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Abstract 

Identifying sources of variation in DNA methylation levels is important for 

understanding gene regulation. Recently, bisulfite sequencing has become a popular 

tool for estimating DNA methylation levels at base-pair resolution, and for 

investigating the major drivers of epigenetic variation. However, modeling bisulfite 

sequencing data presents several challenges. Methylation levels are estimated from 

proportional read counts, yet coverage can vary dramatically across sites and 

samples. Further, methylation levels are influenced by genetic variation, and 

controlling for genetic covariance (e.g., kinship or population structure) is crucial for 

avoiding potential false positives. To address these challenges, we combine a 

binomial mixed model with an efficient sampling-based algorithm (MACAU) for 

approximate parameter estimation and p-value computation. This framework allows 

us to account for both the over-dispersed, count-based nature of bisulfite 

sequencing data, as well as genetic relatedness among individuals. Furthermore, by 

leveraging the advantages of an auxiliary variable-based sampling algorithm and 

recent mixed model innovations, MACAU substantially reduces computational 

complexity and can thus be applied to large, genome-wide data sets. Using 

simulations and two real data sets (whole genome bisulfite sequencing (WGBS) data 

from Arabidopsis thaliana and reduced representation bisulfite sequencing (RRBS) 

data from baboons), we show that, compared to existing approaches, our method 

provides better calibrated test statistics in the presence of population structure. 

Further, it improves power to detect differentially methylated sites: in the RRBS data 

set, MACAU detected 1.6-fold more age-associated CpG sites than a beta-binomial 
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model (the next best approach). Changes in these sites are consistent with known 

age-related shifts in DNA methylation levels, and are enriched near genes that are 

differentially expressed with age in the same population. Taken together, our results 

indicate that MACAU is an effective tool for analyzing bisulfite sequencing data, with 

particular salience to analyses of structured populations. MACAU is freely available 

at www.xzlab.org/software.html. 
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Introduction 

DNA methylation — the covalent addition of methyl groups to cytosine bases 

— is a major epigenetic gene regulatory mechanism utilized by a wide variety of 

species. DNA methylation levels predict gene expression patterns, are involved in 

genomic imprinting and X-inactivation, and function to suppress the activity of 

transposable elements [1–3]. In addition, DNA methylation is essential for normal 

development [4–7]. For example, mutant Arabidopsis plants with reduced levels of 

DNA methylation display a range of abnormalities including reduced overall size, 

altered leaf size and shape, and reduced fertility [4–6]. In humans, DNA methylation 

levels are strongly linked to disease, including major public health burdens such as 

diabetes [8,9], Alzheimer’s disease [10,11], and many forms of cancer [8,12–16]. 

These observations point to a central role for DNA methylation in shaping genome 

architecture, influencing development, and driving trait variation. Consequently, 

there is substantial interest in characterizing the genome-wide distribution of DNA 

methylation marks, and particularly, in identifying the genetic [17–20] and 

environmental [21–24] factors that explain variation in DNA methylation levels. 

Recently, high-throughput sequencing based approaches have increased the 

feasibility, and consequently the popularity, of measuring DNA methylation levels. 

These methods, which include whole genome bisulfite sequencing (WGBS or BS-

seq) [25], reduced representation bisulfite sequencing (RRBS) [26,27], and 

sequence capture followed by bisulfite conversion [28,29], produce base-pair 

resolution estimates of DNA methylation levels at genome-wide scales. All such 

methods rely on the differential sensitivity of methylated versus unmethylated 
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cytosines to the chemical sodium bisulfite. Specifically, sodium bisulfite converts 

unmethylated cytosines to uracil (and ultimately thymine following PCR), while 

methylated cytosines are protected from conversion. Estimates of DNA methylation 

levels for each cytosine base can thus be obtained directly through high-throughput 

sequencing. Specifically, DNA methylation levels are estimated as the ratio of 

mapped cytosine reads (reflecting an originally methylated version of the base) to 

the total number of mapped reads at the same target (reflecting both methylated and 

unmethylated versions of the base). 

The raw data produced by bisulfite sequencing methods are therefore count 

data, in which both the number of methylated reads and the total coverage at a site 

contain useful information. Higher total coverage corresponds to a more reliable 

estimate of the true DNA methylation level; however, in a typical experiment, total 

coverage can vary dramatically (e.g., by several orders of magnitude) across 

individuals and sites (Fig. S1). Many commonly used analysis methods, including all 

tools initially designed for array-based data [30,31], ignore this variability by 

converting counts to percentages or proportions (e.g., t-tests, Mann-Whitney U tests, 

or linear models, Table 1). Thus, a site at which 5 of 10 reads are designated as 

methylated (i.e., read as a cytosine) is treated identically to a site at which 50 of 100 

reads are designated as methylated. This assumption reduces the power to uncover 

true predictors of variation in DNA methylation levels, because it ignores substantial 

sources of error in DNA methylation level estimates.  

To address this problem, several recently introduced methods for differential 

DNA methylation analysis implement a beta-binomial model (e.g., ‘DSS: Dispersion 
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Shrinkage for Sequencing data’ [32], ‘RADMeth: Regression Analysis of Differential 

Methylation’ [33], and ‘MOABS: Model Based Analysis of Bisulfite Sequencing data’ 

[34]). These methods model the binomial nature of bisulfite sequencing data, while 

taking into account the well-known problem of over-dispersion in sequencing reads. 

Because they work directly on count data, they can reliably account for variation in 

read coverage across sites and individuals. Consequently, beta-binomial methods 

consistently provide increased power to detect true associations between genetic or 

environmental sources of variance and DNA methylation levels [32–34].  

However, beta-binomial-based methods only model over-dispersion due to 

independent variation, making them unsuited to studying DNA methylation variation 

in data sets affected by population structure or kinship. Taking these sources of 

structure into account is important because genetic variation is well known to exert 

strong and pervasive effects on DNA methylation levels [18,20,35,36]. In humans, 

methylation levels at more than ten thousand CpG sites are influenced by local 

genetic variation [19], and DNA methylation levels in whole blood are 18%-20% 

heritable on average, with the heritability estimates for the most heritable loci (top 

10%) averaging around 68% [35,36]. As a result, DNA methylation levels will 

frequently covary with genetic relatedness (either kinship or population structure), 

and failure to account for this covariance could lead to spurious associations or 

reduced power to detect true effects. This phenomenon has been extensively 

documented for genotype-phenotype association studies [37–41], and controlling for 

genetic covariance between samples is now a basic requirement for these types of 

analyses. Similar logic applies to analyses of gene regulatory phenotypes, and 
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studies of gene expression variation often do take genetic structure into account by 

using mixed model approaches [42–44]. However, despite growing interest in 

environmental epigenetics and epigenome-wide association studies (EWAS), no 

methods exist that appropriately control for genetic effects on DNA methylation 

levels in bisulfite sequencing data sets (Table 1). 

To address this gap, we present a binomial mixed model (BMM) that 

accounts for both covariance between samples and extra over-dispersion caused by 

independent noise. We also present an efficient, sampling-based inference algorithm 

to accompany this model, called MACAU (Mixed model association for count data 

via data augmentation). MACAU works directly on binomially distributed count data 

and uses random effects to model relatedness/population structure and over-

dispersion. Hence, MACAU enables parameter estimation and hypothesis testing in 

a wide variety of settings. To illustrate the advantages of our approach, we 

compared MACAU’s performance with currently available methods using both 

simulated data and two real data sets (publicly available Arabidopsis thaliana WGBS 

data [45] and newly generated RRBS data from wild baboons, Papio cynocephalus). 

We found that MACAU appropriately controls for type I error and provides increased 

power compared to alternative methods, which either fail to account for the count 

nature of bisulfite sequencing data (e.g., linear mixed models [38,39,46,47]) or fail to 

account for genetic relatedness (e.g., beta-binomial models). 

 

Results 

The binomial mixed model and the MACAU algorithm 
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Here, we briefly describe the model and the algorithm. Additional details are 

provided in Text S1.  

To detect differentially methylated sites, we model each potential target of 

DNA methylation individually (i.e., we model each CpG site one at a time). For each 

site, we consider the following binomial mixed model (BMM):  

�� = ������, 
��, 
where �� is the total read count for ith individual; �� is the methylated read count for 

that individual, constrained to be an integer value less than or equal to ��; and 
� is 

an unknown parameter that represents the true proportion of methylated reads for 

the individual at the site. We use a logit link to model 
� as a linear function of 

several parameters: 

�
� � 
�
1 − 
�

� = ���� + ��� + �� + ��, 

� = ���, ⋯ , ���� ∼ � !�0,  $%ℎ%'�, 
( = ���, ⋯ , ���� ∼ � !�0, $%�1 − ℎ%�)�, 

where �� is a c-vector of covariates including an intercept and � is a c-vector of 

corresponding coefficients; �� is the predictor of interest and � is its coefficient; � is 

an n-vector of genetic random effects that model correlation due to population 

structure or kinship; ( is an n-vector of environmental residual errors that model 

independent variation; ' is a known n by n relatedness matrix that can be calculated 

based on pedigree or genotype data and that has been standardized to ensure 

*��'�/� = 1 (this ensures that ℎ% lies between 0 and 1, and can be interpreted as 

heritability, see [48]; tr denotes the trace norm); ) is an n by n identity matrix; $%ℎ% is 

the genetic variance component; $%�1 − ℎ%� is the environmental variance 
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component; ℎ% is the heritability of the logit transformed methylation proportion (i.e. 

�
��*�,�); and MVN denotes the multivariate normal distribution.  

Both � and ( model over-dispersion (i.e., the increased variance in the data 

that is not explained by the binomial model). However, they model different aspects 

of over-dispersion: ( models the variation that is due to independent environmental 

noise (a known problem in data sets based on sequencing reads: [49–52]), while � 

models the variation that is explained by kinship or population structure. Effectively, 

our model improves and generalizes the beta-binomial model by introducing this 

extra � term to model individual relatedness due to population structure or 

stratification.  

We are interested in testing the null hypothesis that the predictor of interest 

has no effect on DNA methylation levels: -.: � = 0. This test requires obtaining the 

maximum likelihood estimate �0 from the model. Unlike its linear counterpart, 

estimating �0  from the binomial mixed model is notoriously difficult, as the joint 

likelihood consists of an n-dimensional integral that cannot be solved analytically 

[53]. Standard frequentist approaches rely on numerical integration [54] or Laplace 

approximation [55,56], but neither strategy scales well with the increasing dimension 

of the integral, which in our case is equal to the sample size. Because of this 

problem, frequentist approaches often produce biased estimates and overly narrow 

(i.e., anti-conservative) confidence intervals [57–61]. To overcome this problem, we 

instead use a Markov chain Monte Carlo (MCMC) algorithm-based approach for 

inference. After drawing accurate posterior samples, we rely on the asymptotic 

normality of both the likelihood and the posterior distributions [62] to further obtain 
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the approximate maximum likelihood estimate �0 and its standard error se(�0). This 

procedure allows us to construct approximate Wald test statistics and p-values for 

hypothesis testing. Despite the stochastic nature of the procedure, the MCMC errors 

are small enough to ensure stable p-value computation across multiple MCMC runs 

(Fig. S2). 

For efficient, approximate p-value computation, we developed a novel MCMC 

algorithm based on an auxiliary variable representation of the binomial distribution 

[63–65] (Text S1). Our main contribution here is a framework that approximates the 

distribution of these latent variables (Fig. S3, Table S1-S2) and allows us to take 

advantage of recent innovations for fitting mixed effects models [38,46,47,66] (Text 

S1). These modifications substantially reduce the computational burden of fitting the 

BMM. Our algorithm reduces per-MCMC iteration computational complexity from 

cubic to quadratic with respect to the sample size. This results in an over 50-fold 

speed up compared with the popular software MCMCglmm [67] (Table S3) and 

makes our implementation of the BMM efficient for data sets ranging up to hundreds 

of individuals and millions of sites.  

Because our model effectively includes the beta-binomial model as a special 

case, we expect it to perform similarly to the beta-binomial model in settings in which 

population structure is absent (we say “effectively” because strictly speaking, the 

beta-binomial model uses a beta distribution to model independent noise while we 

use a normal distribution). However, we expect our model to outperform the beta 

binomial in settings in which population structure is present. In addition, in the 

presence of population stratification, we expect the beta-binomial model to produce 
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inflated test statistics (thus increasing the false positive rate) while our model should 

provide calibrated ones. Below, we test these predictions using both simulations and 

real data applications. 

 

Count-based models perform well in the absence of genetic effects on DNA 

methylation levels 

We first compared the performance of the BMM implemented in MACAU with 

the performance of other currently available methods for analyzing bisulfite 

sequencing data in the absence of genetic effects. Intuitively, since the BMM models 

count data and effectively includes the beta-binomial model as a special case, we 

expected it to perform similarly to the beta-binomial model; further, we expected both 

models to outperform methods that do not model counts. To test our prediction, we 

simulated the effect of a predictor variable on DNA methylation levels across 5000 

CpG sites (4500 true negatives and 500 true positives). To approximate the 

distribution of a predictor variable in a real population, and because we analyze age-

associated variation in DNA methylation levels in a baboon RRBS data set in detail 

below, we conducted our simulation using known age values sampled from the 

same baboon population. For all simulations, we set the effect of genetic variation on 

DNA methylation levels equal to zero, which is equivalent to setting either (i) the 

heritability of DNA methylation levels to zero (unlikely based on prior findings 

[35,36]), or (ii) studying completely unrelated individuals in the absence of population 

structure. To explore MACAU’s performance across a range of conditions, we 

simulated age effects on DNA methylation levels across three different effect sizes 
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(percent of variance in DNA methylation explained (PVE) = 5%, 10%, or 15%) and 

three different sample sizes (n = 20, 50, and 80).  

Because age is naturally modeled as a continuous variable, we focused our 

comparisons only on approaches that could accommodate continuous predictor 

variables (comparisons in which we artificially binarized age, which allowed us to 

include a larger set of approaches, produced qualitatively similar results: Fig. S4). 

Specifically, in addition to the BMM implemented in MACAU, we considered the 

performance of a beta-binomial model, a linear model, a binomial model, and a 

linear mixed model (implemented in the software GEMMA [46]). As expected, we 

found that MACAU performed similarly to the beta-binomial model, and that these 

two approaches consistently detected more true positive age effects on DNA 

methylation levels (at a 10% empirical FDR) than all other methods (Figs. S5-S6). 

For example, in the “easiest” case we simulated (PVE = 15%, n = 80), we found that 

the beta-binomial model detected 30% of simulated true positives, while the BMM 

implemented in MACAU detected 27.8%. The slight loss of power in the BMM is a 

consequence of the smaller degrees of freedom caused by the additional genetic 

variance component. In comparison, the linear model detected 21.2% of true 

positives; the linear mixed effects model, 14%; and the binomial model, 8.4% (Fig. 

S5). The binomial model exhibits low power when FDR is used to control for multiple 

hypothesis testing due to poor type I error calibration, as has been previously 

reported [33]. Area under a receiver operating characteristic curve (AUC) was also 

consistently very similar between the beta-binomial and MACAU (Fig. S6), although 

the advantage of the count-based methods was less clear by this measure. This 
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reduced contrast is because AUC is based on true positive-false positive trade-offs 

across a range of p-value thresholds; methods can consequently yield high AUCs 

even when they harbor little power to detect true positives at FDR thresholds that 

are frequently used in practice. Taken together, our simulations suggest a general 

advantage to count-based models for samples that contain no genetic structure. 

Further, the differences in performance between the beta-binomial model and the 

BMM implemented in MACAU were consistently small in this setting (Figs. S5-S6).  

 

Binomial mixed models control for false positive associations that arise from 

population structure 

Next, we investigated the performance of each method in the presence of 

population structure. When DNA methylation levels are heritable and the predictor 

variable of interest is confounded with population structure, false positive 

associations should arise if genetic covariance between samples is not modeled. 

Because the BMM accounts for population structure while the beta-binomial model 

does not, we therefore expected MACAU to produce well-calibrated test statistics 

and the beta-binomial model to produce inflated test statistics. To test this prediction, 

we drew on publicly available phenotype data and SNP genotype data for 24 

Arabidopsis thaliana accessions [68,69] in which leaf tissue samples were recently 

subjected to whole genome bisulfite sequencing [45]. Among these accessions, a 

secondary dormancy phenotype (measured as the slope between the germination 

percentages of non-dormant seeds after one and six weeks of cold treatment) is 

correlated with population structure (R2 = 0.38 against the first principal component 
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of the genotype matrix for these accessions; p = 7.84 x 10-4; Fig. S7). Because 

secondary dormancy is associated with environmental conditions that are 

experienced after the seed has already dispersed, we have no expectation that 

secondary dormancy should be associated with DNA methylation levels in leaf 

tissue. Consequently, we used the true distribution of secondary dormancy 

characteristics and the true genetic structure among these 24 accessions to simulate 

a dataset that consisted entirely of true negatives. Specifically, we simulated data 

sets (containing 4000 sites each) in which the association between secondary 

dormancy and DNA methylation levels in leaf tissue was always equal to 0, but the 

effect of genetic variation on DNA methylation levels was either moderate (h2 = 0.3) 

or large (h2 = 0.6). Thus, in these data sets, population structure could confound the 

relationship between the predictor variable (the capacity for secondary dormancy) 

and DNA methylation levels if not taken into account. 

As predicted, we found that the BMM implemented in MACAU appropriately 

controlled for genetic effects on DNA methylation levels: whether DNA methylation 

levels were moderately (h2 = 0.3) or strongly (h2 = 0.6) heritable, MACAU did not 

detect any sites associated with secondary dormancy at a relatively liberal false 

discovery rate threshold of 20% (whether calculated against empirical permutations 

or calculated using the R package qvalue [32]). In addition, the p-value distributions 

for secondary dormancy effects on DNA methylation levels, in both simulations, did 

not differ from the expected uniform distribution (Fig. 1; Kolmogorov-Smirnov (KS) 

test when h2 = 0.3: D = 0.015, p = 0.909; when h2 = 0.6: D = 0.016, p = 0.874; 

genomic control factors: 0.90 when h2 = 0.3, 0.93 when h2 = 0.6). In contrast, when 
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we analyzed the same simulated data sets with a beta-binomial model, we 

erroneously detected 2 CpG sites associated with secondary dormancy when 

heritability was set to 0.3, and 4 CpG sites when heritability was set to 0.6 (at a 20% 

FDR in both cases). More concerningly, the distributions of p-values produced by the 

beta-binomial model were significantly different from the expected uniform 

distribution and skewed towards low (significant) values (KS test when h2 = 0.3: D = 

0.084, p = 1.75 x 10-8; when h2 = 0.6: D = 0.096, p = 2.80 x 10-11; genomic control 

factors: 1.18 when h2 = 0.3, 1.32 when h2 = 0.6). These numbers suggest an 

increasing problem with false positives as the heritability of DNA methylation levels 

increases.   

 To investigate the calibration of test statistics in a real data set, we next 

analyzed the relationship between the secondary dormancy phenotype and publicly 

available WGBS data for the same 24 Arabidopsis accessions (n = 830,676 CpG 

sites tested [32,33,34]). We again compared the performance of a simple linear 

model, a binomial model, a beta-binomial model, the BMM implemented in MACAU, 

and an LMM implemented in GEMMA. Again illustrating its poor handling of Type I 

error, the binomial model detected more than 100,000 secondary dormancy-

associated sites at a 10% empirical FDR threshold, respectively, with a genomic 

control factor of 3.81. A beta-binomial model substantially improved over the 

binomial model, but still detected 39 secondary dormancy-associated sites at a 20% 

empirical FDR threshold, and 150 sites and 690 sites at a 10% or 20% FDR qvalue 

threshold, respectively (genomic control factor = 1.16). Given the clear confounding 

of population structure and secondary dormancy in this sample, as well as the 
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results of our simulations, these associations are probably spurious. In contrast, 

MACAU, the linear mixed model (GEMMA), and the simple linear model did not 

identify any CpG sites associated with secondary dormancy, either at a 10% or a 

20% false discovery rate threshold (Fig. 1; genomic control factors: MACAU – 0.89, 

GEMMA – 0.97, Linear model – 0.99). Based on our earlier simulations, the 

similarity of performance among the three models likely stems from different 

reasons: both the linear model and the linear mixed model are more lowly powered 

to detect positive hits (either true positives or false positives), whereas MACAU 

combines both the increased power conferred by modeling the raw count data with 

appropriate controls for population structure (see Fig. 1 and results below).  

 

MACAU provides increased power to detect true positives in the presence of 

kinship 

 We next investigated the power of different approaches to detect truly 

differentially methylated sites in the presence of relatedness. Because it 

appropriately models genetic similarity between relatives, we expected the BMM 

implemented in MACAU to exhibit improved power over the other methods. To test 

this prediction, we returned to the baboon data set that was the focus of our initial 

simulations. Instead of assuming no genetic contribution to variation in DNA 

methylation levels, here we instead simulated moderate to large genetic effects (h2 = 

0.3 and 0.6 respectively, as in the Arabidopsis simulation above). We simulated 

relatedness values based on the distribution of relatedness values within a single 

mixed-sex baboon social group. Female baboons remain in their natal groups 
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throughout their lives, producing relatedness values that are primarily due to 

matrilineal descent. The resulting genetic structure is one in which females tend to 

be more closely related to each other, on average, than males or male-female dyads 

[70], but in which not all females are related (because multiple matrilines co-reside in 

a single group). Thus, baboon social groups contain a large set of unrelated dyads, 

some pairs of close relatives, and some distant relatives (Fig. S8). We simulated an 

effect of age on DNA methylation levels in a data set consisting of 80 baboons with 

known ages and dyadic relatedness levels. We simulated a range of non-zero effect 

sizes (percent variance explained by age = 5%, 10%, or 15%) for 5000 CpG sites, 

containing 500 true positives and 4500 true negatives. We chose these parameters 

to mimic the distribution of effect sizes observed in real data sets, which can range 

from small to substantial but which are generally limited to a minority of sites 

[9,17,36,71].  

 In simulations in which age had a moderate effect on DNA methylation levels 

(PVE = 10%), MACAU detected 11.4% (when h2 = 0.3) and 20.6% (when h2 = 0.6) 

of simulated true positives at a 10% empirical FDR. In comparison, the beta-binomial 

model (the next best model) detected 8.2% and 10.4% of true positives, respectively 

(Fig. 2). As in the simulations, we again observed that a simple binomial model was 

prone to type I error, which resulted in failure to detect true age-associated sites 

when empirical FDRs were calculated against permuted data. Our additional 

simulations at PVE = 5% or PVE = 15% confirmed MACAU’s advantage over other 

methods across a range of effect sizes (Fig. S9). As expected, the magnitude of this 

advantage was positively correlated with the heritability of DNA methylation levels. 
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Age-associated DNA methylation levels in wild baboons 

 Finally, we applied MACAU to a real RRBS data set that we generated from 

50 wild baboons, drawn from the same population used to parameterize the 

simulations above. This data set included 433,871 CpG sites, enriched (as expected 

in RRBS data sets [26,27]) for putatively functional regions of the genome (e.g., 

genes, gene promoters, CpG islands: Fig S11). We used these data to investigate 

the epigenetic signature of age at sampling (range = 1.76 – 18.01 years in our 

sample, Table S4); we focused on age because it is a known predictor of DNA 

methylation levels in humans and other animals [35,72,73] and because DNA 

methylation changes with age are well characterized [35,36,74–76]. Consequently, 

we were able to not only assess MACAU’s power to detect statistically age-

associated sites, but also test its ability to identify known age-related signatures in 

DNA methylation data. 

As in our simulations, we found that MACAU provided increased power to 

detect age effects in the presence of familial relatedness. We detected 1.6-fold more 

age-associated CpG sites at a 10% empirical FDR using MACAU compared to the 

results of a beta-binomial model, the next best approach (1.4-fold more sites at a 

20% empirical FDR; Fig. 3 and Fig. S10). This advantage was consistently observed 

across all FDR thresholds we considered, except for relatively low (<7.5%) empirical 

FDR thresholds, when all of the methods were very low powered as a result of the 

modest sample size. 
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We performed several analyses to investigate the likely validity and functional 

importance of the age-associated CpG sites we identified. Based on the results of 

previous studies, we expected that age-associated sites in CpG islands would tend 

to gain methylation with age [75,76], while sites in other regions of the genome (e.g., 

CpG island shores, gene bodies) would tend to lose methylation with age [75,76]. In 

addition, we expected that, in whole blood, bivalent/poised promoters should gain 

DNA methylation with age, while enhancers should lose methylation with age (as 

discussed in [74,75,77]). Our results conformed to these patterns: sites in CpG 

islands tended to gain methylation with age (71.4% of sites were positively 

correlated with age); and sites in promoters, CpG island shores, and gene bodies 

tended to lose methylation with age (72.7%, 75.4%, and 75.2% of sites were 

negatively correlated with age, respectively; Fig. 3). In addition, we found that 

positively correlated, age-associated sites were highly enriched in chromatin states 

associated with bivalent/poised promoters (as defined by the Roadmap Epigenomics 

Project [78]). Specifically, age-associated CpG sites in bivalent/poised promoters 

were 3.4 times more likely to show increases in DNA methylation with age, 

compared to age-associated CpG sites in other regions (p < 10-10, Fisher’s exact 

test). Furthermore, negatively correlated age-associated sites (i.e., sites where DNA 

methylation levels decreased with age) were strongly enriched in enhancers (defined 

as sites either marked by H3K4me1 in human PBMCs [79] or sites within chromatin 

states annotated as ‘enhancers’ by the Roadmap Epigenomics Project [78], p = 2 x 

10-4, Fisher’s exact test).  
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Finally, we reasoned that true positive age-associated CpG sites should also 

contain information about age-associated gene expression levels. To test this 

hypothesis, we turned to previously generated whole blood RNA-seq data [42] from 

the same baboon population (n = 63; only four baboons in the RNA-seq data set 

were also included in the DNA methylation data set). Overall, we observed a strong 

enrichment of differentially methylated CpG sites in or near (within 10 kb) blood-

expressed genes (n = 12,018 genes), compared to the background set of all CpG 

sites near genes (Fisher’s exact test, p < 10-10). Further, CpG sites near age-

associated genes (n = 1396 genes, 10% FDR) were 30.5% more likely to be 

differentially methylated with age compared to the background set of all CpG sites 

near genes (Fisher’s exact test, p = 0.032).  

 

 

Discussion 

DNA methylation levels can have potent effects on downstream gene 

regulation, and, in doing so, can shape key behavioral, physiological, and disease-

related phenotypes [8,21,80–82]. These observations have motivated an increasing 

number of DNA methylation studies in humans and other organisms, highlighting the 

need for sophisticated statistical methods that can accommodate the complexities of 

a broad array of data sets. Here, we demonstrate that the binomial mixed model 

implemented in our software MACAU can (i) effectively control for confounding 

relationships between genetic background and a predictor variable of interest and (ii) 

provide increased power to detect true sources of variance in DNA methylation 
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levels in data sets that contain kinship or population structure. In addition, MACAU 

provides increased flexibility over current count-based methods that cannot 

accommodate biological replicates (e.g., Fisher’s exact test), continuous predictor 

variables (e.g., DSS, MOABS, RadMeth), or biological or technical covariates (e.g., 

MOABS, DSS; see also Table 1). Given the increasing interest in both the 

environmental [22,71,83] and genetic [17,18,20,84] architecture of DNA methylation 

levels, we believe MACAU will be a useful tool for generalizing epigenomic studies 

to a larger range of populations. MACAU is particularly well suited to data sets that 

contain related individuals or population structure; notably, several major population 

genomic resources contain structure of these kinds (e.g., the HapMap population 

samples [85], the Human Genome Diversity Panel [86], and the 1000 Genomes 

Project in humans [87]; the Hybrid Mouse Diversity Panel [88]; and the 1001 

Genomes Project in Arabidopsis [89]).  

Indeed, our results suggest MACAU is a useful tool even in data sets that are 

less affected by genetic structure, or when the heritability of DNA methylation levels 

is unclear. Because the beta-binomial model is incorporated as a special case, 

MACAU exhibits only a slight loss of power relative to a beta-binomial model without 

random effects when h2 = 0, while conferring better power and better test statistic 

calibration when h2 > 0 (Fig. S5-S6; Fig. 1). Previous studies in humans have shown 

that, while the heritability of DNA methylation levels varies across loci, an 

appreciable proportion of loci are either modestly (h2 >= 0.3: 21.06% of all CpG 

sites) or highly (h2 >= 0.6: 6.95% of all CpG sites) heritable [36,90]; further, DNA 

methylation QTLs are widespread across the genome [19,35,84]. Thus, because 
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investigators will rarely have a priori knowledge of the heritability of DNA methylation 

levels at a given locus, and because the advantage of a beta-binomial model is 

small even when heritability is zero, we recommend applying MACAU in cases 

where genetic effects on DNA methylation levels are poorly understood. In addition, 

our model provides a natural framework for incorporating the spatial dependency of 

DNA methylation levels across neighboring sites [91,92], which we expect to 

increase power even further [91,92]. However, we do note that, even with the 

efficient algorithm implemented here, fitting the binomial mixed model (or its 

extensions) remains more computationally expensive than other approaches for 

moderately sized datasets (Table S3). While it remains appropriate for the sample 

sizes used in current studies (e.g., dozens to hundreds of individuals), rapid 

increases in sample size—especially in the context of EWAS—strongly motivate 

additional algorithm development to scale up the binomial mixed model for data sets 

that include thousands or tens of thousands of individuals.  

Although we developed MACAU with the analysis of bisulfite sequencing data 

in mind, we note that a count-based binomial mixed model may be an appropriate 

tool in other settings as well. For example, allele-specific gene expression (ASE) is 

often measured in RNA-seq data by comparing the number of reads originating from 

a given variant to the total number of mapped reads for that site [66,93–95]. The 

structure of these data are highly similar to the structure of bisulfite sequencing data, 

which focus on counts of methylated versus total reads. Unsurprisingly, beta-

binomial models have also emerged as one of the most popular methods for 

estimating ASE values [95–97]. Researchers interested in the predictors of variation 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


in ASE levels—which could include trans-acting genetic effects, environmental 

conditions, or properties of the individual (e.g., sex or disease status)—might also 

benefit from using MACAU. Recent work from the TwinsUK study motivates the 

need for such a model: Grundberg et al. demonstrated a strong heritable component 

to ASE levels [98], which could be effectively taken into account using the random 

effects approach implemented here.  

Finally, linear mixed models have also been recently proposed to account for 

cell type heterogeneity in epigenome-wide association studies focused on array data 

[99]. In this framework, the random effect covariance structure is based on overall 

covariance in DNA methylation levels between samples, which is assumed to be 

largely attributable to variation in tissue composition. MACAU provides a potential 

avenue for extending these ideas to sequencing-based data sets.   

 

Materials and Methods 

Arabidopsis thaliana whole genome bisulfite sequencing (WGBS) data set 

 We downloaded publicly available WGBS data generated by Schmitz et al. 

[45], as well as previously published SNP genotype data [69] and secondary 

dormancy data [68] for 24 Arabidopsis accessions. We used the SNP genotype data 

(specifically, 188,093 sites with minor allele frequency >5%) to construct a pairwise 

genetic relatedness matrix, K, as the product of a standardized genotype matrix [48] 

(implemented with a built-in function in MACAU). We used this estimate of K for both 

the simulations and our analyses of the real WGBS data.    
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In these analyses, we focused on CpG sites measured in ≥50% of 

accessions, and excluded sites that were constitutively hypermethylated (average 

DNA methylation level >0.90) or hypomethylated (average DNA methylation level 

<0.10, following [71,99]). We also excluded highly invariable sites (i.e., sites where 

the standard deviation of DNA methylation levels fell in the lowest 5% of the overall 

data set) and sites with very low coverage (i.e., sites where the mean coverage fell 

in the lowest quartile for the overall data set, below a mean of 3.34 reads). After 

filtering, the final data set consisted of 830,676 sites. 

 

Baboon reduced representation bisulfite sequencing (RRBS) data set  

Study subjects and sample collection. To investigate age effects on DNA 

methylation levels, in both real and simulated data sets, we drew on data and 

samples from a wild population of yellow baboons in the Amboseli ecosystem of 

southern Kenya. This population has been monitored for over four decades by the 

Amboseli Baboon Research Project (ABRP) [100], and the ages of animals born in 

the study population (n = 37, 74% of the data set) are therefore known to within a 

few days’ error. For animals that immigrate into the study population, ages are 

estimated from morphological features by trained observers (n = 13, 26% of the data 

set) [101]. Pairwise relatedness values were available from previously collected 

microsatellite data (14 highly variable loci) [102,103] analyzed with the program 

COANCESTRY [104]. Using the age and relatedness data sets, we simulated age 

effects on DNA methylation levels for either n = 50 or n  = 80 baboons from a single 

social group. In addition, we used previously collected blood samples from the 
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Amboseli population, paired with age and microsatellite genotype records, to 

investigate age effects on DNA methylation levels in a newly generated RRBS data 

set.    

To generate the new RRBS data, we used whole blood samples collected 

from 50 animals (35 males and 15 females) by the ABRP between 1989 and 2011 

following well-established procedures [42,105,106]. Briefly, animals were 

immobilized by an anesthetic-bearing dart delivered through a hand-held blow gun. 

They were then quickly transferred to a processing site for blood sample collection. 

Following sample collection, study subjects were allowed to regain consciousness in 

a covered holding cage until they were fully recovered from the effects of the 

anesthetic. Upon recovery, study subjects were released near their social group and 

closely monitored. Blood samples were stored at the field site or at an ABRP-

affiliated lab at the University of Nairobi until they were transported to the United 

States.  

Importantly, given the large range in sample collection dates, we observed no 

correlation between the age of our study subjects at sample collection and sample 

age (i.e., time since the collection date; Spearman rank correlation, p = 0.779). 

Further, to ensure that variation in sample collection dates did not influence our 

results, we also controlled for sample age as a covariate in our final analyses of the 

RRBS dataset (see Analysis of age-related changes in DNA methylation levels). 

 

RRBS data generation and low-level processing. Genomic DNA was 

extracted from whole blood samples using the DNeasy Blood and Tissue Kit 
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(QIAGEN) according to the manufacturer’s instructions. RRBS libraries were created 

from 180 ng of genomic DNA per individual, following the protocol by Boyle et al. 

[26]. In addition, 1 ng of unmethylated lambda phage DNA (Sigma Aldrich) was 

incorporated into each library to assess the efficiency of the bisulfite conversion. All 

RRBS libraries were sequenced using 100 bp single end sequencing on an Illumina 

HiSeq 2000 platform, yielding a mean of 28.97 ±8.97 million reads per analyzed 

sample (range: 9.59 – 79.78 million reads; Table S4).  

 We removed adaptor contamination and low-quality bases from all reads 

using the program TRIMMOMATIC [107]. We then mapped the trimmed reads to the 

olive baboon genome (Panu 2.0) using BSMAP, a tool designed for high-throughput 

DNA methylation data [108]. We used a Python script packaged with BSMAP to 

extract the number of reads as cytosine (reflecting an originally methylated base) 

and the total read count for each individual and CpG site. We performed the same 

set of filtering steps described for the Arabidopsis WGBS data set to produce our 

final data set for the baboons. Specifically, we excluded sites that were constitutively 

hypermethylated or hypomethylated, sites that were highly invariable, and sites that 

had low average coverage across individuals (in this case, the lowest quartile for 

mean coverage levels was 4.74 reads). The final filtered data set consisted of 

433,871 CpG sites. 

 

Simulations 

To simulate the methylated read counts and total read counts that result from 

WGBS and RRBS, we performed the following procedure: 
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First, we simulated the proportion of methylated reads for each site. To do so, 

we drew secondary dormancy values or age values, �, as the predictor of interest, 

from the actual values for the Arabidopsis accessions or from the baboon 

population, respectively. For each CpG site, we simulated the DNA methylation 

level, 
, as a linear function of � and its effect size (�), as well as the effects of 

genetic variation (�) and random environmental variation (�), passed through a logit 

link (based on the model described in the Results section).  

 For the baboon RRBS simulations, we determined K from 14 highly variable 

microsatellite loci [102,103], focusing on the true values for either n = 50 or n = 80 

baboons drawn from a single social group in the Amboseli population (i.e., the same 

population we sampled in the real RRBS dataset). For the Arabidopsis WGBS 

simulations, K was determined from publicly available SNP genotype data [69]. For 

each simulation, we set ℎ% to 0, 0.3, or 0.6 to simulate no, modest, or highly heritable 

DNA methylation levels. We also estimated the variance term $% from the real data 

sets. Specifically, we took the mean estimate of $% across all sites (as calculated in 

MACAU) for each real data set, and used this value as the fixed value of $% in the 

corresponding simulations.  

 Next, for each site, we simulated total read counts �� for each individual i from 

a negative binomial distribution that models the extra variation observed in the real 

data: 

�� ~ !��*, 2�, 
where t and p are site specific parameters estimated from the real data. Specifically, 

we generated 10,000 sets of t and p parameters by fitting a negative binomial 
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distribution to the total read count data from 10,000 randomly selected CpG sites in 

the real baboon RRBS data set or the real Arabidopsis data set, using the function 

‘fitdistr’ in the R package MASS [109]. To simulate counts for a given CpG site, we 

randomly selected one of these parameter sets to produce the total number of 

reads. Finally, we simulated the number of methylated reads for each individual at 

that locus (�) by drawing from a binomial distribution parameterized by the number 

of total reads (�) and the DNA methylation level (
). 

 

Comparison of MACAU to existing methods 

For all simulated and real data sets, we used raw methylated and total read 

counts to compare the results of a beta-binomial model (using a custom R script), a 

binomial model (implemented via ‘glm’ in R), and the binomial mixed model 

implemented in MACAU. For computation time comparison, we also used the 

MCMCglmm software that implements the binomial mixed model [67]. In addition, 

we used the same count data to run a Fisher’s exact test (implemented in R), DSS 

[32], and RadMeth [33] in the subset of analyses that utilized these programs. 

Finally, to analyze simulated and real data sets using a linear model (implemented 

using ‘lm’ in R) or the linear mixed model implemented in GEMMA [46], we 

estimated DNA methylation levels by dividing the number of methylated reads by the 

total read count for each individual and CpG site. We then quantile normalized the 

resulting proportions for each CpG site to a standard normal distribution, and 

imputed any missing data using the K-nearest neighbors algorithm in the R package 

impute [110]. 
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To compute empirical false discovery rates in simulated data, we divided the 

number of false positives detected at a given p-value threshold by the total number 

of sites called by the model as significant at that threshold (i.e., the sum of false 

positives and true positives). To compute empirical false discovery rates in the real 

data, in which the false positives and true positives were unknown, we used 

permutations. Specifically, we permuted the predictor variable for each data set four 

times, reran our analyses, and then calculated the false discovery rate as the 

average number of sites detected at a given p-value threshold in the permuted data 

divided by the total number of sites detected at that threshold in the real data. For 

simulated data sets only, we also calculated the area under the receiver operating 

characteristic curve (AUC) to produce a measure of the overall tradeoff between 

detecting true positives and calling false positives. 

 

Analysis of age-related changes in DNA methylation levels      

Our initial analyses of the baboon RRBS dataset focused only on the relative 

ability of each method to detect age-associated sites. For these analyses, we 

therefore did not control for other biological covariates that may contribute to 

variance in DNA methylation levels (note that biological covariates cannot be 

incorporated into several implementations of the beta-binomial model [32,34]: see 

Table 1). However, to investigate patterns of age-related changes in DNA 

methylation levels, and to compare them to previously described patterns in the 

literature, we wished to control for such covariates. To do so, we reran the 

differential methylation analysis in MACAU, this time controlling for sex, sample age, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2015. ; https://doi.org/10.1101/019562doi: bioRxiv preprint 

https://doi.org/10.1101/019562
http://creativecommons.org/licenses/by-nc-nd/4.0/


and efficiency of the bisulfite conversion rate estimated from the lambda phage 

spike-in.  

First, we investigated whether age-associated sites were enriched in 

functionally coherent regions of the genome, many of which have previously been 

identified as age-related [35,75,76]. To do so, we defined gene bodies as the 

regions between the 5’-most transcription start site (TSS) and 3’-most transcription 

end site (TES) of each gene using Panu 2.0 annotations from Ensembl [111]. We 

defined promoter regions as the 2 kb upstream of the TSS. CpG were annotated 

based on the UCSC Genome Browser track for baboon [112], with CpG island 

shores defined as the 2 kb regions flanking either side of the CpG island boundary 

(following [27,113,114]). Finally, because no enhancer annotations are available that 

are specific to baboons, we used H3K4me1 ChIP-seq data generated by ENCODE 

(from human peripheral blood mononuclear cells) to define enhancer regions [79]. In 

addition, we used chromatin state annotations from the Roadmap Epigenomics 

Project (also generated from human peripheral blood mononuclear cells) to further 

investigate biases in the locations of age-associated sites [78]. Using these 

annotation sets, we performed Fisher’s Exact Tests to ask whether age-associated 

sites were enriched or underrepresented in specific genomic regions.  

Second, we asked whether differentially methylated sites were more likely to 

fall close to blood-expressed genes. For this comparison, we drew on previously 

published RNA-seq data, generated from whole blood samples collected in the 

Amboseli baboon population [42]. We defined blood-expressed genes as those 

genes that had non-zero counts in more than 10% of individuals in the RNA-seq 
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data sets, and that had mean read counts greater than or equal to 10. We then 

compared the number of differentially methylated CpG sites near blood-expressed 

genes (i.e., within the gene body or within 10 kb of the gene TSS or TES) to the 

number of differentially methylated CpG sites near genes that were not expressed in 

blood, using a Fisher’s Exact Test.  

Finally, we investigated whether CpG sites that occur near genes that are 

differentially expressed with age were also more likely to be differentially methylated 

with age. For this comparison, we defined ‘age-associated genes’ as genes 

differentially expressed with age (at a 10% FDR) in the RNA-seq data set [42]. We 

compared the number of differentially methylated CpG sites near blood-expressed, 

age-associated genes to the number of differentially methylated CpG sites near 

genes that were not within this set of genes, again using a Fisher’s Exact Test. 

 

Software and data availability 

 The MACAU software and a custom script for implementing a beta-binomial 

model in R is available at: www.xzlab.org/software.html. Previously published data 

sets are available at http://bergelson.uchicago.edu/regmap-data/regmap.html/ 

(Arabidopsis SNP genotype data), http://www.ncbi.nlm.nih.gov/geo/ (Arabidopsis 

WGBS data: GSE43857, Baboon RNA-seq data: GSE63788); and 

http://www.nature.com/nature/journal/v465/n7298/full/nature08800.html#supplement

ary-information (Arabidopsis phenotype data). The baboon RRBS data set will be 

made publicly available at the NCBI Gene Expression Omnibus upon manuscript 

acceptance. 
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Table 1. Current approaches for identifying differentially methylated loci in bisulfite 
sequencing data sets. 
 

Statistical method 
Directly models 

counts? 

Controls for 
biological 

covariates? 

Controls for 
genetic 

covariance? 

Programs that implement the 
method 

t-test or Wilcoxon 
rank-sum test 

No No No R and many others 

Fisher’s exact test Yes No No R and many others 
Binomial 

regression 
Yes Yes No R and many others 

Linear regression No Yes No R and many others 

Beta-binomial 
model 

Yes Some1 No 
DSS [32], MOABS [34], 

RadMeth [33] 

Linear mixed 
model 

No Yes Yes 
GEMMA [46], EMMA [38], 

EMMAX [39], FaST-LMM [47] 
Binomial mixed 

model 
Yes Yes Yes MACAU 

 

1Only RadMeth; the implementations of the beta-binomial model in MOABS and DSS do not allow the 
user to control for covariates.  
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Figure 1. MACAU appropriately controls for genetic covariance in simulated 
and real WGBS data and eliminates false positive identification of differentially 
methylated sites. (A-B, D-E) The distribution of p-values for 4000 simulated true 
negative sites (n = 24 accessions; effect of secondary dormancy on DNA 
methylation levels = 0). For each simulation, h2 was set to 0.3 (A, D) or 0.6 (B, E). 
Simulated data were analyzed with a beta-binomial model (A-B) or MACAU (D-E), 
and compared against the expected uniform distribution. (C, F) QQ-plots comparing 
the p-value distributions for (i) a model testing for effects of secondary dormancy on 
DNA methylation levels in real WGBS data, plotted on the y-axis; and (ii) the same 
model when the secondary dormancy values were permuted across individuals, 
plotted on the x-axis. The genomic control factor, λ, is shown for each set of results.  
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Figure 2. MACAU exhibits increased power to detect differential methylation 
when DNA methylation levels are heritable. Receiver operating characteristic 
(ROC) curves and true positive rates at a 10% false discovery rate threshold for 
simulated age effects on DNA methylation levels at (A-C) simulated sites with 
moderately heritable DNA methylation levels (h2 = 0.3) and (D-F) simulated sites 
with highly heritable DNA methylation levels (h2 = 0.6). Panels B and E are enlarged 
versions of panels A and D, respectively, focusing on false positive rates <0.1. Each 
simulated dataset contained n=80 individuals and 5000 simulated CpG sites, with 
500 true positives (percent variance explained by age = 10%) and 4500 true 
negatives. A binomial model could not detect true positives at a false positive rate 
below 0.10 (when h2 = 0.3) or below 0.9 (when h2 = 0.6); the binomial is therefore 
not shown in panel B, and only shown for large x-values in panel E.  
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Figure 3. Age-associated CpG sites identified by MACAU in the baboon RRBS 
data. (A) The number of age-associated CpG sites detected at a given empirical 
FDR. The binomial model cannot detect age-associated sites at a false discovery 
rate below 0.20 and is consequently not shown. (B) For age-associated sites 
detected by MACAU (at a 10% FDR), the proportion of sites that gain or lose 
methylation with age is shown by genomic region. Positive = DNA methylation levels 
increase with age; Negative = DNA methylation levels decrease with age. (C) Age-
associated CpG sites detected using MACAU (10% FDR) are more likely to fall near 
genes that are expressed in whole blood, compared to the background set of CpG 
sites near genes (**p < 10-10). Further, age-associated CpG sites are more likely to 
occur near genes that are differentially expressed (DE) with age, compared to CpG 
sites near genes that are not DE with age (*p = 0.032).  
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Supplementary Figure 1. In a real WGBS dataset (from Arabidopsis) and a 
real RRBS dataset (from yellow baboons), coverage varies widely across 
CpG sites and individuals. For each CpG site, we calculated the mean site-
specific coverage across individuals, as well as the standard deviation of 
coverage values for those sites. The distribution of these average coverage 
values (A, C) and coverage standard deviation values (B, D) are shown for the 
Arabidopis WGBS dataset (A-B, in green) and the baboon RRBS dataset (C-D, in 
blue). The x-axes are plotted on a log10 scale. 
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Supplementary Figure 2. MACAU p-values are consistent across runs. QQ-
plots comparing the p-value distributions for 3 independent runs of MACAU on 
the same data sets, with different simulated heritability values (Panels A, D - h2 = 
0; Panels B, E - h2 = 0.3; Panels C, F - h2 = 0.6). Pairwise correlations between 
each independent run were R > 0.95 for h2 = 0:,R > 0.97 for h2 = 0.3; and R > 
0.98 for h2 = 0.6. Distributions shown are for analyses of simulated secondary 
dormancy effects on DNA methylation levels in the Arabidopsis data set (4000 
sites, n=24 accessions).  
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Supplementary Figure 3. The normal mixture provides an accurate 
approximation to the negative log gamma distribution. (A) Density plot and 
(B) quantile-quantile plots demonstrating that the normal mixture approximation 
approximates –log(Ga(r, 1)) well even in the most difficult case when r=1. 
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Supplementary Figure 4. Comparisons between methods when DNA 
methylation levels are not heritable, and the predictor variable is binarized. 
To include methods that can only analyze categorical differences in DNA 
methylation levels between two groups, we binarized age values in our simulated 
RRBS datasets (individuals below median age = young versus individuals above 
median age = old). We compared the ability of each method to detect true 
positives at a 10% FDR using simulated datasets (n = 5000 sites including 500 
true positives and 4500 true negatives; percent variance explained by age varies 
as noted in the figure headings). For all simulations shown below, h2 was set to 
0. (A) Results for simulations with n = 50 individuals and (B) n = 80 indivdiuals 
are plotted below. 
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Supplementary Figure 5. Comparison across methods when DNA 
methylation levels are not heritable. We compared the ability of methods that 
work on continuous predictor variables to detect true positives at a 10% FDR 
using simulated data sets (n = 5000 sites including 500 true positives and 4500 
true negatives; percent variance explained by age varies as noted in the figure 
headings). For all simulations shown below, h2 was set to 0. (A) Results for 
simulations with n=20 individuals; (B) with n=50 individuals; and (C) with n=80 
individuals.  
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Supplementary Figure 6. ROC comparison across methods when DNA 
methylation levels are not heritable. Simulation parameters and sample sizes 
as in Supplementary Figure 3. Here, we show area under the curve for a receiver 
operating characteristic on on the y-axis instead of true positive detection rate. 
Visualized this way, the methods look more equivalent than using an FDR 
method because, AUC is based on true positive-false positive trade-offs across a 
range of p-value thresholds; methods can thus consequently yield high AUCs 
even when they harbor little power to detect true positives at FDR thresholds that 
are frequently used in practice. 
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Supplementary Figure 7. Secondary dormancy is correlated with 
population structure in the Arabidopsis WGBS dataset. Principal 
components analysis on 188,093 genotyped sites with minor allele frequency 
>5% reveals that genetic background is correlated with secondary dormancy 
values. The correlation between the secondary dormancy phenotype values and 
the first principal component of the genetic relatedness matrix is R2 = 0.38, p = 
7.84 x 10-4 (n = 24). The first principal component (PC1) explains 8.5% of the 
genetic variance in the data set. 
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Supplementary Figure 8. Distribution of pairwise relatedness values for 
baboons (n=80) from a single social group, used in simulations. 
Approximately half of the individuals are unrelated, while a small proportion 
(~10%) are highly related (i.e., related at the level of half siblings or higher, r = 
0.25). 
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Supplementary Figure 9. MACAU provides increased power to detect age-
associated sites when DNA methylation levels are heritable. We simulated 
age effects on DNA methylation levels, in presence of genetic effects (panel A, h2 
= 0.3; panel B, h2 = 0.6) across a range of effect sizes. The proportion of true 
positives detected at a 10% empirical FDR is plotted for each method and 
simulated dataset. 
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Supplementary Figure 10. Distribution of p-values from four different 
methods for the real RRBS data. QQ-plots comparing the p-value distributions 
for (i) a model testing for effects of age on DNA methylation levels in real RRBS 
data, plotted on the y-axis; and (ii) the same model when the age values were 
permuted across individuals, plotted on the x-axis. 
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Supplementary Figure 11. Distribution of sites covered in the baboon RRBS 
dataset (n = 433, 871 CpG sites). (A) Absolute number of sites analyzed for a 
given genomic region. See Materials and Methods for information on how we 
defined each genomic region. (B) Proportion of total annotated features in the 
baboon genome for which a least one CpG site was analyzed in this data set. 
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Table S3. Computation times for each method on the two real datasets. 
Computation was performed on a single core of an Intel Xeon L5420 2.50 GHz 
processor. n = number of individuals; m = number of sites.  
 

 
Method 

 
Software 

Computation Time 
Arabidopsis 

(n=24, m=830,676) 
Baboon 

(n=50, m=433,871) 

Linear model R (lm) 0.55 min 0.44 min 
Linear mixed model GEMMA 1.3 min 1.2 min 

Binomial model R (glm) 71 min 51 min 
Beta binomial model R (self-implemented) 2 d 4.5 d 

Binomial mixed model MACAU 9.5 h 11 h 
Binomial mixed model MCMCglmm 12 d 19 d 
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Table S4. Baboon RRBS dataset sample characteristics and read mapping 
summary 
 

Individual Sex 
Age of 

sampled 
individual 

Bisulfite 
conversion 

rate 

Age of 
blood 

sample 

Total reads 
generated 
(in millions) 

Uniquely 
mapped reads 

(in millions) 

Proportion of 
uniquely 

mapped reads 

AMB_01 M 11.29 0.9850 8.39 37.023210 25.099657 0.678 

AMB_02 F 10.05 0.9994 6.37 33.071988 22.819672 0.690 

AMB_03 M 7.67 0.9842 20.20 24.088246 16.943184 0.703 

AMB_04 M 5.40 0.9988 25.16 14.728885 10.457508 0.710 

AMB_05 M 18.01 0.9849 4.13 51.051990 35.687494 0.699 

AMB_06 M 6.39 0.9847 25.21 21.887490 14.799792 0.676 

AMB_07 M 6.85 0.9840 25.13 14.934174 10.012808 0.670 

AMB_08 M 7.92 0.9988 25.21 32.611582 22.532321 0.691 

AMB_09 M 5.16 0.9994 25.14 14.676613 10.609725 0.723 

AMB_10 M 6.25 0.9837 25.13 35.170196 23.063683 0.656 

AMB_11 F 14.56 0.9995 25.16 18.718679 13.103075 0.700 

AMB_12 M 3.98 0.9837 6.29 26.055629 17.659530 0.678 

AMB_13 M 6.01 0.9840 25.07 24.439863 16.309385 0.667 

AMB_14 M 3.76 0.9989 25.13 20.659507 14.072821 0.681 

AMB_15 F 9.53 0.9989 6.30 9.586029 7.285382 0.760 

AMB_16 F 7.84 0.9994 25.17 18.432235 12.718242 0.690 

AMB_17 M 11.01 0.9990 7.42 18.548701 12.902723 0.696 

AMB_18 M 15.79 0.9990 20.20 36.644760 25.192966 0.687 

AMB_19 M 3.04 0.9990 21.16 31.059312 21.320848 0.686 

AMB_20 M 4.50 0.9990 25.09 29.389242 20.757701 0.706 

AMB_21 F 6.71 0.9995 25.20 28.665765 19.779378 0.690 

AMB_22 F 5.23 0.9994 25.20 16.783514 12.084130 0.720 

AMB_23 M 9.79 0.9963 25.16 11.771241 8.083930 0.687 

AMB_24 M 4.27 0.9987 25.13 24.482993 16.747343 0.684 

AMB_25 M 6.00 0.9986 8.34 71.814200 42.517354 0.592 

AMB_26 M 1.76 0.9987 20.88 15.461068 10.783672 0.697 

AMB_27 M 5.98 0.9987 25.16 31.122370 21.156449 0.680 

AMB_28 M 8.29 0.9980 25.09 35.575292 24.679908 0.694 

AMB_29 M 4.79 0.9981 25.18 35.878244 25.526024 0.711 

AMB_30 M 14.01 0.9980 25.20 15.382161 10.708392 0.696 

AMB_31 M 2.90 0.9980 24.25 34.859844 24.044579 0.690 

AMB_32 M 14.30 0.9980 24.28 21.899784 16.168539 0.738 

AMB_33 F 5.03 0.9988 25.13 20.592762 14.620861 0.710 

AMB_34 F 6.13 0.9963 25.08 39.120891 27.384624 0.700 

AMB_35 F 3.96 0.9994 6.30 19.535813 13.870427 0.710 

AMB_36 M 6.76 0.9978 5.92 39.790846 27.010700 0.679 

AMB_37 M 6.11 0.9978 22.64 41.870572 29.168979 0.697 
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AMB_38 M 14.01 0.9978 25.15 23.945218 18.062503 0.754 

AMB_39 F 8.10 0.9994 25.18 19.088828 13.553068 0.710 

AMB_40 F 4.97 0.9995 25.22 22.715148 15.673452 0.690 

AMB_41 F 3.49 0.9988 24.30 37.164581 26.015207 0.700 

AMB_42 M 18.01 0.9977 24.25 30.003417 21.484400 0.716 

AMB_43 F 4.69 0.9994 24.30 27.103481 18.972437 0.700 

AMB_44 M 5.80 0.9990 25.22 23.952634 16.974279 0.709 

AMB_45 F 16.44 0.9995 25.19 16.226065 11.682767 0.720 

AMB_46 F 4.01 0.9964 25.21 53.669349 37.031851 0.690 

AMB_47 M 3.64 0.9990 25.13 30.674203 20.747151 0.676 

AMB_48 M 10.62 0.9991 25.22 37.266333 26.407920 0.709 

AMB_49 M 11.85 0.9987 25.16 29.499525 20.155265 0.683 

AMB_50 M 6.72 0.9988 23.27 79.784041 54.078860 0.678 

        

Mean  7.79 0.9963 21.28 28.969570 19.970459 0.695 

Standard 
deviation 

 4.19 0.0052 7.08 13.732295 8.938434 0.025 
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1

Text S1: Detailed Methods

1 Binomial Mixed Model

To detect differentially methylated sites, we model each potential target of DNA methylation one site at
a time. For each site, we consider the following binomial mixed model (BMM):

yi ∼ Bin(ri, πi), (1)

where ri is the total read count for ith individual; yi is the methylated read count for that individual,
constrained to be an integer value less than or equal to ri; and πi is an unknown parameter that represents
the true proportion of methylated reads for the individual at the site. We use a logit link to model πi as
a linear function of parameters:

logit(πi) = log(λi) = wT
i α + xiβ + gi + ei, (2)

g = c(g1, · · · , gn)T ∼ MVN(0, σ2h2K), (3)

e = c(e1, · · · , en)T ∼ MVN(0, σ2(1− h2)In×n), (4)

where logit denotes a logistic transformation logit(πi) = log( πi

1−πi
); λi = πi

1−πi
is the odds; wi is a c-vector

of covariates including an intercept and α is a c-vector of corresponding coefficients; xi is the predictor
of interest and β is its coefficient; g is an n-vector of genetic random effects that model correlation due
to population structure or individual relatedness; e is an n-vector of environmental residual errors that
model independent variation; K is a known n by n relatedness matrix that can be calculated based on a
pedigree or genotype data and that has been standardized to ensure tr(K)/n = 1 (this ensures that h2 lies
between 0 and 1, and can be interpreted as heritability, see [1]); I is an n by n identity matrix; σ2h2 is the
genetic variance component; σ2(1−h2) is the environmental variance component; h2 is the heritability of
the logit transformed methylation proportion (i.e. logit(π)); and MVN denotes the multivariate normal
distribution.

The binomial mixed model proposed here belongs to the generalized linear mixed model family [2].
Both g and e model over-dispersion, the increased variance in the data that is not explained by the
binomial model. However, they model different aspects of over-dispersion: e models the variation that
is due to independent environmental noise (a known problem in data sets based on sequencing reads),
while g models the variation that is explained by kinship or population structure. Effectively, our model
improves and generalizes the previous beta binomial model by introducing this extra g term to model
individual relatedness due to kinship, population structure, or stratification.

2 Inference Method Overview

We are interested in testing the null hypothesis H0 : β = 0. This requires obtaining the maximum
likelihood estimate β̂ from the model. Unlike its linear counter-part, obtaining the estimate of β from the
binomial mixed model is not a trivial task, as the joint likelihood consists of an n-dimensional integral that
cannot be solved analytically [2]. Previous frequentist approaches to address this problem include direct
numerical integration using Gauss-Hermite quadrature [3], or Laplace approximation that is applied to
the likelihood function [4] or the quasi-likelihood function [5–8]. However, both numerical integration and
analytic approximation do not scale well with the increasing dimension of the integral, which unfortunately
equals the sample size in our model. Even a second order Laplace approximation yields a biased estimate
and overly narrow confidence interval, especially when the uncertainty in the variance component estimate
is large [9–13]. Therefore, frequentist approaches for estimation and inference in the binomial mixed model
remain notoriously difficult and is still an active area of research [14].
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2

In contrast to the frequentist methods, Markov chain Monte Carlo (MCMC)-based Bayesian ap-
proaches provide an appearing alternative [11]. Bayesian methods naturally account for the uncertainty
in the variance component estimates and can achieve arbitrary inference accuracy if the chain is allowed to
run long enough. Despite these attractive theoretical features, however, constructing an efficient MCMC
algorithm for practical problems is not easy. Previous MCMC approaches for generalized linear mixed
models either require a normal approximation to the likelihood function that diminishes its gains over the
frequentist methods [15,16], or use n-steps of Metropolis–Hastings algorithm to sample the n-dimensional
latent rate variables where efficient proposal distributions for all of them can be hard to construct [17,18].
To improve upon these previous approaches, a new MCMC algorithm [19–21] has been recently devel-
oped based on auxiliary variable representation of the binomial distribution [22]. By introducing latent
variables to replace the observed count data, the algorithm makes sampling and computation relatively
straightforward.

Therefore, we rely on this particular form of MCMC in the present study. Our main contribution
is to further develop an accurate approximation to the distribution of these latent variables, where the
approximation form is specifically designed to allow us to adapt recent mixed model innovations [23–26]
that substantially reduce the computational burden. By using a mean-normal mixture approximation
to the negative log gamma distribution, our approach reduces the per-MCMC iteration computational
complexity from O(n3) to O(n2), where n is the sample size. This modification allows the binomial mixed
model to be efficiently applied to hundreds of individuals and millions of methylation sites.

Although we use MCMC for posterior sampling, our primary goal is not to perform a Bayesian
analysis by producing Bayes factors for model comparison (although this is an interesting area to explore
in the future). Rather, our goal is to use MCMC as a convenient and accurate tool to obtain the
marginal likelihood of β that is otherwise infeasible or inaccurate to obtain under various frequentist
approaches. Under asymptotics, both the likelihood function and the marginal posterior distribution for
β will be approximately normal [27]. Since the likelihood function is simply the difference between the
posterior and the prior, once we have obtained the posterior mean and standard deviation of β and paired
these values to their prior counter-parts, we can easily obtain the approximate likelihood function and
compute the approximate maximum likelihood estimate β̂ and its standard error se(β̂) using the method
of moments. We can then construct approximate Wald test statistics and p values for hypothesis testing.

In the present study, we use flat priors for all nuisance parameters (α, σ2, h2), or p(α) ∼ 1, p(σ2) ∼ 1
and p(h2) ∼ 1. For the parameter of interest, β, we could also use a flat prior, in which case the
posterior would be the likelihood. For computational stability reasons, however, we use a relatively
informative prior, β ∼ N(0, σ2

b ) instead. A relatively informative prior restricts the sampling space when
the likelihood is not informative, allowing efficient posterior sampling. Since we rely on the difference
betwen the posterior and the prior for approximate inference, the choice of prior for β does not influence
the eventual results. In the present study, we set σ2

b = 1.
Applications to real data confirm that this procedure produces well-calibrated p-values (Figure 1),

suggesting that a few dozen samples are large enough to ensure asymptotic behavior. Moreover, although
our approach is inherently stochastic – because the posterior mean and standard deviation of β may be
slightly different for different chains – we show that a thousand MCMC iterations per site is large enough
to produce stable estimates of the test statistics and p values (Figure S2).

3 The MACAU Algorithm

Below, we describe the MACAU algorithm, for Mixed model Association for Count data via data AUg-
mentation, in detail.
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3

3.1 Data Augmentation

To bypass the difficult likelihood function that results from the count nature of the data, we introduce
continuous auxiliary variables to replace yi. For ith individual, observing yi methylated reads out of
ri total reads is equivalent to observing a sequence of ri binary read indicators (yi1, · · · , yiri), where
yij = 1 indicates that the jth read is a methylated read and yij = 0 indicates otherwise. Obviously,
yi =

∑ri
j=1 yij . We can view each yij as a random variable generated from a logistic regression model

with mean log(λi). We further introduce a continuous latent variable uij [19, 20], often referred to as a
utility [22], such that

uij = log(λi) + ε1ij , ε1ij ∼ EV(0, 1), (5)

where EV(0, 1) denotes a standard type-1 extreme value distribution with density function e−xe−e
−x

.
Then

yij =

{
1, if uij > ε0ij ,

0, otherwise,
(6)

where ε0ij ∼ EV(0, 1). The above two equations come from the fact that the difference between two type-1
extreme value distributed random variables follows a logistic distribution, and a random variable that
follows a logistic distribution serves as a liability variable for a logistic regression [22].

The attractive feature of introducing uij is that, conditional on all uij , the posterior of (α, β, σ2, h2)
no longer depends on the observed methylated read indicator yij , hence removing the non-linearity
constraint that comes with the binomial aspect of our model. Applying the relationship between the EV

distribution and the exponential distribution, we have e−uij ∼ Exp(λi) and e−ε
0
ij ∼ Exp(1), where Exp

denotes the exponential distribution. This relationship allows us to easily sample uij conditional on λi
and yij based on the convenient exponential distribution rather than the more difficult EV distribution,
as e−uij ∼ Exp(1 + λi) if yij = 1 and e−uij ∼ Exp(1 + λi) + Exp(λi) if yij = 0.

An undesirable feature of the above approach, however, is that we have to work with a much larger
latent space of uij than the original n observations of yi. This drawback can be mitigated by combining
all exponentiated negative latent utilities together [21], by introducing a new latent variable

zi = − log(

ri∑
j=1

e−uij ) = log(λi) + εi, (7)

where εi = − log(
∑ri
j=1 e

−ε1ij ) follows a negative log gamma distribution, − log(Ga(ri, 1)); Ga denotes a
gamma distribution with the two parameters representing shape and rate, respectively. This is because a
gamma random variable is a summation of independent exponential random variables with a same rate
parameter.

Using the latent variable zi instead of uij reduces the size of the latent space back to the observed
space. Conditional on zi, we again do not need to use yi, allowing us to bypass the count feature of the
observed data in the algorithm.

3.2 Normal Mixture Approximation

To further circumvent the difficulty introduced by the non-normality of εi, we follow previous ideas
[20,21] to approximate the non-normal distribution by using a mixture of normals. Importantly, we take
advantage of recent innovations in efficient mixed model algorithms [23–26] by using a mean mixture of
normals where each normal distribution has a different mean but share the same variance.

Specifically, for every possible integer value of r, we identify a normal approximation in the form of∑kr
k=1 wrkN(mrk, s

2
r), to the negative log gamma distribution − log(Ga(r, 1)). Because the mean (−Ψ(r),

where Ψ denotes a digamma function) and the variance (Ψ′(r), where Ψ′ denotes a trigamma function)
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of the negative log gamma distribution is a function of r, to ensure approximation stability we work
on the standardized version of the negative log gamma distribution, by centering with the mean and
standardizing with the standard deviation. Then, we estimate the number of components kr, the weights
wrk, the means mrk and the variance s2r via the Nelder-Mead algorithm by minimizing the Kullback–
Leibler (KL) divergence between the two distributions. These parameter estimates ensure that the
KL divergence is smaller than 0.0005, so that the difference between the approximate and the exact
distributions are ignorable in practice. Because the negative log gamma distribution asymptotically
approximates a normal distribution, the approximation becomes easier for larger r. Therefore, we can
use increasingly smaller number of normal components for accurate approximation.

For small values of r (r ∈ [1, 5]), we provide detailed parameter values in Table S1. For median
values of r (r ∈ [6, 169]), we no longer need to store parameters for every r. Instead, we can interpolate
the weight, mean and variance estimates across the range of r using rational functions without loss of
accuracy. These functions are provided in the Table S2. For large values of r (r ∈ [170,∞), we use
a single normal distribution N(0,Ψ′(r)) for approximation. The mean normal mixture approximations
are accurate. Even in the most difficult case where r = 1, we only observe small difference between the
approximate and the exact distributions (Figure S3).

3.3 Detailed Sampling Steps and Efficient Computation

Now we are ready to describe the detailed MCMC algorithm. Here, with the normal mixture approxi-
mation, we have

zi = log(λi) + εi = wT
i α + xiβi + gi + ei + εi, εi ∼

kri∑
k=1

wrikN(mrik, s
2
ri). (8)

We introduce a vector of latent indicators γ = (γ1, · · · , γn), where each γi ∈ (1, · · · , kri) indicates which
normal component the corresponding εi is from. Conditional on zi and (α, β, gi, ei), we have

P (γi = k|zi,α, β, gi, ei) ∝ wrikΦ(zi − log(λi)−mrik, σ
2
ri), (9)

where k ∈ (1, · · · , kri) and Φ denotes the normal density function. Conditional on γ, we can integrate
out α, β, g, e and ε analytically to obtain the marginal distribution of σ2 and h2,

P (σ2, h2|z,γ) ∝ |H|− 1
2 |WTH−1W|− 1

2 |σ2
bx

TPwx + 1|− 1
2 e−

1
2 (z−mγ)

TPx(z−mγ), (10)

where z = (z1, · · · , zn)T , mγ = (mr1γ1 , · · · ,mrnγn)T , W = (w1, · · · ,wn)T , Dr is an n by n diagonal ma-
trix with iith element σ2

ri , V = h2K+(1−h2)I, H = σ2V+Dr, Pw = H−1−H−1WT (WTH−1W)−1WH−1

and Px = Pw −Pwx(xTPwx + σ−2b )−1xTPw.
We can use the Metropolis–Hastings (MH) algorithm to obtain posterior samples for σ2 and h2 jointly.

Afterwards, we can obtain posterior samples for α, β and g + e in turn,

P (β|z,γ, σ2
g , σ

2
e) ∼ N((xTPwx + σ−2b )−1xTPw(z−mγ), (xTPwx + σ−2b )−1), (11)

P (α|z,γ, β, σ2
g , σ

2
e) ∼ MVN((WTH−1W)−1WTH−1(z−mγ − xβ), (WTH−1W)−1), (12)

P (g + e|z,γ,α, β, σ2, h2) ∼ MVN(σ2VH−1(z−mγ −Wα− xβ), σ2VH−1Dr). (13)

Finally, conditional on yi and λi, the posterior of zi is easy to sample. By using the relationship
between the gamma distribution and the exponential distribution, we have

zi|yi, λi ∼ Ga(ri, 1 + λi) + Ga(yi, λi). (14)
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The most computationally expensive part of the algorithm is the MH step: a naive approach to
evaluate P (σ2, h2|zi, γi) would involve cubic operations. Our mean normal mixture approximation allows
us to evaluate this marginal likelihood efficiently as we can apply here the mixed model innovations
developed recently [23–26]. This is because given the observed data, Dr is a fixed diagonal matrix where
the elements do not depend on a γ that changes in every MCMC iteration. Therefore, for a given matrix

V, we can perform an eigen-decomposition on D
− 1

2
r VD

− 1
2

r = UDUT . This allows us to decompose

H = σ2V + Dr = D
1
2
r U(σ2D + I)UTD

1
2
r . Afterwards, we can transform the latent variables and other

covariates to obtain D
1
2
r U(z −mγ), D

1
2
r UW and D

1
2
r Ux. This procedure avoids any cubic operations

later on in the MCMC steps. Therefore, with the mean normal mixture approximation, we only need to
perform eigen-decompositions at the beginning of the MCMC. Afterwards, each Gibbs step only requires
quadratic operations (transformation of z−mγ). In practice, because V is a function of h2, we assign a
discrete uniform prior for h2 and evaluate the eigen-decompositions on every discrete values of h2. In the
present study, we found that using either 10 or 100 discrete values of h2 yields almost identical results
(and we present the analyses results for the formal in the main text), suggesting that a fine grid for h2

is not necessary because of our small sample size. Finally, for all analyses in the present study, we ran
1100 Gibbs sampling iterations with the first 100 as burn-in. In each Gibbs iteration, after sampling the
latent variables z and the latent indicators γ, we further ran 10 MH steps before continuing the Gibbs
iterations.

4 Parameter Estimation and p Value Computation

Denote β̄ as the posterior mean and σ2
β as the posterior variance. Since both the likelihood and the

posterior follow normal distributions asymptotically, and because we also use a normal distribution as
the prior distribution, we can easily obtain the approximate maximum likelihood estimate and its standard
error by the method of moments, or

β̂ = σ2
b β̄/(σ

2
b − σ2

β), (15)

se(β̂) = σbσβ/
√
σ2
b − σ2

β . (16)

The condition σ2
b > σ2

β is guaranteed by asymptotics. In rare cases, however, this condition may not
be satisfied because of the limited MCMC sampling iterations in practice. This may be particularly
concerning for sites where the likelihood function is not informative. Arguably, these non-informative
sites are the ones that we do not want to perform analysis on in the first place. Therefore, this condition
gives us a natural way to perform post-filtering. In the software implementation, we do not analyze sites
where σ2

β ≥ cσ2
b for a user defined threshold c (c ≤ 1). We use c = 0.95 throughout the present study.

This post-filtering step, however, has minimal influence on the results, as only a few dozen sites, out of
half a million, are filtered out in each analysis.
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