, however, that706

metal ion parameters in classical MD force fields have signif-707

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 18, 2015. ; https://doi.org/10.1101/018036doi: bioRxiv preprint 

http://ensembler.readthedocs.org/en/latest/
https://dx.doi.org/10.5061/dryad.7fg32
https://doi.org/10.1101/018036


11

icant limitations, particularly in their interactions with pro-708

teins [60]. Cofactors and post-translational modifications709

are also o�en not fully resolved in experimental structures,710

and endogenous cofactors are frequently substituted with711

other molecules to facilitate experimental structural analy-712

sis. Again, Ensembler could exploit structural data from a713

set of homologous proteins tomodel in thesemolecules, al-714

though there will likely be a number of challenges to over-715

come in the design and implementation of such functional-716

ity.717

Another limitationwith the present version ofEnsembler718

involves the treatment of members of a protein family with719

especially long residue insertions or deletions. For example,720

the setof all humanproteinkinasedomains listed inUniProt721

have a median length of 265 residues (mean 277) and a722

standard deviation of 45, yet the minimum and maximum723

lengths are 102 and 801 respectively. The latter value cor-724

responds to the protein kinase domain of serine/threonine-725

kinase greatwall, which includes a long insertion between726

the two main lobes of the catalytic domain. In principle,727

such insertions could be excluded from the generatedmod-728

els, though a number of questions would arise as to how729

best to approach this.730

Conclusion731

We believe Ensembler to be an important first step to-732

ward enabling computational modeling and simulation of733

proteins on the scale of entire protein families, and suggest734

that it could likely prove useful for tasks beyond its original735

aim of providing diverse starting configurations for MD sim-736

ulations. The code is open source and has been developed737

withextensibility inmind, inorder to facilitate its customiza-738

tion for awide range of potential uses by thewider scientific739

community.740
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Appendix 1: Sequences and residue numbering schemes for Src and Abl1899

Kinase catalytic domains are highlighted in red, and the conserved residues analyzed in the main text (Figs. 7 and 8) are900

highlighted with yellow background.901

Human Abl1 sequence902

1 MLEICLKLVG CKSKKGLSSS SSCYLEEALQ RPVASDFEPQ GLSEAARWNS KENLLAGPSE 60903

61 NDPNLFVALY DFVASGDNTL SITKGEKLRV LGYNHNGEWC EAQTKNGQGW VPSNYITPVN 120904

121 SLEKHSWYHG PVSRNAAEYL LSSGINGSFL VRESESSPGQ RSISLRYEGR VYHYRINTAS 180905

181 DGKLYVSSES RFNTLAELVH HHSTVADGLI TTLHYPAPKR NKPTVYGVSP NYDKWEMERT 240906

241 DITMKHKLGG GQYGEVYEGV WKKYSLTVAV KTLKEDTMEV EEFLKEAAVM KEIKHPNLVQ 300907

301 LLGVCTREPP FYIITEFMTY GNLLDYLREC NRQEVNAVVL LYMATQISSA MEYLEKKNFI 360908

361 HRDLAARNCL VGENHLVKVA DFGLSRLMTG DTYTAHAGAK FPIKWTAPES LAYNKFSIKS 420909

421 DVWAFGVLLW EIATYGMSPY PGIDLSQVYE LLEKDYRMER PEGCPEKVYE LMRACWQWNP 480910

481 SDRPSFAEIH QAFETMFQES SISDEVEKEL GKQGVRGAVS TLLQAPELPT KTRTSRRAAE 540911

541 HRDTTDVPEM PHSKGQGESD PLDHEPAVSP LLPRKERGPP EGGLNEDERL LPKDKKTNLF 600912

601 SALIKKKKKT APTPPKRSSS FREMDGQPER RGAGEEEGRD ISNGALAFTP LDTADPAKSP 660913

661 KPSNGAGVPN GALRESGGSG FRSPHLWKKS STLTSSRLAT GEEEGGGSSS KRFLRSCSAS 720914

721 CVPHGAKDTE WRSVTLPRDL QSTGRQFDSS TFGGHKSEKP ALPRKRAGEN RSDQVTRGTV 780915

781 TPPPRLVKKN EEAADEVFKD IMESSPGSSP PNLTPKPLRR QVTVAPASGL PHKEEAGKGS 840916

841 ALGTPAAAEP VTPTSKAGSG APGGTSKGPA EESRVRRHKH SSESPGRDKG KLSRLKPAPP 900917

901 PPPAASAGKA GGKPSQSPSQ EAAGEAVLGA KTKATSLVDA VNSDAAKPSQ PGEGLKKPVL 960918

961 PATPKPQSAK PSGTPISPAP VPSTLPSASS ALAGDQPSST AFIPLISTRV SLRKTRQPPE 1020919

1021 RIASGAITKG VVLDSTEALC LAISRNSEQM ASHSAVLEAG KNLYTFCVSY VDSIQQMRNK 1080920

1081 FAFREAINKL ENNLRELQIC PATAGSGPAA TQDFSKLLSS VKEISDIVQR 1130921

Sequences for human and chicken Src, aligned using Clustal Omega922

SRC_HUMAN 1 MGSNKSKPKD ASQRRRSLEP AENVHGAGGG AFPASQTPSK PASADGHRGP SAAFAPAAAE 60923

SRC_CHICK 1 MGSSKSKPKD PSQRRRSLEP PDSTH---HG GFPASQTPNK TAAPDTHRTP SRSFGTVATE 57924

***.****** ********* :..* * .*******.* *: * ** * * :*. .*:*925

SRC_HUMAN 61 PKLFGGFNSS DTVTSPQRAG PLAGGVTTFV ALYDYESRTE TDLSFKKGER LQIVNNTEGD 120926

SRC_CHICK 58 PKLFGGFNTS DTVTSPQRAG ALAGGVTTFV ALYDYESRTE TDLSFKKGER LQIVNNTEGD 117927

********:* ********** ********* ********** ********** **********928

SRC_HUMAN 121 WWLAHSLSTG QTGYIPSNYV APSDSIQAEE WYFGKITRRE SERLLLNAEN PRGTFLVRES 180929

SRC_CHICK 118 WWLAHSLTTG QTGYIPSNYV APSDSIQAEE WYFGKITRRE SERLLLNPEN PRGTFLVRES 177930

*******:** ********** ********** ********** ******* ** **********931

SRC_HUMAN 181 ETTKGAYCLS VSDFDNAKGL NVKHYKIRKL DSGGFYITSR TQFNSLQQLV AYYSKHADGL 240932

SRC_CHICK 178 ETTKGAYCLS VSDFDNAKGL NVKHYKIRKL DSGGFYITSR TQFSSLQQLV AYYSKHADGL 237933

********** ********** ********** ********** ***.****** **********934

SRC_HUMAN 241 CHRLTTVCPT SKPQTQGLAK DAWEIPRESL RLEVKLGQGC FGEVWMGTWN GTTRVAIKTL 300935

SRC_CHICK 238 CHRLTNVCPT SKPQTQGLAK DAWEIPRESL RLEVKLGQGC FGEVWMGTWN GTTRVAIKTL 297936

*****.**** ********** ********** ********** ********** **********937

SRC_HUMAN 301 KPGTMSPEAF LQEAQVMKKL RHEKLVQLYA VVSEEPIYIV TEYMSKGSLL DFLKGETGKY 360938

SRC_CHICK 298 KPGTMSPEAF LQEAQVMKKL RHEKLVQLYA VVSEEPIYIV TEYMSKGSLL DFLKGEMGKY 357939

********** ********** ********** ********** ********** ****** ***940

SRC_HUMAN 361 LRLPQLVDMA AQIASGMAYV ERMNYVHRDL RAANILVGEN LVCKVADFGL ARLIEDNEYT 420941

SRC_CHICK 358 LRLPQLVDMA AQIASGMAYV ERMNYVHRDL RAANILVGEN LVCKVADFGL ARLIEDNEYT 417942

********** ********** ********** ********** ********** **********943

SRC_HUMAN 421 ARQGAKFPIK WTAPEAALYG RFTIKSDVWS FGILLTELTT KGRVPYPGMV NREVLDQVER 480944

SRC_CHICK 418 ARQGAKFPIK WTAPEAALYG RFTIKSDVWS FGILLTELTT KGRVPYPGMV NREVLDQVER 477945

********** ********** ********** ********** ********** **********946

SRC_HUMAN 481 GYRMPCPPEC PESLHDLMCQ CWRKEPEERP TFEYLQAFLE DYFTSTEPQY QPGENL 536947

SRC_CHICK 478 GYRMPCPPEC PESLHDLMCQ CWRKDPEERP TFEYLQAFLE DYFTSTEPQY QPGENL 533948

********** ********** ****:***** ********** ********** ******949
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