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1 Introduction

Many important questions in medicine involve questions about causality. For example, do low levels of
high-density lipoproteins (HDL) cause heart disease? Does high body mass index (BMI) cause type 2
diabetes? Or are these traits simply correlated in the population for other reasons? The gold standard study
design for answering this type of question is the randomized controlled trial, which requires identifying an
intervention that influences the potential causal factor (for example a drug), randomly assigning individuals
to receive the intervention, and monitoring outcomes. In this study design, the use of randomization allows
one to isolate the causal effect of a single variable (e.g. the drug) from the effects of potential confounding
variables. However, randomized controlled trials are sometimes impractical (for example, no intervention
may exist), expensive, or indeed unethical (for a tongue-in-cheek example, see Smith and Pell [31]).

In the absence of a randomized trial, some hints about the causal relationship between traits can come
from observational epidemiology. If two variables are correlated in the population (e.g. low HDL cholesterol
is correlated with higher risk of heart disease [14]) then this might indicate a relationship worth examining
further. On the other hand, observational correlations are potentially confounded by a large number of
factors (e.g. Taubes [34] and references therein), and following up non-causal relationships with randomized
controlled trials leads to large investments of time and money with little payoff. Classic examples of this
problem include trials of hormone replacement therapy in cardiovascular disease [29] or beta-carotene in
lung cancer [36].

A useful attack on the problem of confounding in observational epidemiology comes from genetics,
and is now called “Mendelian randomization” (the method is generally attributed to Katan [19], but see
Katan [20]). The intuition is as follows: if two traits are causally related, a genetic variant that influences
the first trait (for example, BMI) is expected to have a “knock-on” effect on the second trait (for example,
type 2 diabetes), while this is not the case if the two traits are correlated for other reasons. Since genetic
variants are inherited at conception and (to a first approximation) do not change over the course of an
individual’s lifetime, the random inheritance of a genetic variant acts like the randomization in a clinical
trial to help avoid the effects of confounding. In the simplest form, Mendelian randomization thus simply
involves testing to see if a genetic variant has effects on two traits [19]. More elaborate methods allow one to
estimate the magnitude of the causal effect of one trait on the other, and to include multiple genetic variants;
for more in-depth description of the statistical methodology, see Didelez and Sheehan [11], VanderWeele
et al. [39] and Davey Smith and Hemani [9].

The Mendelian randomization approach is now extremely popular (e.g. [4, 5, 10, 13, 16, 17, 22, 24, 27,
41, 42]). For example, this approach has recently been used to argue that alcohol consumption increases risk
of heart disease [16], and that increasing serum iron levels decreases risk of Parkinson’s disease [27]. These
findings have potentially important public health implications.

However, it is well-known that causal inference using Mendelian randomization requires strong assump-
tions about the physiological mechanisms by which genetic variants exert their effects ([9, 39]. Specifically,
if a genetic variant influences two phenotypes through different mechanisms, then Mendelian randomization
will give misleading results. For example, a genetic variant in the gene LGR4 influences both bone min-
eral density and risk of gallbladder cancer [33], but it seems implausible to suggest that low bone mineral
density causes cancer. Instead, it seems more likely that this genetic variant alters some molecular pathway
(or multiple pathways) that is important for both phenotypes. Here, we describe two pieces of evidence that
make us moderately skeptical of most of the causal claims made to date using Mendelian randomization,
and suggest some ways forward.
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2 Two reasons for skepticism

The first reason for skepticism is that in the nearly 30 years of Mendelian randomization, arguably no new
causal relationship has been identified with this approach and subsequently verified in a randomized con-
trolled trial. We assembled a list of 29 applications of Mendelian randomization from two recent reviews
[3, 9] (Supplementary Table 1). Of these 29 pairs of traits, we identified five that were also targets of ran-
domized controlled trials. In nearly all of these case, the Mendelian randomization study was performed
after the randomized controlled trial, and generally confirmed the results of the trial (Table 1). For ex-
ample, Mendelian randomization studies have provided additional evidence that BMI causally influences
atherosclerosis [21], and that HDL levels do not appear to causally influence risk of cardiovascular disease
[41]. These studies have provided important, independent evidence about the relationships between these
traits, but it seems the most rigorous test of the Mendelian randomization methodology would be to identify
a new causal relationship and then to subsequently confirm it with a controlled trial.

The one case where Mendelian randomization provided support for a causal relationship prior to the
publication of a randomized controlled trial was the case of homocysteine levels and stroke [5]. This study
inferred that increased homocysteine levels cause higher stroke risk. However, randomized controlled trials
of folic acid (which reduces levels of circulating homocysteine) have produced conflicting results [18, 32].
There are a number of potential explanations for this (indeed, the robustness of the Mendelian randomization
study has been questioned [23]), but overall the track record of Mendelian randomization is sparse.

The second reason for skepticism is more fundamental. Specifically, one of the core assumptions when
using Mendelian randomization to infer causality is that the genetic variants used in the study have a direct
effect on one trait (the “causal” trait), but only an indirect effect on the other (the “caused” trait). That is, the
genetic variants used in the study are assumed to have no influence on confounding factors that influences
both traits. This is often referred to as an assumption of no “pleiotropy” [9]. However, it is difficult to know
a priori whether this assumption is valid, and recent work in human genetics has shown that genetic variants
often have effects on different traits. For example, genetic variants that influence one autoimmune disease
also often influence others [6], and variants that influence one lipid trait also often influence other lipid traits
[35]. This is not limited to traits that are intuitively related, however–large genome-wide association studies
are finding that genetic variants often influence many aspects of physiology [2]. For example, genetic
variants that influence HDL cholesterol levels have correlated effects on whether an individual went to
college [2]; a naive interpretation of this might suggest the (rather nonsensical) conclusion that HDL-raising
drugs should increase education levels.

It is sometimes suggested that using a large number of genetic variants in Mendelian randomization
(combined into a single score) offers a way to partially avoid this problem (e.g. [9, 17]). To test this, we
performed simulations of such an approach in a situation where two traits are not in fact causally related
(Figure 1A, see Supplementary Information for details). We found that even a small number of pleiotropic
loci (those that influence a confounding variable) leads to false positives, and that this problem grows worse
as sample sizes increase (Figure 1B). In empirical data, this effect has been seen by Evans et al. [12],
who noted that a related approach identified several apparently spurious causal relationships between traits.
Before making a strong causal conclusion from a Mendelian randomization study, then, it seems necessary
to have a good molecular and physiological understanding of the effects of all the genetic variants used
in the study. For many traits of interest, our understanding of biology is not strong enough for this to be
reasonable.

3 Fulfilling the promise of Mendelian randomization

The principle of Mendelian randomization, however, remains tremendously promising. What are the ways
forward? One possibility is to treat negative results from Mendelian randomization with more confidence
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than positive results–if two traits are correlated in the population but a Mendelian randomization study
suggests they are not causally related, this is evidence that the population-level correlation is driven by
some unobserved confounder [39]. Another approach might be to focus on developing a detailed molecular
understanding of variants in an individual gene and their downstream physiological effects; this approach
is particularly useful if the gene is a potential drug target [28]. Finally, another possibility comes from the
ongoing development of new statistical methods like bi-directional Mendelian randomization (e.g. [37, 40]),
which use many genetic variants to increase the robustness of causal inference. These methods are currently
in early stages of development and evaluation. Until they reach maturity, reports of causal relationships
identified through Mendelian randomization should be treated with the same skepticism as such claims
made from observational epidemiology.
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Table 1: List of causal relationships evaluated by Mendelian randomization and randomized controlled trials,
compiled from Table 1 of Davey Smith and Hemani [9] and Table 1 of Burgess and Thompson [3]. For the
complete list of studies, see Supplementary Table 1. MR = Mendelian randomization, RCT = randomized
controlled trial.

Trait Outcome MR effect Reference RCT effect Reference Performed first
cholesterol levels cancer None [38] None [7] RCT
HDL cholesterol myocardial infarction None [41] None [1] RCT

homocysteine stroke + [5] Conflicting [18, 32] MR
BMI cartoid thickness + [21] + [15, 30] RCT

interuterine folate neural tube defects - [8] - [25] RCT

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 16, 2015. ; https://doi.org/10.1101/018150doi: bioRxiv preprint 

https://doi.org/10.1101/018150


trait

confounders

disease

G
p

1−p

A. Simulated relationships

●

●

●

●

●

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

Sample size (thousands)

P
ro

b.
 o

f f
al

se
 p

os
iti

ve

●

●

●

●
●

●

●

●

●

●

B. Probability of false positives
●

●

●

p = 5%
10%
15%

Figure 1. Simulations of Mendelian randomization in the absence of a causal relationship between a
trait and a disease. A. Simulated scenario. For each simulation, we simulated 100 genetic variants (G),
which either 1) influence a trait or 2) influence both the trait and the disease, with proportions 1− p and p,
respectively. Arrows represent causal relationships [26]. The confounders are not directly simulated; see
Supplementary Material for details. B. Probability of incorrectly inferring a causal relationship between
a trait and a disease in this situation. We simulated Mendelian randomization studies with different sample
sizes and values of p, and in each simulation tested for a causal relationship between the trait and the disease.
Each point shows the proportion of 1,000 independent simulations where the causal effect of the trait on the
disease was “significant” as judged by P < 0.05. In all simulations, we assumed that the effects of a variant
on the trait and on the disease are uncorrelated; see Figure S1 for simulations where these effect sizes are
correlated.
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