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Abstract:  25	
  
 26	
  
Macroscopic descriptions of populations commonly assume that encounters between 27	
  
individuals are well mixed; i.e., each individual has an equal chance of coming into contact with 28	
  
any other individual. Relaxing this assumption can be challenging though, due to the difficulty 29	
  
of acquiring detailed knowledge about the non-random nature of encounters. Here, we fitted a 30	
  
mathematical model of dengue virus transmission to spatial time series data from Pakistan and 31	
  
compared maximum-likelihood estimates of “mixing parameters” when disaggregating data 32	
  
across an urban-rural gradient. We show that dynamics across this gradient are subject not 33	
  
only to differing transmission intensities but also to differing strengths of nonlinearity due to 34	
  
differences in mixing. We furthermore show that neglecting spatial variation in mixing can lead 35	
  
to substantial underestimates of the level of effort needed to control a pathogen with vaccines 36	
  
or other control efforts. We complement this analysis with relevant contemporary environmental 37	
  
drivers of dengue. 38	
  
 39	
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Introduction: 45	
  

The transmission dynamics of all infectious diseases depend on a few basic but key 46	
  

determinants: the availability of susceptible and infectious hosts, contacts between them, and 47	
  

the potential for transmission upon contact. Susceptibility is shaped primarily by historical 48	
  

patterns of transmission, the natural history of the pathogen, the host’s immune response, and 49	
  

host demography (Grenfell et al. 2004). What constitutes an epidemiologically significant 50	
  

contact depends on the pathogen’s mode of transmission (Stoddard et al. 2009), and structure 51	
  

in contact patterns can be influenced by transportation networks and the spatial scale of 52	
  

transmission (Brockmann & Helbing 2013), by host heterogeneities such as age (Kilpatrick et 53	
  

al. 2006), and dynamically in response to the pathogen’s influence on host behavior (Fenichel 54	
  

et al. 2011). Whether transmission actually occurs during contact between susceptible and 55	
  

infectious hosts often depends heavily on environmental conditions (Shaman et al. 2010; 56	
  

Gilbert et al. 2014; Weiss et al. 2014b). Disentangling the relative roles of these factors in 57	
  

driving patterns of disease incidence and prevalence is a difficult but central pursuit in 58	
  

infectious disease epidemiology, and mathematical models that are specific about the biology 59	
  

of how these mechanisms interact represent an indispensible tool in this pursuit (Anderson & 60	
  

May 1991).  61	
  

 62	
  

The time-series susceptible-infected-recovered (TSIR) model was developed by Finkenstädt & 63	
  

Grenfell (2000) to offer a more accurate and straightforward way to statistically connect 64	
  

mechanistic models of infectious disease transmission with time series data. Among other 65	
  

features, TSIR models readily account for inhomogeneous mixing in a phenomenological way 66	
  

by allowing for nonlinear dependence of rates of contact between susceptible and infectious 67	
  

hosts on their densities. Although this is a simple feature that can be incorporated into any 68	
  

model based on mass-action assumptions – indeed, earlier applications pertained to 69	
  

inhomogeneous mixing in predator-prey systems (Pascual & Levin 1999) – the “mixing 70	
  

parameters” that determine the extent of this nonlinearity have primarily been fit to empirical 71	
  

data in applications of the TSIR model to transmission of measles, cholera, rubella, and 72	
  

dengue (Bjørnstad et al. 2002; Koelle & Pascual 2004; Metcalf et al. 2011; Reich et al. 2013). 73	
  

Applied to discrete-time models such as the TSIR, mixing parameters also have an 74	
  

interpretation as corrections for approximating a truly continuous-time process with a discrete-75	
  

time model (Liu et al. 1987; Glass et al. 2003). In no application of the TSIR model to date has 76	
  

the potential for variation in these parameters been assessed, leaving the extent to which 77	
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inhomogeneity of mixing is different in space and time as an open question in the study of 78	
  

infectious disease dynamics. 79	
  

 80	
  

There are a number of reasons why mixing might vary in time or space. Seasonal variation in 81	
  

mixing might arise because of travel associated with labor (Bharti et al. 2011), religious events 82	
  

(Lessler et al. 2014), or vacation (Deville et al. 2014). A major driver of flu is associated with 83	
  

the timing of school openings (Salathé et al. 2010), social networks (Cauchemez et al. 2011), 84	
  

and spatial variation in mixing could arise because of cultural differences and the geographic 85	
  

scales of interest (Brockmann & Helbing 2013; Vazquez-Prokopec et al. 2013; Read et al. 86	
  

2014), because of variation in the density and quality of roads (Uchida & Nelson 2008), or 87	
  

because of variation in human densities and myriad factors associated with that (Bjørnstad et 88	
  

al. 2002; Simini et al. 2012). For vector-borne diseases, variation in mixing is amplified even 89	
  

further by variation in vector densities (Perkins et al. 2013), which effectively mediate contact 90	
  

between susceptible and infectious hosts.  91	
  

 92	
  

Dengue is a mosquito-borne viral disease with a strong potential for spatial variation in mixing 93	
  

(Brady et al. 2012; Bhatt et al. 2013). The dominant vectors of dengue viruses (Aedes spp.) 94	
  

thrive in areas where they are able to associate with humans, as humans provide not only a 95	
  

preferred source of blood but also water containers that the mosquitoes use for egg laying and 96	
  

for larval and pupal development (Morrison et al. 2008). Two additional aspects of Aedes 97	
  

ecology – limited dispersal distance of the mosquito (Harrington et al. 2005) and daytime biting 98	
  

(Akram et al. 2009) – imply that human movement should be the primary means by which the 99	
  

viruses spread spatially (Stoddard et al. 2009). Indeed, analyses of dengue transmission 100	
  

dynamics at a variety of scales have strongly supported this hypothesis (Allicock et al. 2012; 101	
  

Stoddard et al. 2013; Bhoomiboonchoo et al. 2014; Reiner et al. 2014). To the extent that 102	
  

human movement in dense urban environments is more well-mixed than elsewhere, there are 103	
  

likely to be differences in the extent of inhomogeneous mixing in peri-urban and rural areas. 104	
  

This is also presumably the case for directly transmitted pathogens, but with a potentially even 105	
  

stronger discrepancy for dengue due to the urban-rural gradient in mosquito densities. 106	
  

 107	
  

To assess the potential for spatial variation in the inhomogeneity of mixing as it pertains 108	
  

dengue transmission, we performed an analysis of district-level time series of dengue 109	
  

transmission in the Punjab province of Pakistan using a TSIR model with separate mixing 110	
  

parameters for urban and rural districts. We likewise made estimates of the relationships 111	
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between density-independent transmission potential and putative drivers thereof, such as 112	
  

temperature, to allow for the relative roles of extrinsic and intrinsic factors to be teased apart. 113	
  

Finally, we performed mathematical analyses of the fitted model to assess the significance of 114	
  

spatial variation in mixing inhomogeneity for how time series data are interpreted and used to 115	
  

guide control efforts.  116	
  

 117	
  

Material and Methods: 118	
  

  119	
  

We obtained daily dengue case data aggregated at hospital level from Punjab province 120	
  

provided by the Health Department Punjab, Pakistan between 2011 and 2014. In total, 41,300 121	
  

suspected and confirmed dengue cases were reported in 109 hospitals. All hospitals were 122	
  

subsequently geo-located using ‘Google maps’ (http://www.maps.google.com). Hospitals that 123	
  

could not be identified were removed from the database. 21,182 cases alone were reported 124	
  

from the year 2011, which affected the almost the entire province. Many more cases occurred 125	
  

in Lahore (35,348) compared to all other districts (5,952) (Table 1). A breakdown per year and 126	
  

each province is provided in Table S1 and additional information about collection can be found 127	
  

in the supplementary appendix. 128	
  

 129	
  

Covariate selection and processing: 130	
  

Environmental conditions are instrumental in defining the risk of transmission of dengue (Bhatt 131	
  

et al. 2013). Transmission is limited by the availability of a competent disease vector. Due to a 132	
  

lack of resources and political instability no comprehensive nation wide entomological surveys 133	
  

have been performed in Pakistan. Therefore we use a probabilistic model to infer the 134	
  

probability of occurrence of Ae. aegypti and Ae. albopictus in Pakistan derived from a globally 135	
  

comprehensive dataset containing more than 20,000 records for each species (Figure 1a and 136	
  

b). Such model outputs have proven useful in identifying areas of risk of transmission of 137	
  

dengue as well as malaria (Gething et al. 2011; Sinka et al. 2012; Bhatt et al. 2013). Other 138	
  

important environmental conditions defining the risk of transmission of dengue are 139	
  

temperature, water availability, and vegetation cover (Messina et al. 2015). To account for such 140	
  

variation, raster layers of daytime land surface temperature (LST) were processed from the 141	
  

MOD11A2 satellite, gap-filled to remove missing values, and then averaged to a monthly 142	
  

temporal resolution for all four years (Weiss et al. 2015). The density of vegetation coverage 143	
  

has been shown to be associated with vector abundance (Eisen & Lozano-Fuentes 2009). 144	
  

Moreover, vegetation indices are useful proxies for precipitation and may be used to derive the 145	
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presence of standing water buckets that are habitats for the Aedes mosquitos (Maciel-de-146	
  

Freitas et al. 2007). The same method was again applied to derive the Enhanced Vegetation 147	
  

Index (EVI) from the MOD11A2 satellite to produce 16 day and monthly pixel based estimates 148	
  

for 2011-2014 (Figure 1g) (Weiss et al. 2014a). Due to the inherent delay between rainfall and 149	
  

daily temperature influencing mosquito population dynamics and those mosquitoes contributing 150	
  

to an increase in DENV transmission, we consider both, the influence of the current 151	
  

temperature, vegetation indices and precipitation, data on current transmission as well as the 152	
  

values of those covariates the time step before (Figure 1f).  153	
  

We used population count estimates on a 100m resolution that were subsequently aggregated 154	
  

up to match all other raster layers to a 5 km x 5 km resolution for the year 2015 155	
  

(http://www.worldpop.org) (Figure 1e). In a follow-up analysis to our primary investigation into 156	
  

the climatological drivers of dengue transmission we included several density-based 157	
  

covariates. We derived a weighted accessibility metric that includes both, population density 158	
  

and urban accessibility, a metric commonly used to derive relative movement patterns (Uchida 159	
  

& Nelson 2008; Tatem et al. 2012). This map shows a friction surface, i.e. the time needed to 160	
  

travel through a specific pixel (Figure 1d). We also used an urban, peri-urban and rural 161	
  

classification scheme to quantify patterns of urbanicity based on a globally available grid 162	
  

(Center for International Earth Science Information Network (CIESIN) 2010) (Figure 1c). All 163	
  

covariates and case data were aggregated and averaged (where appropriate) to a district level.  164	
  

 165	
  

Model:  166	
  

Following Finkenstädt & Grenfell (2000), we assume a general transmission model of 167	
  

𝐼!,! = 𝛽!,! ∙
!!!!,!
!!

!!
∙ 𝑆!!!,! ∙ 𝜖!,!,  (1) 168	
  

 169	
  

where It,i is the number of infected and infectious individuals and St,i the number of susceptible 170	
  

individuals, at time t in district i, Ni is the population of district i, and 𝛽!,! is the covariate driven 171	
  

contact rate. The mixing parameter for the ith district is given by 𝛼!; when 𝛼! is equal to 1, the 172	
  

population has homonegeous mixing where values less than one can either indicate 173	
  

inhomogeneous mixing or a need to correct for the discretization of the continuous-time 174	
  

process. Finally, the error terms 𝜖!,!  are assumed to be independent and identically log-175	
  

normally distributed random variables. For more details please see SI. 176	
  

 177	
  

Model selection:  178	
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The term 𝛽!,! is fit using generalized additive model regression (GAM) (Hastie & Tibshirani 179	
  

1990; Dominici et al. 2002; Wood 2011). The time-varying climatological covariates are all fit as 180	
  

a smooth spline, while all other covariates enter 𝛽!,!  linearly. Additionally, unexplained 181	
  

seasonal variation is accounted for using a 12-month periodic smooth spline. 182	
  

 183	
  

Model selection was performed using backwards selection. Two base models were 184	
  

investigated. First, a climate only model was created using only the climatological and climate 185	
  

suitability covariates. Second, a “full” model using the density-dependent covariates as well as 186	
  

the climatological covariates were combined into a single model which was then subjected to 187	
  

backwards selection. For both models the mixing coefficient was initially set equal for each 188	
  

district and once a final model was arrived upon, the mixing coefficient for Lahore was allowed 189	
  

to vary separately from the other coefficients. All model fitting was conducted using R (R Core 190	
  

Team 2014) and the “mgcv” package (Wood 2011). Models are fit by maximizing the restricted 191	
  

maximum likelihood (Patterson & Thompson 1971) to reduce bias and over-fitting of the 192	
  

smooth splines. The model source code and processing of covariates will be made available in 193	
  

line with previous projects (Pigott & Kraemer 2014). 194	
  

 195	
  

Model analysis: 196	
  

To explore the potential significance of spatial variation in mixing parameters, we conducted an 197	
  

analysis to probe the inherent mathematical tradeoff between the mixing parameter 𝛼 and the 198	
  

density-independent transmission coefficient 𝛽. Specifically, to answer the question, what 199	
  

difference in local transmission would be necessary to account for a difference in mixing while 200	
  

achieving identical transmission dynamics. To explore this, we used eqn. (1) to establish:  201	
  

𝛽!
!!,!!!

!!
= 𝛽!

!!,!!!

!!
              (2), 202	
  

from which we obtained 203	
  
!!
!!
= 𝐼!!!!!                          (3). 204	
  

We then examined how variation in l and  𝛼! − 𝛼! affected the left hand side of eqn. (3) and 205	
  

likewise the critical proportion of the population to control in order to effect pathogen 206	
  

elimination, which, under our model, is 𝑝! = 1− !
!
. 207	
  

 208	
  

Results: 209	
  

Description of case distribution: 210	
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The majority of cases are clustered in Lahore, the capital of Punjab province. Ongoing 211	
  

transmission seems to be focal in three (Vehari, Rawlpindi and Lahore) districts and spread 212	
  

through infective sparks to smaller more rural provinces. In early investigations, all hospitals 213	
  

that reported dengue cases are located in areas with high EVI values indicating a clear 214	
  

environmental signal (Figure 1b). 215	
  

 216	
  

Model selection: 217	
  

To disentangle the different aspects of dengue dynamics and their drivers we used a model 218	
  

containing only the climatological covariates and performing backwards model selection until 219	
  

each covariate in the model was significant at a 5% level resulted in a model that explained 220	
  

76.9% of the deviance and whose adjusted R-squared was 0.746. Amongst the yearly-221	
  

averaged covariates, EVI and precipitation remained in the model as well as the derived Ae. 222	
  

albopictus range map (p-values of 8.21 x 10-4, 0.01, and 3.9 x 10-5 respectively). Interestingly, if 223	
  

the derived Ae. aegypti map is substituted for the Ae. albopictus map, the deviance explained 224	
  

increases slightly to 76.8%. For climatological covariates that were fit as smooth splines, 225	
  

temperature, lagged temperature and EVI remained in the model (Figure 2, p-values of 0.010, 226	
  

0.030 and 0.030 with effective degrees of freedom 7.55, 5.47, and 1.83, respectively). There 227	
  

was a significant amount of periodic variation unexplained by the climatological covariates 228	
  

alone and the ‘seasonality’ covariate remained (Figure 2, p-value = 0.0034). The estimated 229	
  

median values for R0 per district are clustered around two (mean = 2.1), their geographical 230	
  

distribution indicates a clear trend towards districts with higher population (Figure 3). Finally, 231	
  

the mixing coefficient was significantly lower than 1 (𝛼 = 0.69, 95% CI = (0.614, 0.771), p-232	
  

value = 1.6  𝑥  10!!").  233	
  

 234	
  

To understand these differences the final model was then compared to a nested model where 235	
  

the coefficient for Lahore was allowed to vary independently of all other districts. Deviance 236	
  

explained increased to 77% and adjusted R-squared increased to 0.753. Further, the mixing 237	
  

coefficient for Lahore (𝛼 = 0.74) was significantly larger than the mixing coefficient for the 238	
  

other districts (𝛼 = 0.59,  p-value=0.0068) (Figure S1). The median R0 for Lahore was 239	
  

estimated at 3.28, the highest for all districts. 240	
  

 241	
  

In assess how far the variation of mixing coefficients can be explained by other covariates we 242	
  

consider the possibility that movement accounts for the differences in the mixing coefficient 243	
  

between Lahore and the other districts. The density-dependent covariates (described earlier) 244	
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were then added to the full model and backwards selection was repeated. The resulting model 245	
  

explained 78.6% of the variance, had an adjusted R-squared of 0.763 and is superior to the 246	
  

final climatological model based on AIC (699.23 versus 714.83). Yearly averaged EVI, NDVI 247	
  

and precipitation were all significant (p-values of 8.7 x 10-5, 0.00024, and 0.00028, 248	
  

respectively). Again, the derived Ae. albopictus map was significant (p-value = 0.008163). For 249	
  

climatological covariates fit as smooth splines, only temperature and lagged temperature were 250	
  

found significant (Figure 2b, p-value of 4.0 x 10-5 and 0.0013, and effective degrees of freedom 251	
  

7.61 and 4.81, respectively), and there was still a significant ‘seasonality’ (Figure 2b, p-value of 252	
  

4.0 x 10-7, effective degrees of freedom 4.48). The mixing coefficient was fit at 𝛼 = 0.58, 253	
  

barely lower than the mixing coefficient for non-Lahore districts in the climatological model. The 254	
  

estimated median R0 again clustered around 2 (mean = 1.8), and again the R0 for Lahore was 255	
  

largest, but in this model it was considerably larger than in the climatological model (Lahore R0 256	
  

= 7.82, Figure 2b). Full details of the model parameters are shown in Table S2-S5.  257	
  

 258	
  

Two of the density-dependent covariates remained in the model: the urban map (p-value = 259	
  

0.01) and the weighted access map (p-value= 3 x 10-5). When the nested model that allows 260	
  

Lahore’s mixing coefficient to vary was fit, there was no significant difference in the two mixing 261	
  

coefficients (p-value≈1).  262	
  

 263	
  

Model analysis: 264	
  

Given a difference in estimates of the mixing parameters between Lahore and elsewhere of 265	
  

0.15, we analyzed eqn. (3) to assess the bias in estimates of the transmission coefficient that 266	
  

would result from ignoring this extent of variation in the inhomogeneity of mixing displayed 267	
  

between two areas. For the purpose of ceteris paribus comparisons, we assumed equal force 268	
  

of infection but varied it across several orders of magnitude. Depending on the order of 269	
  

magnitude, estimates of transmission coefficients made if overestimating the mixing parameter 270	
  

by 0.15 could easily result in a two- to three-fold underestimate in the transmission coefficient 271	
  

(Figure 4). For realistic ranges of the transmission coefficient for dengue, and more generally 272	
  

the basic reproductive number R0, this extent of underestimation of R0 could lead to 273	
  

underestimating the critical proportion of the population to which vaccines or other control 274	
  

measures must be applied by 20-30% (Figure 5).   275	
  

 276	
  

Discussion: 277	
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Our results point to considerable spatial heterogeneity in the extent of mixing and strength of 278	
  

an associated nonlinearity in transmission along an urban-rural gradient. This regional 279	
  

variability in mixing has direct implications for estimates of the basic reproductive number of 280	
  

dengue in our study region and elsewhere. Although the potential for such bias in estimates of 281	
  

the basic reproductive number has been shown in a theoretical context (Hu et al. 2013; Perkins 282	
  

et al. 2013), we provide quantitative estimates of the extent of this problem in interfacing 283	
  

models with a rich spatio-temporal data set. Such analyses have implications for estimates of 284	
  

population-level parameters not only for dengue but also for other infectious diseases (Bartlett 285	
  

1960; Keeling & Grenfell 1997; Bjørnstad et al. 2002; Smith et al. 2002; Keeling & Eames 286	
  

2005; Kiss et al. 2008) and possibly even more broadly in ecology.  287	
  

 288	
  

We revealed significant differences in mixing components between urban and rural settings 289	
  

and found that a population-weighted urban accessibility metric was able to absorb differences 290	
  

in mixing between these settings indicating that this specific covariate accounts for aspects 291	
  

influencing mixing. Mixing is presumably influenced directly by human behavior and has been 292	
  

shown to be highly unpredictable, largely dependent on the local context and the spatial and 293	
  

temporal scale (Yang et al. 2014). In this study however we could show that the density-294	
  

dependent covariate selected was able to capture the influence of these key encounters on a 295	
  

district level. Once differences in mixing were accounted for, estimated R0 values indicated 296	
  

considerably larger differences between transmission potential in Lahore versus all other 297	
  

districts. Synchronizing more accurate geo-referenced data would allow to assess the 298	
  

importance of spatial scale on the relationship between “mixing parameters” and urban 299	
  

accessibility (Perkins et al. 2013; Mills & Riley 2014). In the case of dengue this again has 300	
  

been limited by the availability of high resolution data (Ruberto et al. 2015). Complementing 301	
  

this analysis with measurement of direct social contact patterns could be important to explore 302	
  

this relationship in even more detail (Bauch & Galvani 2013; Vazquez-Prokopec et al. 2013; 303	
  

Heesterbeek et al. 2015) and could be informed by mathematical models that explored this 304	
  

relationship previously for other diseases (Bjørnstad et al. 2002; Reiner et al. 2012). Another 305	
  

encouraging finding is that large-scale mosquito suitability surfaces help capture the 306	
  

environmental determinants of dengue transmission (Bhatt et al. 2013). 307	
  

 308	
  

Intervention strategies are contingent on both understanding key environmental drivers of 309	
  

transmission and the dynamics of ongoing human-to-human transmission, particularly in 310	
  

outbreaks situations (Perkins et al. 2015). Environmental drivers such as seasonal fluctuations 311	
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in rainfall, temperature, vegetation coverage or mosquito abundance will help guide 312	
  

surveillance and control efforts targeted mostly towards the ecological aspects of mosquito 313	
  

dispersal (Johansson 2015). Once infection occurs much debate has been focused around 314	
  

optimizing intervention strategies to reduce disease incidence, which is largely determined by 315	
  

R0. The presented framework shows that the interaction between mixing parameters and force 316	
  

of infection has potentially large implications for optimizing targeted intervention, particularly in 317	
  

countries where resources are scarce (Cesare et al. 2015). This in fact is even more important 318	
  

in areas of low infection where transmission seems to be more focal (Salje et al. 2012). Again 319	
  

however importance needs to be focused on the spatial and temporal resolution of appropriate 320	
  

intervention strategies and the respective effect of the selected covariates and model 321	
  

parameters (Mills & Riley 2014). Empirical understanding, however, on which spatial resolution 322	
  

is most appropriate to carry out large-scale vector-borne disease interventions remains 323	
  

unknown.  324	
  

 325	
  

Once transmission has occurred in one place, understanding not only spatial heterogeneities of 326	
  

transmission dynamics but their subsequent spread in mechanistic stochastic models as shown 327	
  

for measles would help to empirically determine the propagation of the disease (Grenfell et al. 328	
  

2001). The spatial spread dynamics have been given considerable interest globally as the risk 329	
  

of importation of dengue into yet endemic areas continentally and internationally is increasing 330	
  

with travel and trade (Schaffner & Mathis 2014). Exploration of the case data in Pakistan 331	
  

suggests that spread happens along major transport routes from Lahore to Karachi and north 332	
  

to Rawalpindi. Using results presented here on mixing components and environmental drivers 333	
  

will help pinpoint areas of major risk of importation more accurately especially in the case of 334	
  

recurring epidemics. Using the fitted relationships of the environmental drivers of transmission 335	
  

and R0 will enable future analyses and comparisons between diseases and geographic regions. 336	
  

In this context it will be instrumental to integrate a variety of movement and social network 337	
  

models with the evidence presented here to infer more accurately how the geographical spread 338	
  

of dengue is determined. 339	
  

 340	
  

To allow for comparison of these results in a broader context and across diseases, possibly 341	
  

even in outbreak situations and in real time, it is essential to make data widely available by 342	
  

open access (Heesterbeek et al. 2015). Moreover, the complexity of infectious disease 343	
  

dynamics is not fully understood and we are limited by computational capacities to fully account 344	
  

for stochasticity and nonlinearity.  345	
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Table 1: Reported cases by year in Lahore and all other districts. 606	
  

 2011 2012 2013 2014 Total 
Lahore 18,020 4,013 11,516 1,799 35,348 
Other 3,162 500 2,356 2,790 5,952 
 607	
  

Figure 1: Covariates used in this study to derive environmental drivers of transmission. 608	
  

Aedes aegypti probability of occurrence (a); Ae. albopictus probability of occurrence 609	
  

(b); Urbanicity (c); Weighted urban accessibility (d); Population density and study area 610	
  

(e); Precipitation (f);  Enhanced Vegetation Index (EVI) mean (g). 611	
  

 612	
  
 613	
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Figure 2: Model outputs using a backwards model selection procedure in the model 614	
  

using climatological variables (a, A-D), and including the density dependent variables (b, 615	
  

A-D). 616	
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Figure 3: Average distribution of R0 with green representing Lahore versus red all other 622	
  

districts (A), their geographical distribution (B), and over time in which the green line 623	
  

again is representing Lahore versus the red line representing all other districts (C). 624	
  

 625	
  
 626	
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Figure 4: Ratio of betas (R0) assuming equal force of infection and a difference in 𝜶2 – 627	
  

𝜶1 of 0.2, 0.15 (green), and 0.1, form top to bottom. The straight line indicates a ratio of 628	
  

1.  629	
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Figure 5: Critical proportion of the population to control in population 2 as a function of 631	
  

R0 in population 1, the order of magnitude of the infectious numbers in each population, 632	
  

and a difference in 𝜶2 – 𝜶1 of 0.1, 0.15 (green), and 0.2. The straight line indicates the 633	
  

critical proportion assuming the 𝜶 in each population are equal. 634	
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Table S1: Reported case numbers per year for each district of the study region, Punjab 652	
  

Province, Pakistan.  653	
  

 654	
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Table S2: Environmental model: no variation in 𝜶. 655	
  

 656	
  

 657	
  

 658	
  

 659	
  

 660	
  

 661	
  

 662	
  

 663	
  

 664	
  

 665	
  

 666	
  

 667	
  

 668	
  

 669	
  

 670	
  

 671	
  

 672	
  

 673	
  

Term Estimate Std. Error t-value p-value 

Intercept 2.51 0.679 3.696 0.00028 
𝜶  0.690 0.040 17.288 < 2e-16 
EVI  

(yearly average) 

-8.78 2.499 -3.392 0.00082 

Ae. albopictus 2.28 0.544 4.196 3.93e-5 
Precipitation 

(yearly average) 

-0.021 0.0079 -2.590 0.0102 

Term edf Ref. df F p-value 
“Seasonality” 3.44 8.00 1.566 0.0034 
Temperature 7.55 8.47 2.537 0.0102 
2-week lagged 

temperature 

5.47 6.67 2.300 0.0304 

EVI 1.83 2.33 3.373 0.0299 
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Table S3: Environmental model: 𝜶 in Lahore differs from other districts. 674	
  

 675	
  

 676	
  

 677	
  

 678	
  

 679	
  

 680	
  

 681	
  

 682	
  

 683	
  

 684	
  

 685	
  

Term Estimate Std. Error t-value p-value 

Intercept 2.548 0.676 3.769 0.0002 
𝜶 (Lahore)  0.741 0.043 17.088 <2e-16 

𝜶 (Not Lahore) 0.594 0.055 10.887 <2e-16 
EVI  

(yearly average) 

-7.636 2.527 -3.022 0.003 

Ae. albopictus 1.159 0.679 1.708 0.089 
Precipitation 

(yearly average) 

-0.008 0.009 -0.870 0.385 

Term edf Ref. df F p-value 
“Seasonality” 3.238 8.000 1.278 0.0095 
Temperature 7.502 8.435 3.195 0.0016 
2-week lagged 

temperature 

5.866 7.067 2.371 0.0231 

EVI 2.179 2.784 3.690 0.0154 
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Table S4: Full model: no variation in 𝜶. 686	
  

 687	
  

 688	
  

Term Estimate Std. Error t-value p-value 

Intercept -34.83 9.803 -3.553 0.00047 
𝜶  0.578 0.0451 12.824 <2e-16 
EVI  

(yearly average) 

-60.12 15.04 -3.998 8.71e-5 

NDVI 

(yearly average) 

0.0383 0.0103 3.737 0.00024 

Ae. albopictus 2.745 1.028 2.669 0.00826 
Weighted 

Access 

2.742e-5 6.464e-6 4.242 3.26e-5 

Urbanicity -2.468 0.9494 -2.600 0.00776 
Precipitation 

(yearly average) 

-0.0684 0.0185 -3.697 0.00028 

Term edf Ref. df F p-value 

“Seasonality” 4.480 8.000 4.173 3.97e-7 
Temperature 7.607 8.504 4.396 4.14e-5 
2-week lagged 

temperature 

4.823 5.981 3.793 0.0013 
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Table S5: Full model: 𝜶 in Lahore differs from other districts. 689	
  

 690	
  

 691	
  

Term Estimate Std. Error t-value p-value 

Intercept -35.92 9.93 -3.618 0.00037 
𝜶 (Lahore)  0.612 0.0643 8.510 <2e-16 

𝜶 (Not Lahore) 0.555 0.0566 9.802 <2e-16 
EVI  

(yearly average) 

-61.59 15.19 -4.055 6.95e-5 

NDVI 

(yearly average) 

0.0395 0.010 3.8 0.00019 

Ae. albopictus 2.81 1.033 2.721 0.0070 
Weighted 

Access 

2.42e-5 7.86e-6 3.072 0.0024 

Urbanicity -2.33 0.9697 -2.403 0.0171 
Precipitation 

(yearly average) 

-0.069 0.0186 -3.733 0.00024 

Term edf Ref. df F p-value 
“Seasonality” 4.350 8.000 3.817 1.31e-6 
Temperature 7.620 8.511 4.335 4.97e-5 
2-week lagged 

temperature 

4.764 5.916 3.680 0.00178 
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Figure S1: Predicted versus expected values for 𝜶 in Lahore (green) and all other 692	
  

districts (red) for the environmental model. 693	
  

 694	
  

 695	
  
Additional information about collection of epidemiological data. 696	
  

Secondary data from hospital records were used from Punjab province in Pakistan. The data 697	
  

was initially collected by Punjab Health Department as part of the dengue prevention and 698	
  

eradication program. For ensuring accurate reporting from the health facilities, Punjab Health 699	
  

Department used the following three procedures: (i) Clinical case reporting, (ii) Lab case 700	
  

reporting, and (iii) Case management. All health facilities were liable to record the data and 701	
  

share them with Punjab Information Technology Board (PITB) within 24 hours. For clinical case 702	
  

reporting, as per Dengue Expert Advisory Group (DEAG), guidelines, dengue suspects, 703	
  

probable, and confirmed cases needed to be correctly entered on the PITB dashboard within 704	
  

24 hours of admission. For lab case reporting, all private sector labs must send reports of 705	
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positive dengue cases in the line list format to the respective Executive District Officer Health 706	
  

(EDOH) for online entry on the dashboard, again within 24 hours. For case management, the 707	
  

healthcare facilities are liable to mange dengue cases regularly in specified Dengue care units, 708	
  

OPDs, emergency units, or wards.  709	
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