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Abstract

The recently introduced Oxford Nanopore MinION platform generates DNA sequence data in real-time. This
opens immense potential to shorten the sample-to-results time and is likely to lead to enormous benefits in
rapid diagnosis of bacterial infection and identification of drug resistance. However, there are very few tools
available for streaming analysis of real-time sequencing data. Here, we present a framework for streaming
analysis of MinION real-time sequence data, together with probabilistic streaming algorithms for species
typing, strain typing and antibiotic resistance profile identification. Using three culture isolate samples as well
as a mixed sample, we demonstrate that bacterial species and strain information can be obtained within 30
minutes of sequencing and using about 500 reads, initial drug-resistance profiles within two hours, and
complete resistance profiles within 10 hours. We also show that our pipeline can process over 100 times more
data than the current throughput of the MinION on a desktop computer.
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Background
Massively parallel, short-read sequencing has pro-
foundly transformed genomics research [1, 2] and has
become the dominant technology for sequencing DNA.
However, one inherent limitation of sequencing mil-
lions of sequence fragments in parallel one base at a
time is that the sequencing run has to finish before the
data analysis can begin. As a result, sequence analysis
algorithms have been designed to make inference on
a complete sequencing dataset. In contrast, streaming
algorithms are a class of algorithms which are applied
to a sequence of data events and typically maintain an
internal summary of the data as well as an approxima-
tion to the full inference without needing to store all of
the observations [3]. Streaming algorithms have appli-
cation in particle and solar physics, computer network
analysis and finance [4].

Oxford Nanopore Technologies has recently released
a portable MinION sequencing device, which utilizes
the nanopore sequencing technology proposed in the
1990s [5]. The key innovation of this device is that it
measures the changes in electrical current as a single-
stranded DNA passes through the nanopore and uses
the signal to determine the nucleotide sequence of the
DNA strand [6, 7]. This sequence data can be retrieved
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and analyzed as it is generated, providing the oppor-
tunity to obtain answers in the shortest possible time.
Real-time sequencing has immense potential in many
applications, especially in time-critical areas such as
rapid clinical diagnosis.

In order to realise this potential there is a need to de-
velop streaming bioinformatics algorithms which con-
tinually update inference about the sample as each se-
quence read is generated. To be of practical use – for
example to know when to when to make a diagnosis in
the clinic – these algorithms must continuously update
not only a point estimate (e.g. which species present
and their proportions), but also confidence intervals in
that estimate. Several systems incorporating real-time
analysis of MinION data have been developed recently
such as the cloud based platform Metrichor (Oxford
Nanopore), work by Quick et al [8] and MetaPORE
[9], focusing on placing the sample on a phylogenetic
tree but without providing an estimate of the confi-
dence in this assignment.

Here we present a flexible framework for real-time
analysis on MinION sequence data directly off the se-
quencing device. The framework can incorporate mul-
tiple real-time analyses to suit the problems at hand
and can be deployed on a single computer or on a high
performance computing facility and computing cloud.
We also present four streaming algorithms for iden-
tification and characterization of pathogen samples.
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These algorithms, which are seamlessly integrated into
the pipeline, report analysis results along with their
confidence levels so that users can decide when to stop
a sequencing run.

By sequencing three bacterial isolate samples and a
mixture sample on the MinION sequencer, we demon-
strate that we can reliably determine the species and
strain type of a sequenced sample with only 500 reads.
This was achieved in less than half an hour of sequenc-
ing with the current throughput of the MinION. Fur-
thermore, we show that we can identify the majority of
the drug resistance genes present in a sample within 2
hours of sequencing, and the full drug resistance pro-
file within 10 hours. We also show that MinION se-
quence data can be used for accurate Multi-Locus Se-
quence Typing (MLST), despite the relatively high er-
ror rates associated with the technology. The pipeline
can perform all these analyses on a single computer at
a throughput of over 100 times higher than our best
runs. As the throughput of nanopore sequencing is ex-
pected to increase, the time to obtain these results
will be significantly shortened. Our findings support
the potential use of MinION sequencing for real-time
analysis of clinical samples for species detection and
analysis of antibiotic resistance.

Results and discussion
Real-time analysis framework
At the high level, our real-time analysis framework
consists a number of streaming programs communi-
cating to each other via the network sockets or the
inter-process communication pipes provided by Unix-
like operating systems. These programs typically take
a sequence of items as input and process after every
some small number of items arrive. They either retain
only the relevant statistics of the data, or upon pro-
cessing any data items, immediately forward only the
necessary information to the downstream programs for
further processing. The processing in such streaming
fashion does not need to keep all the data in the mem-
ory and hence requires little memory and is relevant for
processing large amount of data, especially streaming
data from MinION sequencing.

We developed a number of auxiliary programs to fa-
cilitate the setting up a real-time pipeline, especially
for analysis of MinION sequencing data. These in-
clude scripts for setting up communication channels
in a pipeline, thereby allowing the pipeline to be de-
ployed on a high performance computing cluster to
scale with the massive amounts of data. Programs for
simple analyses of the MinION sequencing data such as
initial analysis (npReader [10]) and filtering sequence
reads satisfying certain criteria (such as read length
and read quality) are also provided.

We developed streaming algorithms for a handful of
identification analyses, namely species typing, strain
typing and identification of antibiotic resistance pro-
files (see Methods). We integrated the implementa-
tions of these algorithms into the analysis pipeline (see
Figure 1). In this pipeline, npReader [10] continuously
scans the folder containing sequencing data in paral-
lel with the MinION sequencing. It picks up sequence
reads as soon as they are generated, and simultane-
ously streams them through the pipeline for the iden-
tification analyses. The pipeline also makes use of off-
the-shelf bioinformatics tools such as BWA-MEM [11]
as described later.

We evaluated our real-time analysis pipeline and
the accuracy of our algorithms using four MinION se-
quencing data sets. As the pipeline was developed after
we performed the MinION sequencing runs, we emu-
lated the timing of the sequencing for the evaluation.
Specifically, we extracted the time that each read was
sequenced, and streamed the sequence reads in the ex-
act order and timing into the pipeline. With the emula-
tion, we was able to stream the sequencing data with
a hypothetical throughput of 120 times higher what
we obtained. This allowed us to test the scalability
of the pipeline against the projected future MinION
throughput. Finally, we validated the analysis results
by sequencing these samples with Illumina MiSeq plat-
form, where bioinformatics analysis methods were es-
tablished.

Data generation
We prepared three samples of cultured isolates of
the Klebsiella pneumoniae (K. pneumoniae) strains
ATCC BAA-2146, ATCC 700603 and ATCC 13883
and a library mixture sample. This mixture sam-
ple contains two different sequencing libraries pre-
pared from the Escherichia coli (E. coli) strain ATCC
25922 and the Staphylococcus aureus (S. aureus) strain
ATCC 25923, pooled at different levels prior to se-
quencing (Table 1). We sequenced the K. pneumoniae
samples ATCC BAA-2146 and ATCC 700603 with the
MinION using chemistry R7, the others using the im-
proved chemistry R7.3 (see Methods).

In order to validate the analysis results from Min-
ION sequencing, we sequenced all aforementioned iso-
lates with the established Illumina platform MiSeq to
a coverage exceeding 100-fold. Isolates in the mixture
sample were sequenced separately. We assembled the
MiSeq sequencing reads to obtain high quality assem-
blies of the five strains. With the assemblies, we were
able to identify the strain types and the antibiotic re-
sistance profiles of these strains (see Methods). These
results were used as the benchmarks to validate the
analysis of MinION sequencing data.
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Figure 1: Schematic of the real-time analysis pipeline. Typically it takes at least 4 hours to go from a cultured
isolate to a library for MinION sequencing. Once the MinION starts sequencing, DNA fragments are sequenced
(on the MinION) and base-called (by Metrichor cloud) instantaneously, and are simultaneously streamed through
the pipeline. Analysis results and their confidence levels are reported in real-time. User can stop an analysis or
the whole pipeline once the desired confidence levels are obtained.
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Table 1: Details of the four samples.
Sample Species Strain Information Proportion
Single sample 1 K. pneumoniae ATCC BAA-2146 NDM-1 positive resistant 100%
Single sample 2 K. pneumoniae ATCC 700603 Multi drug resistant 100%
Single sample 3 K. pneumoniae ATCC 13883 Type strain 100%
Mixture sample 1 E. coli ATCC 25922 Control strain 75%
(Library mix) S. aureus ATCC 25923 Methicillin sensitive 25%

Table 2: Details of the four MinION sequencing runs.
Sample Chemistry Basecall Time Read Base Median Quality Quality 2D

version (hrs) count count length mean (std) mean (std)
Single sample 1 R7 1.4 60 38165 185Mb 4580 4.70 (0.91) 8.96 (0.63)
Single sample 2 R7 1.4 60 7293 39Mb 4936 4.95 (1.2) 9.34 (0.87)
Single sample 3 R7.3 1.9 36 15911 86Mb 5242 4.58 (1.7) 9.46 (1.48)
Mixture sample R7.3 1.10 21 5631 12Mb 825 5.44 (2.1) 10.72(2.41)

Sequencing yields and quality of MinION sequencing
Sequence reads from the MinION were classified into
three types: template, complement and higher quality
2D reads (i.e., reads resulted from computationally
merging a template and a complement read). The av-
erage Phred quality of template and complement reads
across four runs was in the region of 5 while 2D reads
were in higher quality, with average Phred quality
about 9 (see Table 2 and Figure 3). The median read
lengths of three K. pneumoniae samples were approx-
imately 5Kb, while the mixture sample was only less
than 1Kb (Figure 3). We observed a variation in terms
of sequence yields across the four runs. While we ob-
tained nearly 40000 reads (185Mb) for sample K. pneu-
moniae ATCC BAA-2146 after 60 hours of sequenc-
ing, the run for sample K. pneumoniae ATCC 700603

yielded only 7092 reads (39Mb) with the same running
time (Figure 2). We sequenced sample K. pneumoniae
13883 and the mixture sample for 36 and 20 hours
respectively both with the chemistry 7.3 but and the
yields were markedly different to each other. The read
length and accuracy of our runs were consistent with
other user reports [12–15].

Species detection
For real-time bacterial species detection, we built a
database from 2,785 complete genomes of 1,489 bac-
terial species available in GenBank (http://www.
ncbi.nlm.nih.gov/genbank/, accessed Nov 2014).
The database contained a number of K. pneumoniae,
E. coli and S. aureus strains (10, 63 and 49 respec-
tively), but none of the five strains in our samples were
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Figure 2: Sequencing yields over time for the four samples. Yields are shown in terms of read count (left) and
base count (right).
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present. The pipeline aligns sequence reads as they are
generated from the sequencer to this database. The
species typing algorithm periodically computes the si-
multaneous proportions of the species present in the
sample and reports the 95% confidence intervals of
these proportions (See Methods).

In all three K. pneumoniae samples, we successfully
detected K. pneumoniae as the major species present
in the isolate. This was achieved with as little as 120
sequence reads requiring only 5 minutes of sequenc-
ing time (Figures 4a), b) and c)). For K. pneumoniae
strains ATCC BAA-2146 and ATCC 13883, it required
less than 500 reads (10 and 15 minutes of sequenc-
ing, respectively) to reach a 95% confidence interval
of less then 0.05. Interestingly, we found the analy-
sis of K. pneumoniae ATCC 700603 sample reported
a mixture of about 80% K. pneumoniae and 20% K.
variicolla. These proportions did not change after se-
quencing 500 reads (25 minutes), suggesting a stable
prediction of species proportions in the sample. Appli-
cation of our strain typing algorithm (see below) iden-
tified the strain of this sample as ST-489, which was
confirmed from the assembly of the MiSeq sequence
data for this sample. ST-489 has been reported to
have been mis-classified as K. pneumoniae rather than
the recently proposed new species K. quasipneumo-
niae [16, 17]. Despite this species being missing from
our original database, our pipeline reported the sam-
ple to be a mixture of two closest species (K. pneu-
moniae and K. variicolla) of the sample, highlight-
ing its ability to flag species not previously known.
Finally, we selected the assemblies of two K. quasip-
neumoniae strains, K268An (ST-334) and DR85/08
(ST-734) from Holt et al (2015) [17] and added to our

bacterial genome database. We did not include strain
ST-489 in the database. The species detection pipeline
correctly identified sample strain ATCC 700603 as K.
quasipneumoniae using only 300 reads (Figure 4e)).

The pipeline accurately identified the two species in
the mixture sample as E. coli and S. aureus after ob-
taining around 100 reads (5 minutes of sequencing).
The reported proportions became stable after around
1200 reads (35 minutes of sequencing). E. coli was the
predominant species type in the mixture sample and it
was evident with high proportion of sequencing reads
supporting the E. coli species.

Multi-locus Sequence Typing
K. pneumoniae and other bacteria are conventionally
strain typed using a MLST system which requires ac-
curate genotyping to distinguish the alleles of seven
house-keeping genes [18]. Our analysis of MinION raw
read quality (Fig. 3), together with other user re-
ports [12–15], indicated high error rates in MinION
sequencing in comparison to Illumina Miseq sequenc-
ing. This suggested that MLST typing was challeng-
ing with MinION sequence data, especially in real-time
fashion.

We developed a method to carry out MLST typing
using MinION sequence data. Our method selected
only reads spanning one of the house-keeping genes.
It then used multiple reads aligned to the same gene
to correct error in the raw sequence reads and sub-
sequently combined information across multiple alle-
les in a likelihood-based framework (See Methods).
Table 3 presents the top five highest score types (in
log-likelihood) for three K. pneumoniae strains using
MinION sequencing. In all three strains, the correct
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Figure 3: The distribution of read quality and read length of the four MinION runs.

(a) K. pneumoniae ATCC BAA-2146 (b) K. pneumoniae ATCC 700603

(c) K. pneumoniae ATCC 13883 (d) Mixture sample

(e) K. pneumoniae ATCC BAA-2146 (f) K. pneumoniae ATCC 700603

(g) K. pneumoniae ATCC 13883 (h) Mixture sample

Table 3: Multi-locus strain-typing results for three K. pneumoniae strains. The top five probable MLST types
are shown for each sample. The highest score strain types are highlighted.

ATCC BAA-2146 ATCC 700603 ATCC 13883
ST-11 ST-489 ST-3

Rank Type Score Type Score Type Score
1 ST-11 1985.47 ST-489 418.45 ST-3 1451.65
2 ST-751 1985.47 ST-851 418.45 ST-136 1450.21
3 ST-864 1985.47 ST-257 413.57 ST-38 1444.81
4 ST-1080 1984.46 ST-356 413.57 ST-1106 1444.19
5 ST-1680 1982.62 ST-414 413.57 ST-931 1441.44
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Figure 4: Real-time identification of bacterial species from MinION sequencing data for four different bacterial
samples. Species typing of four samples using existing bacterial genomes from GenBank was shown in a) b) c)
and d). The bars represent confidence intervals at 95% level. Sample ATCC 700603 (K. quasipneumoniae) was
identified as a mixture of K. pneumoniae and K. variicola as no K. quasipneumoniae strains present in the
database. Figure e) shows the species identification of this sample when two K. quasipneumoniae strains (not
including this strain) were added to the database.
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ing system also outputted several other strain types

with the same likelihood (e.g., types ST-751 and ST-

864 for strain ATCC BAA-2146 and type ST-851 for

strain ATCC 700603). We examined the profiles of

these types, and found that these strain types were

highly similar. For example, strain types ST-751 and
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ST-864 (reported for strain ATCC BAA-2146) differed
to the correct strain type ST-11 by only one SNP
from the total of 3012 bases in seven genes. Similarly,
strain type ST-851 (co-highest score reported for strain
ATCC 700603) differed to the correct strain type ST-
489 by two alleles (genes phoE and tonB). There was
only one read aligned to these two genes by the end
of the run due to the poor yield of this run, which
may have also contributed to inability to differenti-
ate these two strain types. While the results were en-
couraging, this also suggested that a more accurate
strain-typing methodology would need to consider all
of the sequenced reads, rather than just those covering
7 house-keeping genes. Therefore we further devised a
method for strain-typing which was based on presence
or absence of genes.

Strain typing by presence or absence of genes
We developed a novel strain typing method to identify
the bacterial strain from the MinION sequence reads
based on patterns of gene presence and absence. We
downloaded the genome assemblies of all strains for K.
pneumoniae, E. coli and S. aureus species from Ref-
Seq repository and identified their strain types using
the relevant MLST schemes. This resulted in sets of
125 strain types for K. pneumoniae, 353 for E. coli
and 107 for S. aureus. For each strain type, we picked
the highest quality assembly (in terms of N50 statistic)
and extracted gene sequences from its RefSeq gene an-
notation. We then grouped genes from a species based
on 90% sequence identity, and therein obtained the
gene profile for each strain type.

Our pipeline identified genes present in the sample
from sequence reads as they were generated by the
MinION device. It then used this information to infer
the posterior probability of each of the strain types,
as well as the 95% confidence intervals in this esti-
mate (see Methods). For our three K. pneumoniae
samples, we successfully identified the corresponding
strain types from the sequence data with 95% confi-
dence within 10 minutes of sequencing time and with
as few as 200 sequencing reads (Figures 5a), b), and
c)). We streamed sequence reads from the mixture
sample through the strain typing systems for E. coli
and S. aureus, and in both cases, the correct strain
types of two species in the sample were also recovered.
The correct type for E. coli strain in the 75%/ 25% E.
coli ,S. aureus mixture was recovered after 25 minutes
of sequencing with about 1000 total reads (or approx-
imately 750 E. coli derived reads). (Figure 5d)). The
pipeline was able to correctly predict the S. aureus
strain (which is known to have much less gene content
variation) in this mixture sample after two hours of
sequencing with about 2,800 total reads (or approxi-
mately 700 S. aureus derived reads).

The degree of gene variation between strain is quite
variable across different bacterial species, and this will
impact on the time taken for our confidence intervals to
converge. For example only 6% of the K. pneumoniae
pangenome (N = 328) of 29,886 genes are core genes
K. pneumoniae genomes [17], whereas 45% of the S.
aureus pangenome (N = 10) and 20% of the E. coli
pan-genome (N = 22) are core genes [19], although it
is important to note that the percentage of core genes
is a function of the number and diversity of strains
sequenced.

Antibiotic resistance detection
The antibiotic resistance profiles of the samples were
also characterized with MinION sequencing data.
We obtained antibiotic drug resistance genes from
ResFinder database [20] (https://cge.cbs.dtu.dk/
services/ResFinder/, accessed July 2015). This set
contained over 2132 gene sequences, including variants
of the same genes. We grouped these gene sequences
based on 90% sequence identity into 609 groups. In
this grouping, we found that sequences in a group
were variants of the same gene.

Our antibiotic resistance profile identification pipeline
aligned sequence reads to this antibiotic gene database.
The algorithms retained reads that aligned to these
genes, and periodically performed multiple alignment
of reads that were aligned to the same gene. It then
generated a consensus sequence from these reads, and
used a probabilistic Finite State Machine [21] to re-
align the consensus sequence to the gene sequence (see
Methods). The pipeline reported the presence of a re-
sistance gene as soon as the alignment score reached a
threshold.

Table 4 shows the time-line of antibiotic genes detec-
tion from MinION sequencing of three K. pneumoniae
strains. For the NDM-1 producing strain ATCC BAA-
2146, we identified the presence of 26 antibiotic resis-
tance genes in the MiSeq assembly of the strain. Our
real-time pipeline identified all these 26 genes and an
additional gene blaSHV from 10 hours of MinION se-
quencing. No further gene was detected thereafter. As
gene blaSHV was reported with high confidence from
the our real-time analysis, we further investigated the
alignment of the MiSeq assembly with this gene, and
found that the gene was actually aligned to two contigs
in the assembly suggesting the MiSeq assembly might
have been fragmented in the middle of the gene. We
sourced a high quality assembly of the strain’s genome
using PacBio sequencing [22] and found that the as-
sembly actually contained the gene. In other words,
our pipeline detected precisely the antibiotic gene pro-
file for this strain from 10 hours of MinION sequenc-
ing. We observed that the majority of these genes were
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Figure 5: Real-time identification of strain type from MinION sequencing data on three different K. pneumoniae
strains and a mixture sample of an E. coli and a S. aureus strain. The bars represent confidence intervals at
95% level.
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where 5 out of 6 genes after two hours of sequencing.

The last gene (oqxB) was detected after 9.5 hours of

sequencing, again recovering the full resistance profile

without any false positive. For the multi-drug resistant

K. pneumoniae strain ATCC 700603, the pipeline only

detected 8 out of 11 genes. The reduced sensitivity for

this sample was most likely due to the low sequence

yield (33Mb of data in total, or only 7-fold coverage of

the genome).
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Table 4: Timeline of resistance genes detection from the K. pneumoniae samples. TP/FP: true positives/false
positives according to the resistance gene profiles obtained from MiSeq sequencing. ∗Gene blaSHV was detected
from MinION sequencing of K. pneumoniae ATCC BAA-2146 but not from MiSeq sequencing due to the
inability to resolve a repeat in the gene.

Time genes Class TP/FP Sensitivity Specificity Data
(mins) (%) (%)

K. pneumoniae ATCC BAA-2146
30 mins 1228 reads

mphA macrolide TP
blaSHV beta-lactamase FP∗

strA aminoglycoside TP
blaTEM beta-lactamase TP
strB aminoglycoside TP
blaCTX beta-lactamase TP 26.67 87.50

60 mins 2613 reads
blaLEN beta-lactamase TP
sul2 sulphonamide TP
blaOXA beta-lactamase TP
aac3 aminoglycoside TP
aac6 aminoglycoside TP
blaCMY beta-lactamase TP
blaCFE beta-lactamase TP
blaLAT beta-lactamase TP
blaBIL beta-lactamase TP 53.33 94.12

90 mins 3844 reads
QnrB quinolone TP
aadA aminoglycoside TP
oqxA quinolone TP
tetA tetracycline TP
oqxB quinolone TP 76.67 95.83

120 mins 5258 reads
dfrA trimethoprim TP 80.00 96.00

240 mins 10788 reads
blaOKP beta-lactamase TP 83.33 96.15

270 mins 11931 reads
rmtC aminoglycoside TP 86.67 96.43

300 mins 13022 reads
sul1 sulphonamide TP
sul3 sulphonamide TP 93.33 96.55

540 mins 20200 reads
fosA fosfomycin TP 96.67 96.67

600mins 21546 reads
blaNDM beta-lactamase TP 100.00 96.77

K. pneumoniae ATCC 700603
30 mins 582 reads

oqxA quinolone TP
blaSHV beta-lactamase TP
oqxB quinolone TP 27.27 100.00

60 mins 1090 reads
aadB aminoglycoside TP 36.36 100.00

390 mins 3704 reads
sul1 sulphonamide TP
sul3 sulphonamide TP 54.55 100.00

420 mins 3810 reads
blaOXA beta-lactamase TP 63.64 100.00

540 mins 4156 reads
blaOKP beta-lactamase TP 72.73 100.00

K. pneumoniae ATCC 13883
30 mins 1264 reads

fosA fosfomycin TP 16.67 100.00
60 mins 2186 reads

blaSHV beta-lactamase TP
blaOKP beta-lactamase TP 50.00 100.00

90 mins 2952 reads
blaLEN beta-lactamase TP 66.67 100.00

120 mins 3584 reads
oqxA quinolone TP 83.33 100.00

570 mins 8112 reads
oqxB quinolone TP 100.00 100.00
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Computational time
In our analyses, sequence reads were streamed through
the pipeline in the exact order and timing as they
were generated. Analysis results were generated pe-
riodically (every minute for species typing and strain
typing and every five minutes for resistance gene iden-
tification). We examined the scalability of the pipeline
to higher throughput by running the pipeline on a
single computer equipped with 16 CPUs and stream-
ing all sequence reads from the highest yield run
(185Mb from sample K. pneumoniae ATCC BAA-
2146) through the pipeline at 120 times higher speed
than they were generated (e.g., data sequenced in 2
minutes were streamed within 1 second). Analysis re-
sults were generated every 5 seconds for typing and ev-
ery one minute for gene resistance analysis. With this
hypothetical throughput, our pipeline correctly iden-
tified the species and strain of the sample in less than
20 seconds, upon which we could terminate the typing
analyses. The pipeline then reported all the resistance
genes in five minutes, which corresponded to the data
generated in the first 10 hours of actual sequencing.
This demonstrates the scalability of our pipeline to
higher throughput sequencing.

Discussion
In recent years HTS has become an integrative tool for
infectious disease research [23, 24]. There have been
several reports emphasizing the use of HTS methods
to characterize clinical isolates, to study the spread
of drug resistant microorganisms and to investigate
outbreak of infections [25–27]. These studies predom-
inantly use massively parallel short-read sequencing
technologies such as the Illumina Miseq, NextSeq or
HiSeq. These sequencers achieve a very high base
calling accuracy which makes them ideally suited to
applications which require accurate calling of single
nucleotide polymorphisms (SNPs), including recon-
structing the evolutionary history of different bacterial
isolates; tracking transmissions during an outbreak;
placing a new isolate on a phylogenetic tree and pop-
ulation genetic analyses. However, these technologies
attain their high yield by sequencing a single base per
cycle for millions of sequence fragments in parallel,
where each cycle takes at least 5 minutes.

The Oxford Nanopore MinION device, on the other
hand, generated as many as 500 reads in the first
10 minutes of sequencing in our hands (which is 3
times lower than the theoretical maximum). The er-
ror rate of these reads was substantially higher than
the corresponding Illumina data. Existing bioinformat-
ics algorithms - which have been developed for highly
accurate Sanger and subsequently for short-read se-
quencing - rely on accurate base and SNP calling,

which makes their application to MinION data chal-
lenging. As an example, most existing strain typing
approaches often use a MLST system, either on a pre-
defined set of house keeping genes [28], or on core genes
set [29]. These approaches are highly standardized, re-
producible and portable, and hence are routinely used
in laboratories around the world. Rapid genomics di-
agnosis tools using MLST from high-throughput se-
quencing such as SRST2 [30] have also been devel-
oped. While we showed that MLST can be adapted to
identify bacterial strain type from nanopore sequenc-
ing, this requires high coverage sequencing of the gene
set to overcome the high error rates. Similarly, other
researchers have shown that error correction can over-
come the high error rate providing enough coverage is
obtained [15, 31].

The main contribution of this manuscript is to
demonstrate that despite the higher error rate, it
is possible to return clinical actionable information,
including species and strain types from as few as
500 reads. We achieved this by developing novel ap-
proaches which are less sensitive to base-calling errors
and which use whatever subset of genome-wide infor-
mation is observed up to a point in time, rather than a
panel of pre-defined markers or genes. For example, the
strain typing presence/absence approach relies only on
being able to identify homology to genes and also al-
lows for a level of incorrect gene annotation.

Our species typing module has some similarities to
the approach used by MetaPhlAn [32], in that we use
the proportion of reads which map to different taxo-
nomic groupings to estimate the proportion of differ-
ent species in a sample. MetaPhlan optimises compu-
tational speed by aligning to a precomputed database
of sequences which are pervasive within a single tax-
onomic grouping but not seen outside that grouping.
This allows it to blast against a database which is 20
times smaller than a full bacterial genomic database.
This was designed to make metagenomics inference
feasible on datasets with millions of reads. On the
other hand, our species typing approach is designed
to make a similar inference using only hundreds of
reads, and moreover, also continuously updates con-
fidence intervals so the user knows when they can stop
sequencing and make a diagnosis.

Our antibiotic resistance module is able to identify
the drug resistance potential of an isolate within a
few hours of sequencing with very high specificity. In
particular, with the most recent chemistry utilized in
this paper (R7.3), we were able to identify the com-
plete resistance potential of a K. pneumoniae isolate
without any false positives in 9.5 hours and with ap-
proximately 8000 reads (80% of the resistance genes
were identified with 3000 reads in 2 hours). In order to
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achieve high specificity we designed a probabilistic Fi-
nite State Machine for error correction. This approach
continuously updates the consensus sequence from the
multiple alignment of reads, and re-estimates the er-
ror profile of the consensus sequence. This allows the
reporting of the presence of a resistance gene once suf-
ficient accuracy is obtained, rather than waiting for
the full run to complete.

In summary, we have developed an open-source, flex-
ible pipeline for real-time analysis of MinION sequenc-
ing data. Our pipeline can be deployed on a single
16 core computer, capable of analysing MinION data
streaming at up to 120x the current rate of sequencing;
or on a high performance computing cluster to scale
with the potential even higher throughput of forth-
coming nanopore sequencing platforms. Our pipeline
incorporates three streaming algorithms, but further
algorithms can be flexibly integrated into this pipeline.

Other investigators have focused on the long-read na-
ture of MinION sequencing data, which enables com-
plete genome assembly [31] as well as the identification
of sites of integration of resistance islands [13]. Re-
searchers have also recently reported that MinION se-
quencing data could accurately identify bacterial out-
break strains within 50 minutes of sequencing [8] by
placing reads onto a phylogenetic tree; and drug resis-
tance profile of a S. aureus sample determined using a
de-Bruijn graph approach from 8 hours of sequencing
data [33].

We have shown that switching from a traditional
short-read sequencing pipeline coupled with stan-
dard, non-streaming bioinformatics algorithms, to a
nanopore sequencing pipeline coupled with stream-
ing bioinformatics algorithms can dramatically cut the
time taken from DNA library to results from at least
8 hours down to 30 minutes. With the time for li-
brary preparation for nanopore sequencing forecast to
be shortened to 10 minutes, the major time bottleneck
then becomes the bacterial culture step (which can be
24 hours). The MinION sequencer can be used on clin-
ical sample without culture, however this then dilutes
the proportion of bacterial DNA present. Nevertheless,
this may become a viable time-sensitive strategy as se-
quencing yield increases, particularly with high colony-
forming-unit (CFU) infections. Another promising ap-
proach may be to use approaches to pre-concentrate
bacterial DNA [34].

One of the major advantages of a whole-genome se-
quencing approach to drug resistance profiling is that
it is not necessary to restrict the analysis to a limited
panel of drug-resistance tests but it is possible to dis-
cover the complete drug resistance profile in a sample.
With a complete picture of the drug-resistance profile
within a few hours, a clinician may be able to design an

antibiotic treatment regimen that is both more likely
to succeed and less likely to induce further antibiotic
resistance. However, even achieving completely accu-
rate identification of resistance genes is only a first step
in accurately predicting the resistance profile, as mu-
tations may effect the rate at which these genes are
transcribed and also their antibiotic resistance activ-
ity. Prediction of antibiotic resistance from genotype
is an area which warrants substanial further research.

Methods
DNA extraction
Bacterial strains K. pneumoniae ATCC BAA-2146,
ATCC 700603, ATCC 13883, E. coli ATCC 25922 and
S. aureus ATCC 25923 were obtained from American
Type Culture Collection (ATCC, USA). Bacterial cul-
tures were grown overnight from a single colony at
37◦C with shaking (180 rpm). Whole cell DNA was
extracted from the cultures using the DNeasy Blood
and Tissue Kit (QIAGEN c©, Cat #69504) according
to the bacterial DNA extraction protocol with enzy-
matic lysis pre-treatment.

MinION library preparation – R7 Flow Cell
Library preparation was performed using the Ge-
nomic DNA Sequencing kit (SQK-MAP-002) (Oxford
Nanopore) according to the manufacturer’s instruc-
tion. Briefly, 1µg of genomic DNA was sheared to 10kb
fragment size using a Covaris g-TUBE. The sheared
DNA was end repaired using the NEBNext End Repair
Module (New England Biolabs) in a total volume of
100µL and incubated at 20◦C for 30 minutes. The end
repaired DNA was purified using 1x volume (100µL)
Agencourt Ampure XP beads (Beckman Coulter) ac-
cording to the manufacturer’s instructions. Purified
end repair products were eluted in 42µL of molecular
grade water and dA-tailing was performed using the
NEBNext dA-tailing module (New England Biolabs)
in a total volume of 50µL and incubated at 37◦C for
30 minutes. Ligation was performed using the reagents
supplied by Oxford Nanopore and T4 DNA ligase from
New England Biolabs. The dA-tailed DNA was mixed
with 10µL of adapter mix, 10µL of HP adapter, 20µL
of 5x ligation buffer and 10µL of T4 DNA ligase (20000
units per reaction) and incubated at room temperature
for 10 minutes. The adapter-ligated DNA was puri-
fied using 0.4x volume (40µL) Agencourt Ampure XP
beads (Beckman Coulter) according to the manufac-
turer’s instructions with slight modifications. Oxford
Nanopore supplied wash buffer and elution buffer was
used and only a single wash was performed. Samples
were eluted in 25µL of elution buffer. The ligated DNA
was mixed with 10µL of tether and incubated at room
temperature for 10 minutes. Finally, 15µL of HP mo-
tor was added to the reaction and incubated at room
temperature for 16 hours.
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MinION library preparation – R7.3 Flow Cell

For the R7.3 MinION Flow Cells an updated Genomic
Sequencing kit (SQK-MAP-003) (Oxford Nanopore)
was used according to the manufacturer’s instruction.
Purified end repair products were eluted in 25µL of
molecular grade water and dA-tailing was performed in
a total volume of 30µL. The dA-tailed DNA was mixed
with 10µL of adapter mix, 10µL of HP adapter and
50µL of Blunt/TA ligase master mix (New England Bi-
olabs) and incubated at room temperature for 10 min-
utes. The adapter-ligated DNA was purified using 0.4x
volume (40µL) Agencourt Ampure XP beads (Beck-
man Coulter) according to the manufacturer’s instruc-
tions with slight modifications. Oxford Nanopore sup-
plied wash buffer and elution buffer was used and only
a single wash was performed. Samples were eluted in
25µL of elution buffer.

For the library mixture sample, DNA concentration
of each library was measured using Qubit Fluorimeter
(Thermo Fisher Scientific). Based on the concentra-
tion, 75% of E. coli (ATCC 25922) library and 25% of
S. aureus (ATCC 25923) library were mixed prior to
sequencing.

MinION Sequencing

For each sample a new MinION Flow Cell (R7 or R7.3)
was used for sequencing. The MinION Flow Cell was
inserted into the MinION device and prior to sequenc-
ing, the Flow Cell was primed using 150µL of EP buffer
twice with 10 minute incubation after each addition.
The sequencing library mix was prepared by combin-
ing 6µL of library with 140µL of EP buffer and 4µL of
fuel mix. The library mix was loaded onto the MinION
Flow Cell and the Genomic DNA 48 hour sequencing
protocol was initiated on the MinKNOW software. The
MinION Flow Cell was topped up with fresh library
mix for every 12 hours as required.

MinION data analysis

The sequence read data were base called with Met-
richor Agent (https://metrichor.com). We used
npReader [10] to convert base-called sequence data in
fast5 format to fastq format. The npReader program
also extracted the time that each read was sequenced
and used this information to sort the read sequences
in order they were produced. For the real-time anal-
yses, we wrote a program to emulate the sequencing
process in that it streamlined each read in the exact
order it was sequenced. The program also allowed scal-
ing up the sequencing emulation to a factor of choice.
Our pipeline allows for filtering out 1D reads at mul-
tiple stages (including via npReader). All subsequent
analyses in this paper used both 1D and 2D reads.

MiSeq sequencing and data analysis
Library preparation was performed using the Nexter-
aXT DNA Sample preparation kit (Illumina) as recom-
mended by the manufacturer. Libraries were sequenced
on the MiSeq instrument (Illumina) with 300bp paired
end sequencing, to a coverage of over 100-fold. Read
data were trimmed with trimmomatic [35] and sub-
sequently assembled using SPAdes [36], resulting in
assemblies with N50 exceeding 200kb. Their strain
types were identified by submitting the assembled
genomes to the MLST servers https://cge.cbs.dtu.
dk/services/MLST/ [37] for K. pneumoniae, E. coli
(set #1) and S. aureus.

We identified the antibiotic resistance profiles of
these strains from their MiSeq assemblies. We used
blastn to align these assemblies to the database of re-
sistance genes obtained from resFinder []. Genes which
were covered at least greater than 85% by the align-
ments and with greater than 85% sequence identity
were considered to be present in the sample. These
gene profiles were used as a benchmark to validate the
MinION sequencing analysis.

Species typing
We downloaded the bacterial genome database on
GenBank (ftp://ftp.ncbi.nlm.nih.gov/genomes/
Bacteria/, accessed 19 Nov 2014), which contained
high quality complete genomes of 2785 bacterial
strains from 1487 bacteria species. Our species typ-
ing pipeline streamed read data from npReader di-
rectly to BWA-MEM [11] which aligned the reads
to the database. Output from BWA in SAM format
was streamed directly into our species typing pipeline,
which calculated the proportion of reads aligned to
each of these species. Our species typing method con-
siders the proportions {p1, p2, .., pk} of k species in the
mixture as the parameters of a k-category multinomial
distribution, and the read counts {c1, c2, .., ck} for the
species as an observation from c1+c2+ ..+ck indepen-
dent trials drawn from the distribution. It then uses
the MultinomialCI package in R [38] to calculate the
95% confidence intervals of these proportions from the
observation.

MLST typing
MinION sequence reads from K. pneumoniae strains
were aligned to the seven house-keeping genes spec-
ified by the MLST system using BWA-MEM [11].
We then collected reads that were aligned to a gene
and performed a multiple alignment on them using
kalign2 [39]. The consensus sequence created from the
multiple alignment was then globally aligned to all al-
leles of the gene using a probabilistic Finite State Ma-
chine (see below) for global alignment. The score of a
MLST type was determined by the sum of the scores
of seven alleles making up the type.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 15, 2015. ; https://doi.org/10.1101/019356doi: bioRxiv preprint 

https://metrichor.com
https://cge.cbs.dtu.dk/services/MLST/
https://cge.cbs.dtu.dk/services/MLST/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/
https://doi.org/10.1101/019356


Cao et al. Page 13 of 17

Strain typing

We built gene profile databases for K. pneumoniae, E.
coli and S. aureus from the RefSeq annotation. Specif-
ically, we obtained the publicly available assemblies of
these species listed on RefSeq master database (ftp:
//ftp.ncbi.nih.gov/genomes/ASSEMBLY_REPORTS/

assembly_summary_refseq.txt, accessed 17 July
2015). We used the relevant MLST schemes obtained
from https://cge.cbs.dtu.dk/services/MLST/ [37]
to identify strain type of each assembly. For each strain
type, we selected the assembly with highest N50 statis-
tic and use the RefSeq gene annotation of the assembly
to determine the gene content of the strain type.

In order to develop a simple probabilistic pres-
ence/absence strain typing model, we consider the
genomes of each of the strains simply as a collection
of genes. Denote by Stj=1..J the all the strains in our
database (for a fixed species). Denote by gj,k the kth

gene in the database for strain j, where the genes are
listed in no particular order. Denote by Nj the total
number of genes in Stj .

We align each sequence read ri from the MinION
device to the gene database using BWA-MEM [11].
We count the number of genes of each strain that are
aligned to some reads, denoted Nj(ri).

We describe below how we can calculate a likeli-
hood, P (ri|Stj), of each strain generating each read,
from which we can calculate the posterior probability
of each strain Stj conditional on observing the reads
r1 . . . rm:

P (Stj |r1..rm) =

∏
i=1..m P (ri|Stj)∑

j

∏
i=1..m P (ri|Stj)

(1)

The probability P (ri|Stj) could be calculated using
a simple model as

Psimple(ri|Stj) =
Nj(ri)

Nj
, (2)

however, this model suffers from the problem that if
we observe any read which overlaps a gene not in the
reference genome for Stj , then the posterior probabil-
ity of that strain will become zero. Thus, this model
is very unstable. In order to make this estimate more
stable, we use a mixture model which allows for the
read to have been generated by a background model:

P (ri|Stj) = (1−c)∗Nj(ri)

Nj
+(c)∗P (ri|

⋃
j′

Stj′). (3)

The background model considers the probability
that the read was generated from any of the strains:

P (ri|
⋃
j′

Stj′) =

∑
j′ Nj′(ri)∑

j′ Nj′
. (4)

This makes the posterior probability estimates more
stable. It also makes the model robust to incorrect an-
notation of the reads from the MinION sequencer and
incorrect annotation of the reference genome. We have
investigated use of c = 0.2, c = 0.1 and c = 0.05
and found that it has little impact on the results, with
slightly smaller confidence intervals (data not shown).
We choose c = 0.2 in order to conservatively estimate
confidence intervals.

Finally, in order to calculate confidence intervals we
employ a bootstrap resampling approach in which we
resample m reads from r1, . . . rm with replacement.
This is repeated 1000 times, and the posterior prob-
abilities are recalculated every iteration. We calculate
the 95% confidence intervals from the empirical distri-
bution of these posterior probabilities.

To gain some insight into how this model works in
response to gene presence, consider a gene g which is
present in a fraction f of strains, including Stj but
not including Stk. For simplicity assume that each
strain has N genes. The difference in log-likelihood
Stj and Stk conditional on g can be approximated by
log(1/c) + log(1/f), showing that a more specific gene
has a stronger effect in our model than a common gene
in distinguishing strains.

To gain insight into the effect of gene absence in con-
trast to gene presence, assume instead that the only
difference between Stj and Stk is that a single gene
(g) is deleted in Stj , and denote by N = Nj = Nk−1.
If we sequence N ln(2) genes from Stj without see-
ing gene g, the difference in log-likelihood becomes
N ln(2) ∗ (log(N)− log(N − 1)) ≈ 1 bit, corresponding
to the likelihood for Stj being twice as big as the like-
lihood of Stk. For example, if a strain has 1000 genes,
then we would need to observe 693 genes without ob-
serving g to be able to conclude that the observed data
were twice as likely to be generated from the species
with a single gene deletion. For comparison, we would
need to only sequence 100 genes from Stk to get an
expected log-likelihood difference of 1 bits versus Stj ,
demonstrating the extra information in gene ’presence’
versus ‘absence’ typing.

Antibiotic resistance gene classes detection
We downloaded the resistance gene database from res-
Finder (https://cge.cbs.dtu.dk/services/ResFinder/,
accessed July 2015). We aligned each gene to the col-
lection of bacterial genomes in RefSeq using blastn [40],
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and used the best alignment of the gene to extract
100bp flank sequences. We found that the inclusion
of the 100 flank sequences improved the sensitivity of
mapping MinION reads to the gene database.

We then grouped these genes based on 90% sequence
identity into 609 groups. We manually checked and
found genes within a group were variants of the same
gene. We selected the longest gene in each group to
make up a reduced resistance gene database. To create
a benchmark of resistance gene for a sample, we blastn
the Illumina assembly of the sample against this re-
duced gene database, and reported genes with greater
than 85% coverage and identity.

Our analysis pipeline aligned MinION sequencing
data into this reduced resistance gene database using
BWA-MEM [11] in a streamline fashion, and exam-
ined genes that had reads mapping to the whole gene
(not including flanking sequences). Due to the high er-
ror rates of MinION sequence data, we noticed a high
rate of false positive genes. To reduce false positives,
we used kalign2 [39] to perform a multiple alignment of
reads that were aligned to the same gene. The consen-
sus sequence resulting from the multiple alignment was
then compared with the gene sequence using a proba-
bilistic Finite State Machine (see below). The pipeline
then reported gene classes based on the genes detected.

Sensitive alignment of noisy sequences with probabilistic
Finite State Machines
Our methods for MLST strain typing and antibiotic
resistance gene identification require the alignment of
a consensus sequence to a gene or a gene allele. Such an
alignment generally assumes a model and a set of pa-
rameters of the differences between the sequences. It is
widely recognised that the accuracy of the alignment
is sensitive to these parameters [41–43]. However, in
the context of real-time analysis of MinION sequenc-
ing, it is not possible to select in advance a sensible set
of parameters. On the one hand, the quality among se-
quence reads differs remarkably; as shown in Figure 3
and Table 2 – the majority (95%) of the reads across
our four runs have the Phred score ranging between
3 and 7 for template and complement reads (corre-
sponding to 50% - 80% accuracy) and between 6 to 12
for 2D reads (75%-95% accuracy). On the other hand,
a consensus sequence is computationally constructed
from a set of reads. Its quality is hence contingent to
not only the quality of the reads but also the number
of reads in the set.

We use a probabilistic Finite State Machine (pFSM) [44]
to model the differences, and hence the simultaneous
error profile of the consensus sequence. The pFSM con-
sists of a set of states and transitions between states.
Each transition corresponds to an action and is as-
sociated with a cost for the action. An action could

be one of copy (C), substitute (S), delete (D) and in-
sert (I). Figure 6 depicts a three-state pFSM which is
equivalent to a affine gap penalty alignment model. In
order to assess an alignment of two sequences A and
B, under a hypothesis specified by the parameters,
the pFSM computes the cost to generate one sequence
(say A) given the other (B). For example, while in state
Copy, the machine consumes the next base in B, gen-
erates the next base in A; it is said to take action C if
the two bases are the same, or action S otherwise, and
to follow either transition to state Copy. Alternatively,
the machine can take either action D (consumes the
next base in B without generating any base in A and
moves to state Delete), or action I (generates the next
base in A without consuming a base in B and moves
to state Insert). These actions are repeated until the
whole sequence B is generated.

We use an information-theoretic measure where the
cost of a transition is is that of encoding the generated
base, or in other words, the negative logarithm of the
probability of the associated action (c = −log2(P (a)).
The foundation of this approach goes back to the
1960s when it was proposed as a basis for inductive
inference [45, 46]. It has since been used in a num-
ber of bioinformatics applications such as for calcu-
lating the BLOSUM matrix [47] and modelling DNA
sequences [48, 49]. More importantly, this information-
theoretic framework allows one to estimate a sensi-
ble set of parameters for any related two sequences.
This is done via a Expectation-Maximisation process.
This starts with an initial set of probabilities at each
state. In the E-step, the best alignment (lowest cost)
is calculated by a dynamic programming algorithm.
The frequencies of actions at each state are then used
to re-estimate the probabilities in the M-step. A de-
tailed discussion of this process is provided in Allison
et al [44] and Cao et al [50]. The process is guaranteed
to converse to an optimal, and it does so in only a few
iterations in our experience.

Availability of supporting data
All scripts for the presented analyses are provided in
https://github.com/mdcao/npAnalysis. The source
code of the software is publicly available in github
repository (https://github.com/mdcao/japsa). The
MinION sequencing data for the three single sam-
ples are available in European Nucleotide Archive
Study Accession Number ERP010377 (http://www.
ebi.ac.uk/ena/data/view/ERP010377). The Min-
ION sequencing data for mixture sample and the Il-
lumina sequencing are in the process of depositing to
European Nucleotide Archive. They are made avail-
able via the links provided in https://github.com/

mdcao/npAnalysis.
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Figure 6: Schematic of a three-state probabilistic Finite State Machine.
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