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Abstract

Single cell RNA-seq data allows insight into normal cellular function and diseases includ-
ing cancer through the molecular characterisation of cellular state at the single-cell level.
Dimensionality reduction of such high-dimensional datasets is essential for visualization and
analysis, but single-cell RNA-seq data is challenging for classical dimensionality reduction
methods because of the prevalence of dropout events leading to zero-inflated data. Here we
develop a dimensionality reduction method, (Z)ero (I)nflated (F)actor (A)nalysis (ZIFA),
which explicitly models the dropout characteristics, and show that it improves modelling
accuracy on simulated and biological datasets.

Introduction
Single cell RNA expression analysis (scRNA-seq) is revolutionizing whole-organism science [1,
2] allowing the unbiased identification of previously uncharacterized molecular heterogeneity
at the cellular level. Statistical analysis of single cell gene expression profiles can highlight
putative cellular subtypes, delineating subgroups of T-cells [3], lung cells [4] and myoblasts [5].
These subgroups can be clinically relevant: for example, individual brain tumors contain cells
from multiple types of brain cancers, and greater tumor heterogeneity is associated with worse
prognosis [6].

Despite the success of early single cell studies, the statistical tools that have been applied to
date are largely generic, rarely taking into account the particular structural features of single
cell expression data. In particular, single cell gene expression data contains an abundance of
dropout events that lead to zero expression measurements. These dropout events may be the
result of technical sampling effects (due to low transcript numbers) or real biology arising from
stochastic transcriptional activity (Figure 1a). Previous work has been undertaken to account
for dropouts in univariate analysis, such as differential expression, using mixture modelling [7,
8] but approaches for multivariate problems, including dimensionality reduction, have not yet
been considered. As a consequence, it has not been possible to fully ascertain the ramifications
∗emma.pierson@st-annes.ox.ac.uk
†cyau@well.ox.ac.uk

1

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 14, 2015. ; https://doi.org/10.1101/019141doi: bioRxiv preprint 

https://doi.org/10.1101/019141


of applying dimensionality reduction techniques, such as principal components analysis (PCA),
to zero-inflated data.

Dimensionality reduction is a universal data processing step in gene expression analysis. It
involves projecting data points from the very high-dimensional gene expression measurement
space to a low dimensional latent space reducing the analytical problem from a simultaneous
examination of 10,000s of individual genes to a much smaller number of (weighted) collections
that exploit gene co-expression patterns. In the low dimensional latent space, it is hoped that
patterns or connections between data points that are hard/impossible to identify in the high-
dimensional space will be easy to visualize.

The most frequently used technique is principal components analysis which identifies the
directions of largest variance (principal components) and uses a linear transformation of the
data into a latent space spanned by these principal components. The transformation is linear
as the coordinates of the data points in the low-dimensional latent space are a weighted sum
of the coordinates in the original high-dimensional space with no non-linear transformations
used. Other linear techniques include Factor Analysis (FA) which is similar to PCA but focuses
on modelling correlations rather than covariances. Many non-linear dimensionality techniques
are also available but linear methods are often used in an initial step in any dimensionality
reduction processing since non-linear techniques are typically more computationally complex
and do not scale well to simultaneously handling many thousands of genes and samples.

In this article we focus on the impact of dropout events on the output of dimensionality
reduction algorithms (principally linear approaches) and propose a novel extension of the frame-
work of Probabilistic Principal Components Analysis (PPCA) [9] or Factor Analysis (FA) to
account for these events. We show that the performance of standard dimensionality-reduction
algorithms on high-dimensional, single cell expression data can be perturbed by the presence
of zero-inflation making them sub-optimal. We present a new dimensionality-reduction model,
Zero-Inflated Factor Analysis (ZIFA), to explicitly account for the presence of dropouts. We
demonstrate that ZIFA outperforms other methods on simulated data and single cell data from
recent scRNA-seq studies.

The fundamental empirical observation that underlies the zero-inflation model in ZIFA is
that the dropout rate for a gene depends on the expected expression level of that gene in the
population. Genes with lower expression magnitude are more likely to be affected by dropout
than genes that are expressed with greater magnitude. In particular, if the mean level of non-
zero expression is given by µ and the dropout rate for that gene by p0, we have found that this
dropout relationship can be approximately modelled with a parametric form p0 = exp(−λµ2),
where λ is a fitted parameter, based on a double exponential function. This relationship is
consistent with previous investigations [7] and holds in many existing single cell datasets (Figure
1b). The use of this parametric form permits fast, tractable linear algebra computations in ZIFA
enabling its use on realistically sized datasets in a multivariate setting.

Method

Overview

ZIFA adopts a latent variable model based on the Factor Analysis (FA) framework and augments
it with an additional zero-inflation modulation layer. Like FA, the data generation process as-
sumes that the separable cell states or sub-types initially exist as points in a latent (unobserved)
low-dimensional space. These are then projected onto points in a latent high-dimensional gene
expression space via a linear transformation and the addition of Gaussian-distributed measure-
ment noise. Each measurement then has some probability of being set to zero via the dropout
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model that modulates the latent distribution of expression values. This allows us to account
for observed zero-inflated single cell gene expression data (Figure 1c). The scaling parameter
in the dropout model can allow for a large range of dropout-expression profiles (Figure 1d).

In the following we provide a more detailed mathematical treatment of the proposed zero-
inflated factor analysis model although we leave a complete exposition for the Supplementary
Information.

Statistical Model

Let N be the number of samples, D be the number of genes, and K be the desired number of
latent dimensions. The data is given by a high-dimensionalN×D data matrix Y = [y1, . . . ,yN ],
where yij is the level of expression of the j-th gene in the i-th sample. The data is assumed
to be generated from a projection of a latent low-dimensional N ×K matrix Z = [z1, . . . , zN ]
(K � D). In all derivations below, we use use i = 1, ..., N to index over samples (cells),
j = 1, ..., D to index over genes, and k = 1, ...,K to index over latent dimensions. Each sample
yi is drawn independently:

zi ∼ Normal(0, I), (1)
xi|zi ∼ Normal(Azi + µ,W), (2)

hij |xij ∼ Bernoulli(p0), (3)

yij =
{
xij , if hij = 0,
0, if hij = 1, (4)

where I denotes the K ×K identity matrix, A denotes a D×K factor loadings matrix, H is a
D × N masking matrix, W = diag(σ2

1, . . . , σ
2
D) is a D × D diagonal matrix and µ is a D × 1

mean vector. We choose the drop out probability to be a function of the latent expression level,
p0 = exp(−λx2

ij), where λ is the exponential decay parameter in the zero-inflation model. Note
that λ is shared across genes which reduces the number of parameters to be estimated and
captures the fact that technical noise should have similar effects across genes.

Statistical Inference

Given an observed single cell gene expression matrix Y we wish to identify model parameters
Θ = (A, σ2, µ, λ) that maximize the likelihood p(Y|θ). We do this using the expectation-
maximization (EM) algorithm. We summarize the algorithm in the box below and then describe
the algebraic details:

Algorithm 1: EM for Zero-Inflated Dimensionality Reduction
1 initialize model parameters A,µ, σ2, λ;
2 while parameters not converged do
3 E-step: given A,µ, σ2, λ, compute p(Z,X0|Y) and

E[Z], E[ZZT ], E[X0], E[X2
0], E[X0Z];

4 M-step: compute analytic updates for A,µ, σ2 and optimize λ numerically;
5 end

We denote the value of the parameters at the n-th iteration, Θn, as the value that maximizes
the expected value of the complete log likelihood p(Z,X,H,Y) under the conditional distribu-
tion over the latent variables given the observed data and the parameters at the last iteration.
Computing the value of the parameters at each iteration requires two steps: the expectation
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step (E-step) and the maximization step (M-step). In the E-step, we derive an expression for
the complete log likelihood p(Z,X,H,Y|Θn) and compute all necessary expectations under the
distribution p(Z,X,H|Y,Θn−1). The approximate zero-inflation model that we adopt admits
closed form expressions for the expectations allowing the algorithm to be applied to realistically
sized datasets. In the M-step, we maximize the expected value of the complete log likelihood
with respect to Θn.

The EM algorithm structurally resembles the equivalent algorithm for FA that iterates be-
tween imputing the coordinates of the observed data points in the low-dimensional latent space
(E-step) and optimizing model parameters (M-step). In ZIFA, the expectation step incorpo-
rates a data imputation stage to compute the expected gene expression levels for genes/cells
with observed null values. Note, that if the noise measurement variance attributed to each gene
is identical, we obtain a zero-inflated version of the Probabilistic PCA algorithm [9] (ZI-PPCA).

Results

Simulation study

We tested the relative performance of ZIFA against Principal Components Analysis (PCA),
Probabilistic PCA (PPCA) [9], Factor Analysis and, for reference, non-linear techniques includ-
ing Stochastic Neighbour Embedding (t-SNE) [10], Isomap [11], and Multidimensional Scaling
(MDS) [12]. First, we generated simulated datasets according to the PPCA/FA data generative
model with the addition of one of three dropout models (i) a double exponential model (as
assumed by ZIFA), (ii) a linear decay model and (iii) a missing-at-random uniform model. The
latter two models were designed to test the robustness of ZIFA to extreme misspecification of
the dropout model. Data was simulated under a range of different conditions by varying noise
levels, dropout rates, number of latent dimensions and number of genes. The simulation exper-
iment was not intended to truly reflect actual real world data characteristics but to establish,
when all other modelling assumptions are true, the impact of dropout events on the outcomes
of (P)PCA and FA.

Setup

We used the assumed generative model to produce simulated data. For the simulations, the
values ajk were drawn from a uniform distribution U(−0.5, 0.5), the diagonal elements of the
covariance matrix were drawn from a uniform distribution U(0.9, 1.1)σ2, where σ2 is a simulation
parameter, and µj were drawn from U(2.7, 3.3). We experimented with three choices of f(·):
a decaying squared exponential, f(Xij) = exp(−λX2

ij) (used in ZIFA); a linear decay function,
f(Xij) = 1−λXij ; and a uniform (missing at random) function for each gene j, f(Xij) = 1−λj .

We used a base setting of N = 150,K = 10, D = 50, σ2 = 0.3, λ = 0.1 and explored the
effects of altering the decay parameter λ, the number of latent dimensions K, the cluster spread
σ2, the number of observed dimensions D, and the number of samples N .

Performance metrics

As a measure of algorithm performance, we compared the true zi to the ẑi for each sample
estimated by the algorithms as follows. We computed the true distance between each pair of
points j, k and defined a pairwise distance matrix F such that Fjk = ||zj − zk||2. We compared
this to the estimated distance matrix ρ̂ with F̂jk = ||ẑj − ẑk||2. We scored the correspondence
between the two distance matrices using Spearman correlation ρs. By comparing F and F̂
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rather than zi and ẑi, we account for the fact that dimensionality reduction algorithms may
rotate the points but ought to preserve the relative distances between them.

Outcomes

Although the data sets was generated according to a PPCA/FA model (up to the dropout stage),
in the presence of cells with genes possessing zero expression, the performance of all standard
dimensionality methods (even PPCA/FA) deteriorated relative to ZIFA. Our simulation results
(Figure 2b) indicate that standard approaches maybe safely used in certain regimes but should
be avoided in others. In particular, gene sets with a high degree of zero-inflation will be
problematic (small λ), as the relative distances between data points in the gene expression
measurement space will be distorted by the presence of zeros and hence there will be a error
when projecting back into the latent space. Performance also falls if the gene set is small
since there is less scope to exploit strong co-expression signatures across genes to mitigate
for the presence of zeros. These regimes are important to consider in the context of linear
transformation techniques (PCA, PPCA and FA) that are often applied only to curated gene
sets where the linearity constraints maybe approximately applicable. The application of non-
linear techniques did not cure the problems induced by dropouts.

Overall, ZIFA outperformed the standard dimensionality reduction algorithms. This would
be expected for those simulations adopting the same generative model assumed by ZIFA (Figure
2b) but performance was also replicated regardless of whether dropouts were added following
a linear model (Supplementary Fig. 1A), or a missing-at-random model (Supplementary Fig.
1B). This suggests that it is better to account for dropouts somehow even if the dropout char-
acteristics are not realistic. Interestingly, this may suggest that ZIFA could be applicable for
other zero-inflated multivariate data sets.

ZIFA should therefore be considered a safe alternative in that it converges in performance to
PPCA/FA in the large data, low-noise limit but is robust to dropout events that might distort
the outcomes of these methods in non-ideal situations.

Real data analysis

We next sought to test these methods in an experiment based on real single cell expression
datasets [3, 5, 6, 13]. In this case, the “true” latent space is unknown and we are unable to
measure performance as with the previous simulated data experiment. Instead, for each of the
data sets, we took random subsets of 25, 100, 250 and 1,000 genes and applied ZIFA, PPCA
and FA to each subset assuming 5 latent dimensions.

For each gene j, we compared the posterior predictive distribution Ŷj of the distribution of
read counts from each method to the observed distribution Yj as follows: (1) we computed the
proportion of values in Yj and Ŷj that fell into 30 discrete intervals, (2) we then computed the
difference between the histograms ∆j . If hn is the proportion of values in bin n for the true
distribution, and ĥn for the predicted distribution, then the histogram divergence is given by

∆j =
30∑

n=1
|hn − ĥn| (5)

We computed the fraction of genes for which the ∆j from ZIFA was less than ∆j from PPCA
and factor analysis. To prevent overfitting, we assessed fit on a test set: we fit the model for
each dataset on a training set containing 70% of the datapoints, and computed the difference
between the histograms on the remaining 30% of datapoints.
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Note, it is not possible to do this comparison with standard PCA or other dimensionality
methods, such as t-SNE, since these are not based on a probabilistic generative model framework
and therefore it is not possible to derive the posterior predictive distributions that we use for
performance comparisons.

Using this criterion we found that predictive distributions from PPCA and FA showed high
divergence for genes that exhibited a high dropout rate or possessed a low non-zero expression
level. This meant that the predictive data distributions were a poor fit for the empirical data.
ZIFA performance was largely unaffected in contrast (Figure 2c). Example predictive model
fits are shown for the T-cell data set [3] for three genes: Plscr3, Ulk2 and Ncrna00085 (Figure
2c).

The statistical frameworks underlying PPCA and FA employ Gaussianity assumptions that
are unable to explicitly account for zero-inflation in single cell expression data. The dropout
model used by ZIFA modulates this Gaussianity assumption allowing for zero-inflation leading to
drastically improved modelling accuracy. Across the four data sets we found that the predictive
distribution derived by ZIFA was superior to those of PPCA and FA on at least 80% of the
genes examined and often over 95% (Table 1).

Discussion
The density of dropout events in scRNA-seq data can render classical dimensionality-reduction
algorithms unsuitable and to-date it has not been possible to assess the potential ramifications
of applying such methods on zero-inflated data. We have modified the PPCA/FA framework to
account for dropout to a produce a “safe" method for dimensionality reduction of single-cell gene
expression data that provides robustness against such uncertainties. In the absence of dropout
events, the method is essentially equivalent to PPCA/FA, and therefore software implemen-
tations can straightforwardly substitute our approach for existing methods (e.g. Z = PCA(Y,
k) to Z = ZIFA(Y, k)). Our methodology differs from approaches, such as Robust PCA, that
model corrupted observations. ZIFA treats dropouts as real observations, not outliers, whose
occurrence properties have been characterised using an empirically informed statistical model.

ZIFA models strictly zero measurements rather than near-zero values. It has been possible
to account for near-zero values in a univariate mixture modelling framework by placing a small-
variance distribution around zero rather than a point mass [7, 8]. Achieving the same goal, in
a multivariate context, requires further methodological thought and development in order to
produce a solution that is computationally tractable with a large number of dimensions.

Finally, the ZIFA framework lies strictly in the linear transformation framework but non-
linear dimensionality reduction approaches, such as t-SNE [10], have proven to be highly effective
in single cell expression analysis. It is an area of on-going investigation to determine how zero-
inflation can be formally accounted for with such methods. A natural direction would be to
directly incorporate it in a non-linear generative approach such as the Gaussian Process Latent
Variable Model (GP-LVM) [14]. ZIFA is also potentially applicable to other zero-inflated data
where there is a negative correlation between the frequency with which a measurement feature
is zero and its mean signal magnitude in non-zero samples.

A Python-based software implementation is available online: https://github.com/epierson9/
ZIFA.

Competing interests
The authors declare that they have no competing interests.

6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 14, 2015. ; https://doi.org/10.1101/019141doi: bioRxiv preprint 

https://doi.org/10.1101/019141


Author’s contributions
E.P. and C.Y. conceived the study and developed the algorithms. E.P. performed data analysis
and developed the software implementation. E.P. and C. Y. wrote the manuscript.

Acknowledgements
E.P. acknowledges support from the Rhodes Trust. C.Y. is supported by a UK Medical Research
Council New Investigator Research Grant (Ref. No. MR/L001411/1), the Wellcome Trust Core
Award Grant Number 090532/Z/09/Z, the John Fell Oxford University Press (OUP) Research
Fund and the Li Ka Shing Foundation via a Oxford-Stanford Big Data in Human Health Seed
Grant.

References
1. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will

revolutionize whole-organism science. Nature Reviews Genetics 14, 618–630 (2013).
2. Blainey, P. C. & Quake, S. R. Dissecting genomic diversity, one cell at a time. Nature

methods 11, 19–21 (2014).
3. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-

sequencing data reveals hidden subpopulations of cells. Nature Biotechnology (2015).
4. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using

single-cell RNA-seq. Nature 509, 371–375 (2014).
5. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by

pseudotemporal ordering of single cells. Nature Biotechnology (2014).
6. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary

glioblastoma. Science 344, 1396–1401 (2014).
7. Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-cell

differential expression analysis. Nature methods 11, 740–742 (2014).
8. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of

single-cell gene expression data. Nature biotechnology 33, 495–502 (2015).
9. Tipping, M. E. & Bishop, C. M. Probabilistic principal component analysis. Journal of

the Royal Statistical Society: Series B (Statistical Methodology) 61, 611–622 (1999).
10. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of Machine

Learning Research 9, 85 (2008).
11. Tenenbaum, J. B., De Silva, V. & Langford, J. C. A global geometric framework for

nonlinear dimensionality reduction. Science 290, 2319–2323 (2000).
12. Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric

hypothesis. Psychometrika 29, 1–27 (1964).
13. Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular

variation. Nature (2014).
14. Lawrence, N. Probabilistic non-linear principal component analysis with Gaussian process

latent variable models. The Journal of Machine Learning Research 6, 1783–1816 (2005).

7

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 14, 2015. ; https://doi.org/10.1101/019141doi: bioRxiv preprint 

https://doi.org/10.1101/019141


15. Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogene-
ity and activated signaling pathways in developing cerebral cortex. Nature Biotechnology
(2014).

Figures

Tables

Table 1: Comparison of ZIFA to PPCA and FA on four biological datasets. Columns are the
number of genes in the dataset (selected at random). Percentages denote the proportion of
genes for which ZIFA provided a better fit than FA/PPCA, averaged across 100 replicates.

Dataset Method Subset Size
25 100 250 1000

Differentiating T-Cells FA 86± 6.6% 84± 4.6% 82± 4.9% 84± 8.8%
PPCA 88± 6.3% 87± 4.1% 89± 4.5% 100± 0.3%

11 Populations FA 97± 3.7% 96± 2.5% 96± 2.1% 95± 2.7%
PPCA 98± 3.2% 97± 2.0% 97± 1.5% 99± 0.6%

Myoblasts FA 97± 3.3% 97± 2.4% 96± 2.7% 95± 2.7%
PPCA 97± 3.2% 96± 2.3% 96± 2.1% 99± 1.7%

Bone Marrow FA 98± 3.0% 97± 2.0% 97± 1.7% 97± 1.7%
PPCA 98± 3.1% 97± 1.8% 97± 1.4% 97± 1.3%

Additional Files

Additional file 1 — Supplementary Information

Supplementary Figures and Methods.
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Figure 1: Zero-inflation in single cell expression data. (a) Illustrative distribution of
expression levels for three randomly chosen genes shows an abundance of single cells exhibiting
null expression [15]. (b) Heatmaps showing the relationship between dropout rate and mean non-
zero expression level for three published single cell data sets [3, 5, 13] including an approximate
double exponential model fit. (c) Flow diagram illustrating the data generative process used
by ZIFA. (d) Illustrative plot showing how different values of λ in the dropout-mean expression
relationship (blue lines) can modulate the latent gene expression distribution to give a range of
observed zero-inflated data.
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Figure 2: Performance comparison of dimensionality reduction techniques. (a) Toy
simulated data example illustrating the performance of ZIFA compared to standard dimension-
ality reduction algorithms. (b) Performance on simulated datasets based on correlation score
between the estimated and true latent distances as a function of λ (larger λ, lower dropout rate),
number of genes and latent dimensions and noise level used in the simulations. (c) Plots showing
the divergence between the predictive and empirical data distributions as a function of dropout
rate and mean expression level for FA, PPCA and ZIFA. Illustrative predictive performance
and model fits (red) on the T-cell single cell data set [3] (black).
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