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Abstract

The lack of effective biomarkers for predicting cancer risk in premalignant disease is a major

clinical problem. There is a near-limitless list of candidate biomarkers and it remains unclear

how best to sample the tissue in space and time. Practical constraints mean that only a few of

these candidate biomarker strategies can be evaluated empirically and there is no framework to

determine which of the plethora of possibilities is the most promising. Here we have sought to

solve this problem by developing a theoretical platform for in silico biomarker development. We

construct a simple computational model of carcinogenesis in premalignant disease and use the

model to evaluate an extensive list of tissue sampling strategies and different molecular measures

of these samples. Our model predicts that: (i) taking more biopsies improves prognostication,

but with diminishing returns for each additional biopsy; (ii) longitudinally-collected biopsies

provide slightly more prognostic information than a single biopsy collected at the latest possible

time-point; (iii) measurements of clonal diversity are more prognostic than measurements of

the presence or absence of a particular abnormality and are particularly robust to confounding

by tissue sampling; and (iv) the spatial pattern of clonal expansions is a particularly prognostic

measure. This study demonstrates how the use of a mechanistic framework provided by

computational modelling can diminish empirical constraints on biomarker development.
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Introduction

Each year, tens of thousands of patients in the UK are diagnosed with a premalignant disease,

a benign condition that predisposes to the future develop of cancer. Examples of common

premalignant diseases include Barrett’s Oesophagus [1], Ductal Carcinoma in situ (DCIS) of

the breast [2], benign prostatic intraepithelial neoplasia (PIN) [3], and carcinoma in situ in the

bladder [4]. The clinical management of patients with premalignant disease is a major challenge:

in order to prevent cancer, patients are typically enrolled into longitudinal screening programmes

that aim to detect (and then treat) patients who show early signs of progression to cancer.

However, while having a premalignant disease increases the average risk of developing cancer

compared to the unaffected population, the cancer risk for any individual is highly variable and

generally quite low. For example, patients with Barrett’s Oesophagus have an average 40-fold

increased lifetime risk of developing adenocarcinoma, but the progression rate per patient per

year is less than 0.5% [5] and so many of these patients will not progress to cancer in their

lifetime. As a result, it is arguable that surveying an average (low-risk) patient is unnecessary

as they are unlikely to ever progress to cancer. In addition, the surveillance process is typically

unpleasant for the patient, and is very costly to health-care providers. In view of these facts

together, premalignant disease is often described as both over-diagnosed and over-treated [6],

and consequently there is a pressing clinical need to be able to accurately stratify cancer risk in

these patients.

Prognostic biomarkers are central to current risk-stratification strategies. Here a biomarker

is defined as an analysable property of the diseased tissue that correlates with the risk of

progressing to cancer. In general, it remains unclear which of the plethora of potential biological

features that could be assayed (morphological, gene expression, mutation, or other features)

offers the most potential for prognostic value. Pathological grading and staging remain the most

widespread biomarkers in current use; these biomarkers are descriptions of the morphological

features of the disease. The current state-of-the-art biomarkers are molecular in nature, and

typically quantify the aberrant expression of a panel of carefully-chosen genes. For example,
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the Oncotype DX assay analyses the activity of 21 genes to determine a score quantifying risk

of recurrent breast cancer and response to chemotherapy [7]. Genetically based biomarkers

include EGFR mutations in non-small cell lung cancer [8] and TP53 abnormalities in Barrett’s Oe-

sophagus [9]. The limited predictive value of existing biomarkers has prevented their widespread

clinical use [10], and for many diseases such as DCIS [11] and inflammatory bowel disease [12]

no prognostic biomarkers have yet been identified.

All biomarkers require the diseased tissue to be sampled. Needle biopsies are the predomi-

nant sampling method, although other tissue collection methods such as endoscopic brushings

or cell washings are sometimes used. However, typically the prognostic optimality of different

sampling schemes, including whether samples should be collected longitudinally, has not been

evaluated. Furthermore, given the fact that taking a biopsy is an invasive procedure, an empirical

evaluation of different tissue sampling schemes is largely unfeasible.

Cancer development is fundamentally an evolutionary process: the acquisition of random

somatic mutations can cause a cell to develop an evolutionary advantage over its neighbours,

and so drive the clonal expansion of the mutant. Repeated rounds of mutation and clonal selec-

tion can lead to the development of a malignant tumour. When viewed from this evolutionary

perspective, a biomarker may be thought of as a predictor of the evolutionary trajectory of the

disease; a successful biomarker is one that sensitively and specifically detects which premalig-

nant lesions are (rapidly) evolving towards cancer. However, existing biomarker development

efforts do not explicitly consider the evolutionary process they seek to assay, instead relying on

the identification of a small set of genes that are aberrantly expressed in high-risk cases [10].

The recent appreciation that carcinogenesis is a highly stochastic process [13], in which many

different combinations of genetic alterations and gene expression changes contribute to the

same malignant phenotypes, has led to doubts about the utility of such “candidate gene” ap-

proaches [14]. Alternative biomarker development strategies attempt to assay the underlying

evolutionary process itself. Quantification of within-tumour diversity, as a proxy measure of the

probability that the tumour has evolved a well-adapted “dangerous” clone, is one such measure
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that has shown efficacy in a variety of cancer types [15, 16, 17]. Whilst most studies have

focused on the quantification of within-tumour genetic diversity, it is noteworthy that quantification

of phenotypic heterogeneity also shows prognostic value [18, 19].

Mathematical models are tools that have the potential to diminish the inherent constraints of

empirical biomarker development. Due to the relative ease with which a mathematical model of

cancer evolution can be analysed, potentially exhaustive searches of candidate biomarkers can

be performed in silico. This is the idea that we develop in this study.

Mathematical modelling has a rich history in cancer research, and is increasingly used as

a tool to investigate and test hypothesized mechanisms underlying tumour evolution [20]. A

common approach is to consider spatially homogeneous well-mixed populations [21], using

multi-type Moran models of constant or exponentially growing size [22] or multi-type branching

processes [23]. Other work has highlighted the impact of spatial dynamics on the evolutionary

process [24]. More complex models have coupled a discrete representation of the movement

and proliferation of individual cells to a continuum description of microenvironment factors such

as oxygen concentration and extracellular matrix composition. Such models, in particular the

pioneering work of Anderson and colleagues [25, 26], demonstrate the significant selective force

imposed by microenvironmental conditions such as hypoxia. A recent discussion of the use of

ecological and evolutionary approaches to study cancer is provided by Korolev et al. [27]. The

majority of models of tumour evolution have focused on the rates of invasion and accumulation

of mutations, and how these depend on factors such as modes of cell division and spatial

heterogeneity in cell proliferation and death. Defining statistics that correlate with prognosis in

these kinds of models is an unaddressed problem.

Here we use mathematical modelling as a novel platform for in silico biomarker development.

We develop a simple mathematical model of tumour evolution, and use the model to evaluate

the prognostic value of a range of different potential biomarker measures and different tissue

sampling schemes.
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Materials and methods

Computational model of within-tumour evolution and biopsy sampling

To simulate the growth and dynamics of a pre-cancerous lesion, we consider a continuous-time

spatial Moran process model of clonal evolution [28] on a two-dimensional square lattice, which

may be thought of as a mathematical representation of an epithelial tissue. This description

is similar to a model of field cancerization proposed by Foo et al. [29], although our model

differs in several respects, which we describe below. We assume that in the transition from

pre-malignant to malignant lesions, cells in a spatially well-structured population such as an

epithelium are killed and/or extruded by an environmental stressor at a rate that is proportional to

the inverse of their fitness, and replaced within the tissue via the division of a neighbouring cell.

This assumption is represented in our chosen update rule. We suppose that it is this increased

rate of cell turnover that leads to the accumulation of mutations, and eventually cancer. We refer

to mutations as advantageous, deleterious or neutral, if they increase, decrease, or leave cell

fitness unchanged.

The state of the system changes over time as a result of ‘death-birth’ events. At each point

in time, each lattice site is defined by the presence of a cell with a specified ‘genotype’, given by

the numbers of advantageous, neutral and deleterious mutations that it has accumulated. To

implement the next death-birth event, we first choose a cell to die, at random, with a probability

weighted by the inverse of each cell’s fitness. We define the fitness of a cell with np advantageous,

nn neutral, and nd deleterious mutations by

f = (1 + sp)np (1− sd )nd , (1)

where the advantageous parameters sp and sd denote the relative fitness increase/decrease

due to a advantageous/deleterious mutation. The chosen cell is removed from the lattice and

one of the dead cell’s neighbours is chosen uniformly at random to divide into the vacated lattice

site. The time at which this death-birth event occurs is given by a waiting time, chosen according
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to an exponential distribution with mean equal to the sum of all cell inverse fitnesses present on

the lattice, as stipulated by the Gillespie algorithm [30].

Immediately following division, each daughter cell can independently accrue a mutation, with

probability µ. If a mutation is accrued, it is labelled as advantageous, deleterious or neutral with

equal probability 1/3. We note that neutral and deleterious mutations are not typically included

in spatial Moran models of tumour evolution, as such mutations are unlikely to persist. However,

over shorter timescales, their presence may have an effect on the dynamics of the system and

hence the predictive power of any biomarkers considered. We emphasize that a cell that has

accumulated mutations behaves the same as a wild-type cell in terms of mode of division and

accumulation of mutations; the only difference between cells lies in their relative fitness, and

hence the probability that they are chosen for removal as specified by the death-birth process.

We define the time of clinical detection of cancer to be the earliest time at which the

proportion of cells with at least Nm advantageous mutations exceeds a specified threshold

δ. This reflects the time taken to reach a small, but clinically detectable, proportion of cancer

cells that are capable of initiating and driving further tumour growth. In all simulations, we take

δ = 0.05. We evaluate the correlation of a measurement of some property of the state of the

lesion sampled at some time Tb with the subsequent waiting time to cancer.

Measurements of the state of the lesion are performed by (i) taking a ‘biopsy’ from the lesion,

and (ii) evaluating a putative ‘biomarker assay’ on the biopsy. Three different biopsy strategies

are considered. First, we consider the whole lesion, in order to establish an upper bound on

the prognostic power of each biomarker when using maximal information about the state of the

system at a given time. Second, we sample a biopsy comprising a circular region of cells of

radius Nb lattice sites, whose centre is chosen uniformly at random such that the entire biopsy

lies on the lattice; this represents the clinical procedure of core needle sampling. Third, we

sample Ns cells uniformly at random from the lattice; this represents washing or mechanical

scraping of the lesion. In each case, we suppose that the biopsy constitutes a ‘snapshot’, and

do not remove the sampled cells from the tissue. This simplifying assumption avoids the need to
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explicitly model the tissue response to wounding. The various biomarker assays evaluated are

detailed below.

The definitions and values of all model parameters are summarized in Table 1. A MATLAB

implementation of our model and simulated biopsy analysis is provided (see Text S1).

Classical biomarkers

Proportion of cells with at least two advantageous mutations. A commonly used class of

biomarkers measure the proportion of cells in a biopsy staining positive for a given receptor.

Examples include the estrogen receptor (ER), progesterone receptor (PR) and HER2/neu

amplification staining commonly performed for malignancies of the breast [31, 32, 33]. Such

assays are cost-effective and relatively simple to implement.

Here, we use the cutoff of a cell having acquired at least Np advantageous mutations to be

representative of a cellular change that is observable in this manner. The measure is calculated

simply by the number of cells having at least Np advantageous mutations, divided by the total

number of cells sampled. We present results based on Np = 2 throughout the text, thus using

the shorthand Np > 1 to refer to this biomarker. We discuss the robustness of these results to

the chosen value of Np = 2 in the Results section.

Mitotic proportion. Proliferative cells are usually identified in tissue sections or cytology

specimens using immunohistochemistry for cell-cycle associated proteins, foremost Ki-67 [34].

These proteins have a natural half-life over which a proliferative cell can be identified. To

represent this measure in our computational model, we defined a time window tw over which a

proliferative marker can be detected by staining. The mitotic proportion at a given time t is then

defined as the number of cells that have undergone mitosis at least once in the time interval

(t − tw , t ], divided by the number of cells in the lattice, N.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2015. ; https://doi.org/10.1101/020222doi: bioRxiv preprint 

https://doi.org/10.1101/020222
http://creativecommons.org/licenses/by-nc-nd/4.0/


Measures of heterogeneity

Shannon index. The Shannon index H measures diversity among a population comprising

different types [35]. For a population of K distinct types, each comprising a proportion pk of the

population, the Shannon index is defined as

H = −
K∑

k=1

pk log pk . (2)

To calculate H we define pk such that each distinct triplet of advantageous, neutral and dele-

terious mutations is associated with a distinct clone within the model, and pk represents the

proportion of cells in this clone.

Gini-Simpson index. Another established measure of diversity is the Simpson index [36]. To

ensure that a higher value corresponds to greater diversity, we choose to use a transformation

of this index called the Gini-Simpson index, S, which is defined as follows [37]. For a population

of K distinct types, each comprising proportion pk of the population, we have

S = 1−
K∑

k=1

p2
k . (3)

This index may be thought of as the probability that two randomly chosen members from the

population are of different types. As the index increases towards the maximum of 1, the evenness

of the distribution of the population over the various types becomes increasingly skewed toward

one type.

Moran’s I. Moran’s I is a measure of global spatial autocorrelation which computes a weighted

statistical average of the deviation between data points in a set, weighted by their spatial

distance [38]. Moran’s I takes values in [−1, 1]. For a given set of values {X1 ... XN}, with mean
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X , and spatial weight matrix (wij ) ∈ RN×N
+ , Moran’s I is defined as

I =

(
N∑N

i=1
∑N

j=1 wij

)(∑N
i=1
∑N

j=1 wij (Xi − X )(Xj − X )∑N
i=1(Xi − X )2

)
. (4)

We take Xi to be the sum of the numbers of advantageous, neutral and deleterious mutations

accumulated by the cell at lattice site i . Clinically, Xi may be thought of as a binary variable (0 or

1) indicating whether a given cell bears some detectable abnormality (for instance a particular

number of advantageous mutations). The spatial weight matrix (wij ) can be specified in several

ways; here, we define

wij =
1

1 + dij
, (5)

where dij is the Euclidean distance between the lattice sites indexed by i , j ∈ {1, ... , N}. With

this functional form, neighbouring points that are closer together are weighted more heavily, thus

contributing more to the measure.

Geary’s C. Geary’s C, like Moran’s I, is a global measure of spatial autocorrelation. Geary’s C

takes values in [0, 2], with higher values indicating less spatial autocorrelation, and lower values

indicating a greater degree of spatial autocorrelation [39]. While Moran’s I is a more global

measurement and sensitive to extreme observations, Geary’s C is more sensitive to differences

in local neighbourhoods. For a given set of values {X1 ... XN}, with mean X , and a given spatial

weight matrix (wij ) ∈ RN×N
+ , Geary’s C is defined as

C =

(
N − 1

2
∑N

i=1
∑N

j=1 wij

)(∑N
i=1
∑N

j=1 wij (Xi − Xj )2∑N
i=1(Xi − X )2

)
. (6)

Here, our definitions of Xi and (wij ) follow those given for Moran’s I.
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Index of positive proliferation (IPP). We next define a novel measure, termed the index of

positive proliferation (IPP), that is a spatially weighted average of the location of mitotic cells

and the number of advantageous mutations accrued by nearby cells. The biological motivation

for this measure is to detect the recent clonal expansions of advantageous mutants, in order

to quantify evidence of recent progression towards cancer: we might expect the concentration

of proliferation in regions of high numbers of advantageous mutations to correlate with a poor

prognosis.

We define the IPP as follows. Consider a population of N cells, with the individual cells

labelled as X1, ... , XN . Suppose that a subset of these cells, Y1, ... , YQ, are proliferating at a given

time. We define cellular contributions f1, ... , fM ∈ R+ as values such that a higher contribution

corresponds to a cellular state genetically closer to that of cancer. Clinically, these cellular

contributions correspond to cells that are genotypically closer to the end state of cancer, and

represent either cutoff points that may be detected by gene sequencing, or immunohistochemical

changes. For each cell i with mi advantageous mutations, we define the cellular contribution fi

as

fi =

 0 : mi < Nm − 2,

1 : mi ≥ Nm − 2,
(7)

Thus, for a given spatial weight matrix (wij ) ∈ RN×N we define the IPP as

IPP =

∑Q
i=1
∑N

j=1 wij fj∑Q
i=1
∑N

j=1 wij
. (8)

We define the weights wij as in equation (5), where dij is the Euclidean distance between cell Xi

and proliferating cell Yj , such that Xi 6= Yj . In the case that Xi = Yj , we take wij = 0.

Since time steps correspond to ‘generations’ in our mathematical model, we store the

locations of the most recent cell divisions within a given time window tw , and regard these

locations as locations that would stain positive for mitotic activity (e.g. via Ki-67 staining), to

model the non-instantaneous process of detecting active cell division.
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Index of non-negative proliferation (INP). To model the case where it may not be feasible

to observe an accumulation of advantageous mutations only, in the sense that mutations

accumulated may be neutral as well, we define an additional measure termed the index of

non-negative proliferation (INP). This measure is defined analogously to the IPP, but with the

cellular contributions chosen such that

fi =

 0 : mi + ni <
⌊

Nm
2

⌋
,

1 : mi + ni ≥
⌊

Nm
2

⌋
,

(9)

where b·c denotes the integer part. Here, the sum of the number of advantageous and neutral

mutations is considered to be the observable quantity, simulating a situation in which the

observable information encapsulates and may skew the perception of the true genotypic state of

the system. The cutoff value of Nm/2 was chosen in an ad hoc manner based on preliminary

simulations; we note that refinement of this parameter may be necessary for effective use of the

INP in future studies.

Statistical methods

The statistical association (correlation with the waiting time to detectable cancer) of each

sampling strategy and putative biomarker assay was evaluated using Kaplan-Meier curves and

univariate Cox Proportional Hazards models as implemented in the R statistical computing

language. For all presented p-values, the significance cutoff is taken as 0.05.

Data used for the Cox regression model were all generated by the stochastic simulations

of the computational model. That is, the event times were defined as the simulation times at

which 5% of the cells of the lattice were defined as cancerous, and the predictors of this time

were taken to be the biomarker index values computed at an earlier simulation time. The cohort

size is therefore the number of such simulations which were carried out, which was 103. There

was no censoring required, as all simulations were run to completion of endpoint as defined

previously.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2015. ; https://doi.org/10.1101/020222doi: bioRxiv preprint 

https://doi.org/10.1101/020222
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results

We consider a spatial model of the evolution of malignancy in a precancerous lesion. In our

model, cells occupy a two-dimensional lattice of size N. Time is treated as a continuous variable

in the model, but is simulated as a succession of discrete time steps, where the length of each

time step is a function of the overall fitness of the population and a stochastic factor, as per the

Gillespie Algorithm [30]. At each time step, a cell is chosen at random to die and is removed

from the lattice with a probability that is inversely proportional to its cellular fitness, a positive real

number that is initially equal to 1 for non-mutated cells and may be altered by mutation. When

a cell dies, one of its neighbours is then chosen uniformly at random to divide, with one of the

daughter cells occupying the free lattice site and each daughter cell independently acquiring a

new mutation with probability µ. We refer to mutations as advantageous, deleterious or neutral,

according to whether they increase, decrease, or leave fitness unchanged, with each type of

mutation assumed to be equally likely.

Starting from a lattice occupied entirely by non-mutant cells, we consider the outcome of

each simulation to be the time taken for the proportion of cells with at least Nm advantageous

mutations to exceed a threshold δ. This waiting time is defined as the time to clinically detectable

lesions. We choose a value of δ corresponding to a proportion of cancer cells that is sufficiently

large to be clinically detectable, and to initiate subsequent rapid growth.

A representative snapshot of a model simulation is shown in Fig. 1A. To simulate clinical

sampling, at a predetermined time Tb we take a virtual biopsy from the lesion (Fig. 1B), from

which we compute various biomarkers and assess their prognostic value in determining the

waiting time to cancer (see Methods). The model exhibits successive clonal sweeps of mutations

(Fig. 1C).
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Assessment of candidate biomarkers and tissue sampling schemes

Counting driver mutations. We considered the correlation between the proportion of cells

bearing at least Np advantageous mutations (so-called driver mutations) and the waiting time

to cancer. The closer the cutoff Np is to the number of mutations required for cancer, Nm, the

more correlated this measure became with the waiting time to cancer (Table S1). These results

confirm the intuition that it is easier to predict the occurrence of a cancer at a time point close

to when the cancer will occur (e.g. at the ‘end’ of the evolutionary process, when only a few

additional driver mutations are required) than early in the cancer’s development, when many

additional mutations are required.

Small needle biopsies. We computed the prognostic value of various candidate biomarker

‘assays’ performed on a single biopsy of radius Nb = 20 taken at time Tb post simulation initiation.

Neither the proportion of cells with at least one advantageous mutation nor the proliferative

fraction were significant predictors of prognosis (Table 2). In contrast, measures of clonal

diversity (Shannon and Gini-Simpson index) were both highly significant predictors of prognosis

(p < 10−4 in both cases). Of the spatial autocorrelation measures, Moran’s I (p = 0.02) but not

Geary’s C (p = 0.29) had prognostic value.

Random sampling. Random sampling of cells from the lesion represents a tissue collection

method such as an endoscopic brush or a cellular wash. We took a random sample of 103

cells, corresponding to 10% of the total lesion. As for small biopsy sampling, the proportion of

mitotic cells within the sample was a poor prognostic marker (p = 0.23), but interestingly the

proportion of cells with more than one advantageous mutation became a significant predictor

(p = 0.01). This may be due to the fact that within a sparse sample of the lesion, the number of

mutant cells is a proxy for active on-going evolution: either via the large scale clonal expansion

of a single clone, or multiple foci of independent clones. Increased clonal diversity remained a

highly significant predictor of a short waiting time to cancer (p < 10−4 for both the Shannon and
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Gini-Simpson indices; Fig. 2).

Whole lesion sampling. In the case of whole-lesion sampling, all information on the current

state of the virtual tumour is available in the biomarker assay, and hence we expected to see

maximum predictive value of our putative biomarkers. In this case, the proportion of cells with

at least one advantageous mutation remained a poor prognosticator (p = 0.29), whereas the

proportion of proliferative cells became a significant predictor (p = 0.02) (see Table 2).

The clonal diversity measures remained highly significant prognosticators (p < 10−4 in both

cases), underlining their robustness as prognostic measures. Higher clonal diversity was

associated with faster progression to cancer (Fig. 3). The prognostic value of the spatial

autocorrelation measure Moran’s I was significantly improved when the whole grid was sampled

(p < 10−4), but Geary’s C remained non-correlated.

Together these data highlight the high prognostic value of diversity measures, and their

robustness to the details of tissue sampling method used.

Novel prognostic measures

We next sought to determine whether novel statistics calculated on the state of the lesion

could provide additional prognostic value. We defined two new statistics, the index of positive

proliferation (IPP) and the index of non-negative proliferation (INP), which describe the spatial

autocorrelation between proliferating cells with advantageous mutations, or proliferating cells

with non-deleterious mutations, respectively (see Methods). Since these statistics tie together

measures of both the mutation burden and proliferative index, we consider them to be measures

of the degree of ‘evolutionary activity’.

In both small biopsy samples and whole-lesion analysis, the IPP was a highly prognostic

statistic (Table 2), with larger values of the statistic accurately predicting shorter times to cancer

(Fig. 3). The INP was prognostic on whole-lesion analysis (Fig. 3), but not on targeted biopsies

(Table 2). The difference in the prognostic value between IPP and INP is suggestive of the
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particular importance of assaying ‘distance’ travelled along the evolutionary trajectory towards

cancer: the IPP is sensitive to this distance as it only measures advantageous mutations,

whereas the INP is potentially confounded by non-adaptive mutations. The inherent issues

associated with the identification of advantageous mutations consequently potentially limit the

utility of these novel measures.

To assess the predictability of each putative biomarker [40] we calculated the area under

the receiver operating characteristic (ROC) curves (Fig. 4) as a function of the censoring time

[41]. ROC curves are the curves defined by the sensitivity and specificity of each index value

as it predicts end time to cancer, where a positive end time is a time past a certain pre-defined

simulation time, and the cutoff for the index value that defines whether the index predicts if

that end time is early or late, is continuously varied. The area under these curves is 1 in the

case of an index value that is perfectly predictive of an end time, and 0.5 for random guessing

as to whether the index predicts if the end time is early or late. These curves show the IPP

measure has the best predictive value of all measures considered, and that the Shannon and

Gini-Simpson diversity indices also have strong predictive value. The lack of predictive value

derived from the mitotic proportion, Geary’s C and proportion of mutant cells was also confirmed.

Early versus late biopsy

Effective screening for cancer risk requires predicting cancer risk long before the cancer develops.

We next considered how the timing of a biopsy affects its prognostic value by investigating how

the correlation coefficient between each biomarker and the subsequent waiting time to cancer

varies with the time at which the biopsy is taken.

As expected, we found that biopsies collected later in the lesion’s evolution (e.g. closer

to the time of cancer development) generally had more statistical association than biopsies

collected earlier, and this was true irrespective of the tissue sampling method used (Fig. 5A-C).

Sampling early in the lesion’s evolution (e.g. near to the start of the simulations) had poor

correlation irrespective of the putative biomarker assay used, reflecting the fact that very few
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mutations had accumulated in the lesion at short times. Sampling at intermediate times showed

dramatic improvements in the prognostic value of the diversity indices and IPP measure, whereas

samples taken at a variety of long times had approximately equal prognostic value or showed

slight declines relative to intermediate times. At intermediate and long times, the IPP was the

best performing prognostic measure. The mitotic proportion and proportion of cells with at least

one advantageous mutation were consistently poor predictors across the entire time course.

The effect of taking a small biopsy, as opposed to sampling the whole lesion, was to both

significantly reduce the prognostic value of all putative biomarker measures, and introduce

‘noise’ into their prognostic values (Fig. 5B). Importantly, we observed that in spite of this noise,

the correlation coefficients for the clonal heterogeneity and IPP measures were consistently

high compared to the other measures, indicating their robustness as prognostic markers. Biopsy

sampling significantly reduced the prognostic value of Moran’s I compared to whole-lesion

sampling, indicating how this measure is particularly confounded by tissue sampling.

On random samples (analogous to endoscopic brushings or washings), the Shannon and

Gini-Simpson indices showed good correlations with the waiting time to cancer. These diversity

measures were more correlated for random samples than for circular biopsies, despite each

sample constituting similar numbers of cells (10% and 12% of the lesion, respectively). This

result may reflect the fact that a biopsy can potentially miss a ‘dangerous’ clone, whereas a

random sampling method is likely to obtain cells from all sizeable clones within the lesion.

Together, these data indicate that larger samples usually provide more prognostic value

than smaller samples, and that very ‘early’ tissue samples are unlikely to contain significant

prognostic information. They also highlight again that the prognostic value of diversity measures

is particularly robust to the details of tissue sampling.

Longitudinally collected biopsies

We next examined whether combining information from serial biopsies, taken at two different time

points (t1 and t2; both strictly before cancer occurrence), provided more prognostic information
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than a biopsy from a single time point. To do this, we evaluated the average of the values of each

biomarker at the times t1 and t2, and the correlation between this average and the waiting time

to cancer. We then compared this correlation with that of the biomarker value at time t2 alone.

These results are shown in Fig. 6, where the x and y axes indicate the time of the first and

second biopsies, and the colours indicate the difference between the correlation coefficient for

the average of the individual biomarker values at each time points and the correlation coefficient

for the biomarker value at the second time point alone.

Including information from an early biopsy in this manner provided slight additional prognostic

value over-and-above the information available in the later biopsy (Fig. 6; approximately a 0.1

increase in the correlation was observed). In contrast, When information was combined by

taking the difference in biomarker values between the biopsies collected at two different time

points, the value from the later biopsy was generally more prognostic, and importantly was

more prognostic than a measure which combined information both the early and late biopsies.

Interestingly, the prognostic value of the Shannon and Gini-Simpson indices was reduced when

considering the difference in biomarker values between two time points (Fig. S4). When we

instead compared the maximal value of the biomarker across the two time points to its value at

the later time point, we found similar results to the average case, but with smaller increases in

correlation at later times; this was particularly the case for the Shannon, Gini-Simpson, IPP and

INP indices (Fig. S5).

Multiple biopsies at the same time point

A consequence of intra-tumour heterogeneity is that a single biopsy may fail to sample an

important clone [42] and so cause an incorrect prognosis assignment. To address this issue, we

studied how the prognostic value of each putative biomarker was improved by taking additional

biopsies at the same time (Tb = 50). For simplicity, after each virtual biopsy the sampled tissue

was perfectly replaced in order to avoid the complexities associated with modelling local wound

healing and tissue recovery. Further, while we did not strictly preclude biopsies from overlapping,
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the degree of overlap between biopsies is typically minimal because of the relatively small

numbers of biopsies and small sizes of biopsy considered.

Assaying from more biopsies generally improved prognostic value, but with diminishing

returns for each additional biopsy (Fig. 7). For all but one of the putative biomarkers, the

maximum prognostic value was achieved by taking the average biomarker value across all

biopsies, whereas measures of the spread of values (the variance or range) were generally

poor prognosticators. Interestingly, the maximum prognostic value for the proportion of cells

with at least two advantageous mutations was achieved by taking the minimum value across

all biopsies; this could be because the minimum value is particularly sensitive to biopsies that

contain non-progressed cells. Together these data imply that taking more biopsies and averaging

the biomarker signal across biopsies provides additional prognostic information.

Robustness of results to choice of model

To assess the robustness of results to our model assumptions, we investigated the impact of

parameter values and update rules on the statistical association of each biomarker. We observed

the same qualitative behaviour, such as diversity measures outperforming the proliferative

fraction in degree of correlation, irrespective of the choice of parameter values or update rule

used (see Figs S1–S3, Tables S1–S17 and Text S1 for details).

To briefly summarize these results: (i) lower mutation rates decreased the correlation of

each marker with the waiting time to cancer, because of the increased stochasticity in the model

introduced by a lower mutation rate; (ii) smaller biopsies were in general less prognostic; (iii)

the number of mutations required for cancer did not qualitatively change the predictions of the

model; (iv) the fitness advantage and disadvantage caused by new mutations, and the relative

likelihood of each of the various mutation types, did not qualitatively alter the prognostic value

of the biomarkers, although diversity measures were most prognostic for the case where there

were many strongly advantageous mutations; and (v) the closer the value of the threshold Np

was to the number of mutations required for cancer, the more correlated the proportion of cells
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with np ≥ Np became with the waiting time to cancer.

We also analyzed the sensitivity of model results to variations in the update rules of the

system. We tested the biomarkers in a birth-driven system as opposed to a death-driven

system, and found that again, that the diversity and IPP measures remained the biomarkers

most significantly associated with the waiting time to cancer. Further, we investigated the effect

of decoupling mutations and cell division. While these changes to the model did alter the

specific predictive values of the various indices (summarized in Table S14), the general pattern

of statistical association was not altered. Moreover, even in this scenario, the IPP performed

well.

Discussion

In this work we have developed a simple computational model of cancer development within

premalignant disease and used the model to evaluate the prognostic value of a range of different

putative biomarker measurements and tissue sampling schemes. Our results show that simply

counting the proportion of cells bearing multiple advantageous mutations (proportion of cells

with ‘driver’ mutations) or the proportion of proliferating cells were universally poor predictors of

the waiting time to cancer, whereas measures of clonal diversity were highly correlated with the

time to cancer and were robust to the choice of tissue sampling scheme. Further, we evaluated

a range of different tissue sampling schemes (single biopsy, multiple biopsies in space or time,

or random sampling of a lesion). We found that random sampling (such as via an endoscopic

brush) provided more consistent prognostic value than a single biopsy, likely because a single

(randomly targeted) biopsy is liable to miss localised but ‘important’ clones. Prognostication

was improved by taking multiple biopsies, but with diminishing returns for each additional biopsy

taken. Together these data provide a rationale for the empirical evaluation of different tissue

sampling schemes.

Averaging biomarker scores from two different time points did improve the predictive value of
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our putative biomarkers; however, the difference in each putative biomarker’s values between

time points was less predictive than its value at the later time points. This result was somewhat

counter to our initial intuition that taking longitudinal biopsies would accurately track the ‘evo-

lutionary trajectory’ of the lesion and hence dramatically improve prognostication. This result

illustrates how our in silico approach can challenge intuition and, in so doing, provide novel

insights into biomarker development.

We developed a new statistic, termed the index of positive proliferation (IPP), that proved to

be a highly prognostic measure. The IPP is a measure of the average distance to a proliferating

cell that has acquired advantageous mutations. It thus combines both genetic (or phenotypic)

information with spatial (cell position) and dynamic (proliferation) information. This integration of

multiple different sources of information may account for the prognostic value of the biomarker

in our model. Empirical measurement of the IPP would be feasible if, for example, the number

of driver mutations accumulated by a cell could be quantified concomitantly with a proliferative

marker. Developments in in situ genotyping methods might facilitate such an approach in the

near future. Irrespective of the immediate feasibility of such a measure, our development and

testing of the IPP statistic within our computational model illustrates how in silico approaches

provide a powerful means to rapidly explore new potential biomarker assays.

Our computational model of cancer evolution is clearly a highly simplified description of reality.

For example, we modelled a simple two-dimensional sheet of epithelial cells and neglected the

important influence, and indeed co-evolution, of the supporting stroma. We assumed simple

relationships between genotype, phenotype and fitness, and also neglected to model cell-cell

interactions. Critically, we also used an abstract fitness function to define cellular phenotypes,

and in doing so neglected to describe any molecular details of cell behaviour. Adequately

describing these kinds of important biological complexities within a model is a necessary next

step for the development of in silico biomarker development platform that is of general use.

Increasing the realism of the model would improve confidence that the predicted prognostic

value of any biomarker was not an artefact of the over-simplified model, although we have shown
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that our results are somewhat robust to alterations of a number of the key parameters in our

model. Incorporating additional biological realism would also facilitate the in silico testing of the

prognostic value of a full range of specific biological features; for example, the expression of a

protein that fulfills a particular biological function, such as modulating cell adhesion.

Our study demonstrates how a computational model offers a platform for the initial develop-

ment of novel prognostic biomarkers: computational models can be viewed as a high-throughput

and cost-effective screening tool with which to identify the most promising biomarkers for subse-

quent empirical testing. This work provides the rationale for constructing an in silico biomarker

development platform that would lessen the current restrictions imposed by the sole reliance on

empirical testing.
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Text S1: Supplemental material

This document provides further details on the software implementation of the model described
in the main text, as well as a detailed investigation of the robustness of the model to parameter
values and constitutive assumptions.

Software implementation. A zipped folder is provided that contains the MATLAB implemen-
tation of the computational model and analysis described in this study. This folder includes a
thoroughly documented example of how to run the code in the file README.txt. The code is
also available online at github.com/AlexFletcher/cancer-risk-biomarkers.git.

Robustness of results to mutation rate, µ. To determine the effects of the mutation rate, µ,
on the statistical association of each biomarker to time to cancer, we considered the two cases
µ = 0.05 and µ = 0.01, with all other parameters set to their default values. Hazards ratios are
computed for these cases in Tables S2 and S3, respectively. We found that for smaller mutation
rates, the strength of the correlation of each biomarker decreased, due to the longer timescale of
cancer development (and so increased stochasticity). We note in particular that the IPP measure
remained correlated in biopsy samples, even for the lowest value of µ considered.

Robustness of results to biopsy size, Nb. To determine the effects of the biopsy size, Nb,
on the correlation of each biomarker with the to time to cancer, we considered the two cases
Nb = 5 and Nb = 40, with all other parameters set to their default values. Hazards ratios are
computed for these cases in Tables S4 and S5, respectively. As expected, when a larger biopsy
is taken, the degree of correlation for each biomarker with the time to cancer increases. For
the small biopsy (Nb = 5) we found that no biomarker values achieved statistical significance,
while for the large biopsy (Nb = 40), the statistical association of the Gini-Simpson index and
IPP measures reached statistical significance. These results suggest that there is a critical
biopsy size at which biomarker values may gain statistical correlation and significance, and the
sampling effects of noise can be overcome.

Robustness of results to threshold for cancer, Nm. To examine the effects of the number of
advantageous mutations necessary for a cell to be considered cancerous, Nm, on the correlation
of each biomarker with the waiting time to cancer, we considered the three cases Nb ∈ {3, 5, 15},
with all other parameters set to their default values. Hazards ratios are computed for these cases
in Tables S6, S7 and S8, respectively. In particular, we found that the diversity and IPP measures
consistently provided a strong and statistically-significant hazards ratio when computed from the
whole-lesion, but became non-significant for biopsies.

Robustness of results to fitness changes due to mutation, sp and sd . To examine the
effects of the degree to which non-neutral mutations alters cellular fitness on the associa-
tion of each biomarker with the to time to cancer, we considered the three cases sp = sd ∈
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{0, 0.002, 0.02}, with all other parameters set to their default values. Hazards ratios are com-
puted for these cases in Tables S9, S10 and S11. In particular, we found that as selective
advantage or disadvantage varied, the clonal diversity and IPP measures remained correlated
with outcome for whole-lesion sampling.

Variations on proliferation indices. We next explored further variations on the proliferation
indices defined in the main text. First, we varied the number of advantageous mutations required
to be considered a ‘positive cell’ by examining the cases defined as IPP 1 and IPP 3, where the
fi in equation (8) are re-defined such that for IPP k we have

f (k )
i =

{
0 : mi < Nm − k ,
1 : mi ≥ Nm − k ,

(10)

and the remainder of the formula for the IPP measure is unchanged. In addition, we consider
a measure termed the index of mutation proliferation (IMP), defined analogously to the IPP,
but with a choice of fitness function such that f (1)

IMP,i is the number of advantageous mutations

obtained by cell i (IMP 1), and f (2)
IMP,i is the total number of mutations (the sum of advantageous,

deleterious and neutral mutations) accumulated by cell i (IMP 2).
Results depicting the statistical association of these additional indices, as a function of

sampling time, on both the whole-lesion and biopsy samples is summarised in Fig. S1. These
results indicate that the behaviour of IPP1 and IPP3 is broadly similar to that of the IPP, albeit
with their degrees of correlation peaking at different times.

Effect of cell neighbourhood in a simplified model. Having investigated the sensitivity of
our results to the values of model parameters, we next examined whether the choice of cell
neighbourhood has any significant effect on model behaviour. In lattice-based models such as
our spatial Moran process, two common choices for defining the local topology are the Moore
and von Neumann neighbourhoods. The von Neumann neighbours of a given cell are those that
lie one lattice spacing from it by the Manhattan metric, while the Moore neighbours are those
that lie less than two lattice spacings from it by the Euclidean metric.

To investigate whether the choice of neighbourhood has any impact on the behaviour of our
mathematical model, we considered a simplified model with two cell types, which we refer to as
normal and mutant. We employed the ‘death-birth’ update rule as defined in the main text. For
simplicity we considered an irreversible neutral mutation giving no relative fitness advantage to
mutants, with two cases of mutation probability considered: µ = 0 (corresponding to a classical
spatial Moran process), and µ = 0.3. We considered a small 10× 10 lattice comprised of cells
and introduced a single mutant cell at the centre of the lattice. The model was simulated until
the lattice was composed entirely of non-mutant cells or entirely of mutant cells (one of these
possibilities must occur eventually, since they are both absorbing states of the model).

The cumulative distribution function for the time to fixation for the mutant cell population,
computed based on 105 runs of the above model using either Moore or von Neumann cell
neighbourhoods, is shown in Fig. S2. We found that as the mutation rate is increased, the
difference in the CDFs becomes nearly negligible. Additionally, in the case where µ = 0, for the
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von Neumann neighbourhood case, we found that 1.13% of the 105 runs end in mutant fixation,
and in the case of the Moore neighbourhood, 1.19% of the runs end in mutant fixation. When
µ = 0.3, the probability of mutant fixation is higher, and for the von Neumann neighbourhood
case, we find that 97.7% of the 2000 runs end in mutant fixation, whereas for the Moore
neighbourhood the proportion is 98.2%. In both cases, the differences between the two cases
of neighbourhood types diminished as µ increased, and limiting-time behaviour cases for both
systems was highly similar.

Robustness of results to update rules. To examine the effect that the choice of update rule
has on the behaviour of our model, we first considered 8 different update rules and compared key
summary statistics in each case, for the simplified model described in the previous section. In
this case, we incorporated an advantage to the mutations incurred by the mutant cells, conferring
upon them a relative fitness of sp = 1.2. We use a two-letter notation to described the different
choices of update rule, where the first and second letters represent the choice of first and second
steps in the update rule, respectively. We use the letters b and d to denote birth (division)
and death (removal), and we use a capital letter to denote the case where the corresponding
step is influenced by cellular fitness, enabling the incorporation of selection. For instance, bD
represents the update rule where first a cell is chosen uniformly at random to divide, and then a
neighbouring cell is chosen to die, biased by inverse fitness.

We examined the average time to fixation for a mutant-only population, and the variance
in these times to fixation, as well as the cumulative distribution function (CDF) for the time to
fixation of the mutant population, conditional on this occurring before the mutants entirely die out.
These results are presented for the case where µ = 0 in Table S12 and Fig. S3. We conclude
that in this case, the various update rules produce differing results, but that as µ increases, these
differences decrease in magnitude, as the times to fixation are reduced, and the probability of
mutant fixation approaches unity. That is, the results presented in the above analysis depict
upper bounds on the differences, and we note that based on our analysis, these differences
decrease as µ is increased above zero, into the regimes of values considered within the present
study, and those that are biologically relevant.

To further investigate how the prognostic value of the various candidate biomarkers depended
on the choice of update rule, we performed additional model simulations where proliferation
was now modified to be a birth-death (bD), rather than a death-birth (Db), process. In these
simulations, a cell was chosen uniformly at random to divide, and its daughter cell (which, with
some probability, accumulated a mutation) replaced a neighbour at random based on its fitness.
The results of these simulations are shown in Table S13. In summary, we found that: (i) the time
to cancer was markedly shortened compared to the death-birth case; (ii) the prognostic value of
one of the putative biomarkers, the number of cells with at least two advantageous mutations,
between significantly correlated with the waiting time to cancer; (iii) the mitotic proportion of
cells remained a poor prognosticator; (iv) the clonal diversity measures (Simpson and Shannon
indices) remained prognostic, and (v) the IPP and INP remained the strongest predictors of
cancer risk among the putative biomarkers considered. We note also that the biopsy-based
indices lost their association with the waiting time to cancer in the birth-death model.
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Robustness of results to decoupling mutation and proliferation. A key assumption in our
model was that cells mutate only when dividing. Thus, a cell that is adjacent to lower-fitness
cells will accumulate mutations faster than a cell that is adjacent to higher-fitness cells, because
the latter will have fewer opportunities to divide. To examine the robustness of our results to this
assumption, we performed additional simulations in the case where mutations were decoupled
from divisions. In these simulations, cell death and birth events were implemented as before, but
all divisions were assumed to occur without mutation. Instead, immediately after each division,
we drew a random number of mutations from a Poisson distribution with mean 0.5 (whose value
is chosen arbitrarily to represent the mutation rate) and randomly bestowed each mutation on a
cell in the lattice, independently chosen uniformly at random with replacement.

The results of these simulations are summarized in Table S14. We observed that decoupling
mutation and division alters the predictive value of the various measures but that the general
pattern of predictability is unaltered, with diversity measures remaining amongst the best
predictors across the different tissue sampling methods. When spatial information is available
(for whole lattice and biopsy measures), the IPP continues to perform well.

Robustness of results to symmetry of mutations. To determine how robust our results are
to the key model assumption that mutations were equally likely to be advantageous, neutral or
deleterious, we performed additional simulations where this symmetry was broken. In these
simulations, the probabilities of a mutation being positive, neutral or deleterious was given by
parameters padv, pneut and pdel, which summed to 1 but need not be equal. Results of each of
these simulations are summarized in Tables S15–S17.

Throughout each of these cases, we observed that the IPP and INP remained consistently
statistically significant when the whole lesion is sampled, and the Shannon and Gini-Simpson
indices are most correlated with the waiting time to cancer when the probability of an ad-
vantageous mutation is greatest. Furthermore, among each of these asymmetric cases for
mutation probability, Moran’s I and Geary’s C were found to be extremely non-predictive of
outcome. Overall, however, these results do not differ qualitatively from the symmetric case
(padv = pneut = pdel = 1/3) considered in the main text. Importantly, among each of these cases,
the correlation between the IPP and INP measures and the waiting time remained strong and
statistically significant. The results suggest a relative insensitivity of our biomarker results to this
underlying model assumption.
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Tables

Table 1

Parameter values used in the model.

Parameter Description Value(s)

δ Detectable fraction of cancer cells in the tissue 0.05
Nm Min. no. advantageous mutations for cancer {3, 5, 10, 15}
sp Fitness increase from a advantageous mutation {0, 0.002, 0.02, 0.2}
sd Fitness decrease from a deleterious mutation {0, 0.002, 0.02, 0.2}
µ Probability of mutation per cell division {0.01, 0.05, 0.1}

Np Min. no. advantageous mutations for positive stain {2, 3, 5, 7, 9}
tw Time over which a cell stains positive for a recent mitosis 0.01
N Number of cells in lattice 100× 100
Nb Radius of biopsy region {5, 20, 40}
Ns Number of cells taken in scraping 1000
Tb Time at which sample is taken {50, 80}
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Table 2

Summary of Cox proportional hazards models for various putative biomarker schemes,
for different tissue sampling schemes. Hazard ratios (HR75) are computed at time t = 75
for the case Nm = 10, sp = sd = 0.2, and µ = 0.1. Statistically significant values are in bold.
‘Unit change’ denotes the change in the value of each putative biomarker that increases the
associated hazard ratio by the reported factor.

Unit change HR75 95% CI p

Whole lesion

np > 1 proportion 0.05 0 (0,∞) 0.29
Mitotic proportion 0.01 0.31 (0.12, 0.81) 0.02
Shannon index 0.1 2 (1.8, 2,2) < 10−4

Gini-Simpson index 0.01 5.5 (4.2, 7.2) < 10−4

Moran’s I 0.05 3.2 (2, 5.3) < 10−4

Geary’s C 0.01 0.98 (0.92, 1) 0.43
IPP 0.01 2 (1.9,2.1) < 10−4

INP 0.01 1.3 (1.2, 1.4) < 10−4

Biopsy

np > 1 proportion 0.05 0.95 (0.86, 1.1) 0.35
Mitotic proportion 0.01 0.81 (0.58, 1.1) 0.22
Shannon index 0.2 1.3 (1.1,1.4) < 10−4

Gini-Simpson index 0.01 2.3 (1.5, 3.5) < 10−4

Moran’s I 0.1 1.4 (1.1, 1.9) 0.02
Geary’s C 0.1 0.95 (0.87,1) 0.29

IPP 0.01 1.1 (1, 1.1) < 10−4

INP 0.1 1 (0.95, 1.1) 0.57

Scraping

np > 1 proportion 0.05 < 10−6 (0, 0.0001) 0.01
Mitotic proportion 0.01 1.2 (0.88, 1.7) 0.23
Shannon index 0.05 1.3 (1.3, 1.4) < 10−4

Gini-Simpson index 0.01 3.5 (2.8, 4.4) < 10−4
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Table S1

Summary of Cox proportional hazards models for varying values of the ‘positive staining’
threshold, Np. Hazard ratios (HR75) are computed at time t = 75 for the case Nm = 10,
sp = sd = 0.2, and µ = 0.1. Statistically significant values are in bold.

Unit change HR75 95% CI p

Whole lesion

Np = 2 0.01 0 (0,∞) 0.29
Np = 3 0.01 2.4 (0.5, 11) 0.28
Np = 5 0.01 1.2 (1.1, 1.3) < 10−4

Np = 7 0.01 1.4 (1.3, 1.4) < 10−4

Np = 9 0.01 3.5 (2.9, 4.3) < 10−4
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Table S2

Summary of Cox proportional hazards models for the case of a lower mutation rate (µ =
0.005). Hazard ratios (HR150) are computed at time t = 150 for various putative biomarker
schemes, for different tissue sampling schemes. Other parameter values used are Nb = 20,
Nm = 10, sp = sd = 0.02 and those listed in Table 1. Statistically significant values are in bold.

Unit change HR150 95% CI p

Whole lesion

np > 1 proportion 0.01 1 (0,∞) 1
Mitotic proportion 0.01 0.23 (0.023, 2.3) 0.21
Shannon index 0.01 1.1 (1, 1.1) < 10−4

Gini-Simpson index 0.01 3.1 (2.2, 4.3) < 10−4

Moran’s I 0.01 1.2 (1.1, 1.3) 0.00096
Geary’s C 0.01 0.96 (0.89, 1) 0.38

IPP 0.01 1.4 (1.3, 1.4) < 10−4

INP 0.01 1.8 (0.76, 4.5) 0.18

Biopsy

np > 1 proportion 0.01 1 (0.93, 1.1) 0.83
Mitotic proportion 0.01 1 (0.41, 2.4) 1
Shannon index 0.01 1 (1,1) 0.074

Gini-Simpson index 0.01 1.7 (0.93, 3) 0.085
Moran’s I 0.01 1.1 (1, 1.1) 0.0034
Geary’s C 0.01 1 (0.99, 1) 0.33

IPP 0.1 1.5 (1.3, 1.7) < 10−4

INP 0.01 0.99 (0.98,1) 0.21

Scraping

np > 1 proportion 0.01 1 (0,∞) 1
Mitotic proportion 0.01 0.84 (0.33, 2.2) 0.72
Shannon index 0.05 1.3 (1.2, 1.4) < 10−4

Gini-Simpson index 0.01 2.4 (1.7, 3.2) < 10−4
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Table S3

Summary of Cox proportional hazards models for the case of a much lower mutation
rate (µ = 0.001). Hazard ratios (HR375) are computed at time t = 375 for various putative
biomarker schemes, for different tissue sampling schemes. Other parameter values used are
Nb = 20, Nm = 10, sp = sd = 0.02 and those listed in Table 1. Statistically significant values are
in bold.

Unit change HR375 95% CI p

Whole lesion

np > 1 proportion 0.01 1 (0,∞) 1
Mitotic proportion 0.01 0.24 (0.012, 4.8) 0.35
Shannon index 0.1 1.1 (1, 1.2) 0.027

Gini-Simpson index 0.01 1.1 (1, 1.1) 0.027
Moran’s I 0.01 1 (0.96, 1.1) 0.58
Geary’s C 0.01 0.97 (0.93, 1) 0.24

IPP 0.01 1.1 (1.1, 1.1) < 10−4

INP 0.01 13 (0.049,∞) 0.37

Biopsy

np > 1 proportion 0.01 1.2 (0.97, 1.5) 0.089
Mitotic proportion 0.01 0.78 (0.33, 1.8) 0.57
Shannon index 0.01 1 (1, 1) 0.36

Gini-Simpson index 0.01 1.1 (0.93, 1.2) 0.34
Moran’s I 0.01 1 (0.98, 1) 0.44
Geary’s C 0.01 1 (0.98, 1) 0.9

IPP 0.1 1.2 (1.1, 1.2) < 10−4

INP 0.01 1 (0.99, 1) 0.37

Scraping

np > 1 proportion 0.01 1 (0,∞) 1
Mitotic proportion 0.01 0.77 (0.36, 1.7) 0.51
Shannon index 0.01 1 (1, 1) 0.026

Gini-Simpson index 0.01 1.1 (1, 1.1) 0.024
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Table S4

Summary of Cox proportional hazards models for the case of a smaller biopsy (Nb = 5).
Hazard ratios (HR75) are computed at time t = 75 for various putative biomarkers, for a circular
biopsy. Other parameter values used are Nm = 10, sp = sd = 0.2, µ = 0.1 and those listed in
Table 1. Statistically significant values are in bold.

Unit change HR75 95% CI p

Biopsy

np > 1 proportion 0.01 1 (0.98, 1) 0.75
Mitotic proportion 0.01 1 (0.87, 1.2) 0.67
Shannon index 0.01 1 (0.99, 1) 0.27

Gini-Simpson index 0.01 0.94 (0.84, 1.1) 0.3
Moran’s I 0.01 1 (0.96, 1) 0.93
Geary’s C 0.01 1 (0.99, 1) 0.44

IPP 0.01 1 (0.97, 1) 0.81
INP 0.01 1 (1, 1) 0.95
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Table S5

Summary of Cox proportional hazards models for the case of a larger biopsy (Nb = 40).
Hazard ratios (HR12) are computed at time t = 12 for various putative biomarker schemes, for
a circular biopsy. Other parameter values used are Nm = 10, sp = sd = 0.2, µ = 0.1 and those
listed in Table 1. Statistically significant values are in bold.

Unit change HR75 95% CI p

Biopsy

np > 1 proportion 0.01 1 (0.92, 1.2) 0.6
Mitotic proportion 0.01 2.1 (0.46, 9.6) 0.34
Shannon index 0.1 1.2 (1, 1.5) 0.018

Gini-Simpson index 0.01 11 (1.5, 87) 0.018
Moran’s I 0.01 1 (0.9, 1.2) 0.67
Geary’s C 0.01 1 (0.97, 1) 0.82

IPP 0.01 1.3 (1.2, 1.4) < 10−4

INP 0.01 1.1 (0.96, 1.2) 0.19
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Table S6

Summary of Cox proportional hazards models for the case of a much lower threshold
number of mutations for cancer (Nm = 3). Hazard ratios (HR12) are computed at time t = 12
for various putative biomarker schemes, for different tissue sampling schemes. Other parameter
values used are Nb = 20, sp = sd = 0.2, µ = 0.1 and those listed in Table 1. Statistically
significant values are in bold.

Unit change HR12 95% CI p

Whole lesion

np > 1 proportion 0.01 2.4 (2.1, 2.8) < 10−4

Mitotic proportion 0.01 1.3 (0.27, 6.3) 0.73
Shannon index 0.01 1.2 (1.1, 1.2) < 10−4

Gini-Simpson index 0.01 2.7 (2, 3.7) < 10−4

Moran’s I 0.01 6.6 (2.1, 20) 0.0011
Geary’s C 0.01 1 (0.8, 1.3) 0.9

IPP 0.01 1.3 (1.2, 1.5) < 10−4

INP 0.01 1.4 (1.2, 1.5) < 10−4

Biopsy

np > 1 proportion 0.01 1.1 (0.87, 1.5) 0.37
Mitotic proportion 0.01 0.73 (0.43, 1.2) 0.25
Shannon index 0.01 1 (0.99, 1) 0.62

Gini-Simpson index 0.01 1.1 (0.81, 1.6) 0.49
Moran’s I 0.01 1.1 (0.88, 1.4) 0.4
Geary’s C 0.01 1 (0.98, 1) 0.74

IPP 0.1 1.6 (1.2, 2.1) 0.0028
INP 0.1 1.6 (1.1, 2.3) 0.0083

Scraping

np > 1 proportion 0.01 1.4 (1.3, 1.5) < 10−4

Mitotic proportion 0.01 1.4 (0.92, 2.2) 0.11
Shannon index 0.1 1.5 (1.1, 2.1) 0.0049

Gini-Simpson index 0.01 1.3 (1, 1.5) 0.015
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Table S7

Summary of Cox proportional hazards models for the case of a lower threshold number
of mutations for cancer (Nm = 5). Hazard ratios (HR24) are computed at time t = 24 for various
putative biomarker schemes, for different tissue sampling schemes. Other parameter values
used are Nb = 20, sp = sd = 0.2, µ = 0.1 and those listed in Table 1. Statistically significant
values are in bold.

Unit change HR24 95% CI p

Whole lesion

np > 1 proportion 0.01 1.2 (1.1, 1.3) < 10−4

Mitotic proportion 0.01 0.46 (0.067, 3.2) 0.44
Shannon index 0.01 1.1 (1.1, 1.2) < 10−4

Gini-Simpson index 0.01 3.8 (2.5, 5.7) < 10−4

Moran’s I 0.01 1.6 (0.87, 2.8) 0.13
Geary’s C 0.01 0.9 (0.76, 1.1) 0.23

IPP 0.01 1.5 (1.4, 1.7) < 10−4

INP 0.01 1.3 (1.2, 1.4) < 10−4

Biopsy

np > 1 proportion 0.01 1.1 (0.94, 1.2) 0.28
Mitotic proportion 0.01 0.89 (0.49, 1.6) 0.71
Shannon index 0.01 1 (1, 1) 0.082

Gini-Simpson index 0.01 1.8 (0.96, 3.3) 0.069
Moran’s I 0.01 1.1 (0.99, 1.3) 0.076
Geary’s C 0.01 0.99 (0.96, 1) 0.41

IPP 0.1 1.5 (1.2, 2) 0.00069
INP 0.01 1.1 (1, 1.1) 0.00011

Scraping

np > 1 proportion 0.01 1.1 (1.1, 1.2) < 10−4

Mitotic proportion 0.01 0.6 (0.34, 1.1) 0.075
Shannon index 0.01 1.1 (1, 1.1) < 10−4

Gini-Simpson index 0.01 2.3 (1.7, 3.2) < 10−4
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Table S8

Summary of Cox proportional hazards models for the case of a larger threshold number
of mutations for cancer (Nm = 15). Hazard ratios (HR225) are computed at time t = 225 for
various putative biomarker schemes, for different tissue sampling schemes. Other parameter
values used are Nb = 20, sp = sd = 0.2, µ = 0.1 and those listed in Table 1. Statistically
significant values are in bold.

Unit change HR225 95% CI p

Whole lesion

np > 1 proportion 0.01 1 (0,∞) 1
Mitotic proportion 0.01 0.015 (0, 0.51) 0.019
Shannon index 0.01 1.1 (1.1, 1.1) < 10−4

Gini-Simpson index 0.01 13 (5.8, 29) < 10−4

Moran’s I 0.01 1.3 (1.1, 1.5) 0.00079
Geary’s C 0.01 0.91 (0.83, 1) 0.051

IPP 0.01 1.7 (1.6, 1.8) < 10−4

INP 0.01 0.0059 (0,∞) 0.93

Biopsy

np > 1 proportion 0.01 1 (0.96, 1) 0.77
Mitotic proportion 0.01 1.1 (0.44, 2.8) 0.83
Shannon index 0.01 1 (1, 1) 0.067

Gini-Simpson index 0.01 3.2 (1, 11) 0.051
Moran’s I 0.01 0.99 (0.95, 1) 0.58
Geary’s C 0.01 0.99 (0.98, 1) 0.57

IPP 0.1 1.4 (1.2, 1.8) 0.00013
INP 0.01 1 (1, 1) 0.67

Scraping

np > 1 proportion 0.01 1 (0,∞) 1
Mitotic proportion 0.01 0.64 (0.23, 1.8) 0.4
Shannon index 0.01 1.1 (1,1.1) < 10−4

Gini-Simpson index 0.01 6.7 (3.4, 13) < 10−4
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Table S9

Summary of Cox proportional hazards models for the case where mutations do not alter
cellular fitness (sp = sd = 0). Hazard ratios (HR105) are computed at time t = 105 for various
putative biomarker schemes, for different tissue sampling schemes. Other parameter values
used are Nb = 20, Nm = 10, µ = 0.1 and those listed in Table 1. Statistically significant values
are in bold.

Unit change HR105 95% CI p

Whole lesion

np > 1 proportion 0.01 1.1 (1, 1.2) 0.0022
Mitotic proportion 0.01 1.2 (0.26, 5.2) 0.85
Shannon index 0.01 1.1 (1, 1.1) < 10−4

Gini-Simpson index 0.001 1.9 (1.2, 2.9) 0.0052
Moran’s I 0.01 0.83 (0.64, 1.1) 0.16
Geary’s C 0.01 1.1 (0.97, 1.2) 0.15

IPP 0.01 3.5 (2.8, 4.4) < 10−4

INP 0.01 1.1 (1, 1.1) 0.014

Biopsy

np > 1 proportion 0.01 1 (0.99, 1) 0.55
Mitotic proportion 0.01 0.99 (0.63, 1.6) 0.98
Shannon index 0.01 1.4 (1.2, 1.8) 0.054

Gini-Simpson index 0.001 1.3 (0.95, 1, 8) 0.1
Moran’s I 0.01 1 (0.92, 1.1) 1
Geary’s C 0.01 1 (0.99, 1) 0.34

IPP 0.01 1.1 (1.1, 1.2) < 10−4

INP 0.01 1 (0.99, 1) 0.16

Scraping

np > 1 proportion 0.01 1.1 (1.1, 1.2) 0.0003
Mitotic proportion 0.01 1 (0.67, 1.5) 0.98
Shannon index 0.1 1.5 (1.2, 1.9) 0.0019

Gini-Simpson index 0.001 1.6 (1.1, 2.4) 0.009
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Table S10

Summary of Cox proportional hazards models for the case where mutations alter cellular
fitness to a lower extent (sp = sd = 0.002). Hazard ratios (HR75) are computed at time t = 75
for various putative biomarker schemes, for different tissue sampling schemes. Other parameter
values used are Nb = 20, Nm = 10, µ = 0.1 and those listed in Table 1. Statistically significant
values are in bold.

Unit change HR75 95% CI p

Whole lesion

np > 1 proportion 0.01 1.1 (0.99, 1.2) 0.078
Mitotic proportion 0.01 0.75 (0.18, 3.2) 0.7
Shannon index 0.01 1.1 (1.1, 1.1) < 10−4

Gini-Simpson index 0.001 2.4 (1.8, 3.2) < 10−4

Moran’s I 0.01 1 (0.73, 1.5) 0.83
Geary’s C 0.01 0.98 (0.86, 1.1) 0.76

IPP 0.01 4.3 (3.4, 5.5) < 10−4

INP 0.01 1.1 (1, 1.2) 0.00084

Biopsy

np > 1 proportion 0.01 1 (0.99, 1) 0.48
Mitotic proportion 0.01 1.1 (0.69, 1.8) 0.65
Shannon index 0.01 1 (0.99, 1) 0.3

Gini-Simpson index 0.001 1.1 (0.86, 1.5) 0.38
Moran’s I 0.01 1 (0.94, 1.1) 0.66
Geary’s C 0.01 1 (0.99, 1) 0.61

IPP 0.01 1.1 (1, 1.2) 0.0017
INP 0.01 1 (0.99, 1) 0.47

Scraping

np > 1 proportion 0.01 1 (0.98, 1.1) 0.19
Mitotic proportion 0.01 1.4 (0.89, 2.3) 0.14
Shannon index 0.01 1.1 (1.1, 1.1) < 10−4

Gini-Simpson index 0.001 2 (1.6, 2.6) < 10−4
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Table S11

Summary of Cox proportional hazards models for the case where mutations alter cellular
fitness to a much lower extent (sp = sd = 0.0002). Hazard ratios (HR105) are computed at
time t = 105 for various putative biomarker schemes, for different tissue sampling schemes.
Other parameter values used are Nb = 20, Nm = 10, µ = 0.1 and those listed in Table 1.
Statistically significant values are in bold.

Unit change HR105 95% CI p

Whole lesion

np > 1 proportion 0.01 1.1 (0.99, 1.1) 0.076
Mitotic proportion 0.01 0.55 (0.13, 2.2) 0.4
Shannon index 0.01 1.1 (1.1, 1.1) < 10−4

Gini-Simpson index 0.001 3.8 (2.4, 6.1) < 10−4

Moran’s I 0.01 1.5 (1.1, 2) 0.0049
Geary’s C 0.01 0.97 (0.85, 1.1) 0.63

IPP 0.01 2.9 (2.5, 3.4) < 10−4

INP 0.01 1.1 (1, 1.2) 0.0029

Biopsy

np > 1 proportion 0.01 1 (0.99, 1) 0.65
Mitotic proportion 0.01 0.86 (0.51, 1.5) 0.58
Shannon index 0.01 1 (1, 1.1) 0.00042

Gini-Simpson index 0.001 1.8 (1.3, 2.5) 0.00067
Moran’s I 0.01 1 (0.95, 1.1) 0.6
Geary’s C 0.01 0.99 (0.98, 1) 0.52

IPP 0.01 1.1 (1, 1.2) 0.0018
INP 0.01 1 (0.99, 1) 0.21

Scraping

np > 1 proportion 0.01 1 (0.98, 1.1) 0.17
Mitotic proportion 0.01 0.67 (0.44, 1) 0.065
Shannon index 0.01 1.1 (1, 1.1) < 10−4

Gini-Simpson index 0.001 2.5 (1.7, 3.6) < 10−4
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Table S12

Effect of update rule on mutant fixation statistics in a spatial Moran model with selection
only. Summarized statistics from 105 runs of each update rule used in the simplified Moran
model as described in the Supplementary Text, in the case µ = 0. Proportion: the proportion of
simulations in which mutant fixation occurred. Mean, variance: the mean and variance of the
times to mutant fixation, across simulations in which this occurred. Simulations were run until
the population consisted entirely of either non-mutant cells or mutant cells.

Update rule Proportion Mean Variance

db 0.011 206 14144
dB 0.162 72.3 614
Db 0.170 78.7 700
DB 0.296 44.8 146
bd 0.009 244 19390
bD 0.154 81.3 719
Bd 0.162 73 595
BD 0.294 41.4 121
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Table S13

Summary of Cox proportional hazards models for the case where division precedes re-
moval. Hazard ratios (HR7) are computed at time t = 7. Parameter values used are Nm = 10,
sp = sd = 0.2, and µ = 0.1. Statistically significant values are in bold.

Unit change HR7 95% CI p

Whole lesion

np > 1 proportion 0.01 1.3 (1.1, 1.6) 0.002
Mitotic proportion 0.01 0.68 (0.17, 2.7) 0.59
Shannon index 0.01 1.1 (1, 1.1) 0.00046

Gini-Simpson index 0.01 1.2 (1, 1.3) 0.04
Moran’s I 0.01 1 (1, 1) 0.0097
Geary’s C 0.01 1 (1, 1) 0.36

IPP 0.0001 8.9 (2.8, 28) 0.00024
INP 0.0001 1.4 (1.2, 1.6) < 10−4

Biopsy

np > 1 proportion 0.01 1.4 (0.95, 2.2) 0.088
Mitotic proportion 0.01 1.2 (0.7, 1.9) 0.57
Shannon index 0.01 1 (0.99, 1) 0.44

Gini-Simpson index 0.01 1.1 (0.89, 1.4) 0.34
Moran’s I 0.01 1.2 (0.89, 1.6) 0.23
Geary’s C 0.01 0.99 (0.97, 1) 0.59

IPP 0.0001 1 (0, 106) 1
INP 0.0001 1 (0, 106) 1

Scraping

Shannon index 0.01 1 (1, 1.1) 0.0045
Gini-Simpson index 0.01 1.1 (0.98, 1.2) 0.13
np > 1 proportion 0.01 1.2 (1.1, 1.4) 0.002
Mitotic proportion 0.01 0.86 (0.56, 1.3) 0.5
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Table S14

Summary of Cox proportional hazards models for the case where mutation and prolifer-
ation are decoupled. Hazard ratios (HR30) are computed at time t = 30. Parameter values
used are Nm = 10, sp = sd = 0.2 and µ = 0.1. A number of mutations drawn from the Poisson
distribution with mean 0.5 are assumed to occur at each cell division, with each mutation be-
stowed independently upon a cell drawn uniformly at random from the lattice, with replacement.
Statistically significant values are in bold.

Unit change HR30 95% CI p

Whole lesion

np > 1 proportion 0.01 1.3 (0.55, 3) 0.56
Mitotic proportion 0.01 1.7 (0.22, 14) 0.6
Shannon index 0.01 1.4 (1.3, 1.5) < 10−4

Gini-Simpson index 0.01 4.1 (2.9, 5.7) < 10−4

Moran’s I 0.01 1 (1, 1) 0.031
Geary’s C 0.01 1 (1, 1) 0.17

IPP 0.01 3.6 (2.9, 4.5) < 10−4

INP 0.01 2.4 (2.1, 2.8) < 10−4

Biopsy

np > 1 proportion 0.01 5.7 (0.74, 44) 0.095
Mitotic proportion 0.01 0.48 (0.23, 1) 0.05
Shannon index 0.01 1 (1, 1) 0.078

Gini-Simpson index 0.01 1.1 (0.99, 1.3) 0.08
Moran’s I 0.01 1 (0.94, 1.2) 0.4
Geary’s C 0.01 1 (0.97, 1) 0.74

IPP 0.01 1.1 (1, 1.2) 0.016
INP 0.01 1 (0.99, 1.1) 0.14

Scraping

np > 1 proportion 0.01 0.93 (0.59, 1.5) 0.75
Mitotic proportion 0.01 0.96 (0.49, 1.9) 0.91
Shannon index 0.01 1.2 (1.1, 1.3) < 10−4

Gini-Simpson index 0.01 1.9 (1.5, 2.3) < 10−4
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Table S15

Summary of Cox proportional hazards models for the case where mutations are more
likely to be advantageous. Hazard ratios (HR30) are computed at time t = 30 for the case
Nm = 10, sp = sd = 0.2, and µ = 0.1. Here the probabilities of a mutation being advantageous,
neutral or deleterious are given by ppos = 0.8, pneut = 0.1 and pdel = 0.1, respectively.
Statistically significant values are in bold.

Unit change HR7 95% CI p

Whole lesion

np > 1 proportion 0.01 0.59 (0.25, 1.4) 0.21
Mitotic proportion 0.01 2.7 (0.34, 21) 0.35
Shannon index 0.01 1.3 (1.2, 1.4) < 10−4

Gini-Simpson index 0.01 3.1 (2.3, 4.2) < 10−4

Moran’s I 0.01 1 (1, 1) 0.71
Geary’s C 0.01 1 (1, 1) 0.21

IPP 0.01 2.6 (2.1, 3.3) < 10−4

INP 0.01 2 (1.7, 2.3) < 10−4

Biopsy

np > 1 proportion 0.01 2.8 (0.33, 23) 0.35
Mitotic proportion 0.01 1.1 (0.51, 2.1) 0.89
Shannon index 0.01 1 (1, 1) 0.19

Gini-Simpson index 0.01 1.1 (0.95, 1.2) 0.21
Moran’s I 0.01 1.1 (0.95, 1.2) 0.27
Geary’s C 0.01 0.99 (0.96, 1) 0.37

IPP 0.01 1.1 (0.99, 1.2) 0.07
INP 0.01 1.1 (1, 1.1) 0.03

Scraping

np > 1 proportion 0.01 1 (0.59, 1.7) 0.97
Mitotic proportion 0.01 1.9 (0.89, 4.2) 0.099
Shannon index 0.01 1.1 (1.1, 1.2) < 10−4

Gini-Simpson index 0.01 1.4 (1.1, 1.8) 0.0014
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Table S16

Summary of Cox proportional hazards models for the case where mutations are more
likely to be neutral. Hazard ratios (HR30) are computed at time t = 30 for the case Nm = 10,
sp = sd = 0.2, and µ = 0.1. Here the probabilities of a mutation being advantageous, neutral
or deleterious are given by ppos = 0.1, pneut = 0.8 and pdel = 0.1, respectively. Statistically
significant values are in bold.

Unit change HR7 95% CI p

Whole lesion

np > 1 proportion 0.01 1.1 (0.52, 2.4) 0.8
Mitotic proportion 0.01 0.14 (0.018, 1) 0.055
Shannon index 0.01 1.3 (1.2, 1.3) < 10−4

Gini-Simpson index 0.01 2.6 (2, 3.5) < 10−4

Moran’s I 0.01 1 (1, 1) 0.11
Geary’s C 0.01 1 (1, 1) 0.99

IPP 0.01 3.4 (2.7, 4.4) < 10−4

INP 0.01 2 (1.7, 2.3) < 10−4

Biopsy

np > 1 proportion 0.01 10 (1.2, 91) 0.034
Mitotic proportion 0.01 0.85 (0.43, 1.7) 0.65
Shannon index 0.01 1 (1, 1) 0.021

Gini-Simpson index 0.01 1.2 (1, 1.3) 0.02
Moran’s I 0.01 0.98 (0.87, 1.1) 0.74
Geary’s C 0.01 1 (0.97, 1) 0.85

IPP 0.01 1.1 (1.1, 1.2) 0.00092
INP 0.01 1.1 (1, 1.1) 0.0063

Scraping

Shannon index 0.01 1.1 (1.1, 1.2) < 10−4

Gini-Simpson index 0.01 1.7 (1.4, 2.2) < 10−4

np > 1 proportion 0.01 0.95 (0.6, 1.5) 0.83
Mitotic proportion 0.01 0.73 (0.41, 1.3) 0.29
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Table S17

Summary of Cox proportional hazards models for the case where mutations are more
likely to be deleterious. Hazard ratios (HR30) are computed at time t = 30 for the case
Nm = 10, sp = sd = 0.2, and µ = 0.1. Here the probabilities of a mutation being advantageous,
neutral or deleterious are given by ppos = 0.1, pneut = 0.1 and pdel = 0.8, respectively.
Statistically significant values are in bold.

Unit change HR7 95% CI p

Whole lesion

np > 1 proportion 0.01 3 (1.3, 6.8) 0.0079
Mitotic proportion 0.01 5.2 (0.75, 36) 0.096
Shannon index 0.01 1.2 (1.1, 1.3) < 10−4

Gini-Simpson index 0.01 2.4 (1.8, 3.2) < 10−4

Moran’s I 0.01 1 (1, 1) 0.0031
Geary’s C 0.01 1 (1, 1) 0.24

IPP 0.01 3.2 (2.5, 4.1) < 10−4

INP 0.01 1.9 (1.7, 2.2) < 10−4

Biopsy

np > 1 proportion 0.01 6.2 (0.63, 60) 0.12
Mitotic proportion 0.01 1.5 (0.74, 2.9) 0.27
Shannon index 0.01 1 (1, 1) 0.11

Gini-Simpson index 0.01 1.1 (0.98, 1.3) 0.1
Moran’s I 0.01 0.95 (0.84, 1.1) 0.36
Geary’s C 0.01 0.99 (0.96, 1) 0.29

IPP 0.01 1.1 (1, 1.2) 0.0033
INP 0.01 1.1 (1, 1.1) 0.00062

Scraping

Shannon index 0.01 1.1 (1.1, 1.2) < 10−4

Gini-Simpson index 0.01 1.6 (1.3, 2) < 10−4

np > 1 proportion 0.01 1.1 (0.73, 1.8) 0.57
Mitotic proportion 0.01 1.4 (0.7, 2.7) 0.35
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Figures

Figure 1. Depiction of the spatial simulation, a virtual biopsy, and the successive clonal
sweeps. A: Heat map of the lattice at a given point in time, with different colours representing
different numbers of positive mutations of the cells at those points. B: Depiction of the lattice
subset involved in a virtual biopsy. C: Time evolution of the proportions of cells with different
numbers of positive mutations, showing successive clonal sweeps. Results are averaged from
200 simulations with parameter values Nm = 10, sp = sd = 0.2 for five such genotypes (for figure
clarity).
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Figure 2. Prognostic value of random tissue sampling. A random sample of Ns = 103

(10% of the lesion) cells was sampled at time Tb = 80 and the prognostic value of the mitotic
proportion (A), Shannon index (B) and Gini-Simpson index (C) on this sample was considered.
Kaplan-Meier curves are plotted for each putative biomarker assessed, and in case, the values
across the simulations were separated into upper (red), upper middle (green), lower middle
(blue) and lower (black) quartiles. Only biomarkers that did not require spatial information could
be computed for this tissue sampling method. P-values are for the generalized log-rank test.
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Figure 3. Sampling the whole lesion improves the prognostic value. The prognostic value
of sampling the whole lattice at time Tb = 80 was assessed. Kaplan-Meier curves are plotted for
each putative biomarker assessed for biomarker values across the simulations were separated
into upper (red), upper middle (green), lower middle (blue) and lower (black) quartiles. P-values
are for the generalized log-rank test.
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Figure 4. Areas under ROC curves for putative biomarkers. The prognostic value of sam-
pling a circular biopsy at time Tb = 75 was assessed by considering the area under the curve
(AUC) of receiver-operator characteristic (ROC) curves as a function of censoring time. This
analysis confirmed the time-invariant predictive value of the IPP (red line) and clonal diversity
measures (blue and green lines), and lack of predictive value derived from the mitotic proportion
(black line) and proportion of cells bearing at least one abnormality (brown line). The worse-than-
random performance of the proliferation and Geary’s C measurs at short censoring times is likely
to be attributable to the stochasticity inherent in cancer development within the model: early
clonal expansions do not necessarily signify later cancer risk. Results from 1000 simulations for
each sampling scheme, with parameter values Nm = 10, sp = sd = 0.2, µ = 0.1, Nb = 20 and
Ns = 103. For comparison, the black dotted line denotes an AUC=0.5 (which would would be
achieved by a random predictor).
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Figure 5. Prognostic value of early versus late biopsies. For a range of sampling times Tb,
the virtual tissue was biopsied and the correlation between putative biomarker values and the
waiting time to cancer was computed. Results from 1000 simulations for each sampling scheme,
with Nm = 10, sp = sd = 0.2, µ = 0.1, Nb = 20 and Ns = 103.
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Figure 6. Serial biopsies provide slightly increased additional prognostic information.
Heat maps depicting the relative value of taking serial biopsies at different time points. Positive
values (warm colours) indicate that prognostic value was improved by taking the average
of biomarker value from both time-points; negative values (cool colours) indicate that more
information was available at the second time point alone than from the averaged time points.
Results from 1000 simulations for each pair of time points, with Nm = 10, sp = sd = 0.2, µ = 0.1
and Nb = 20. 53
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Figure 7. Additional biopsies at the same time point improves prognostication with di-
minishing returns. Graphs show the relationship between the correlation coefficient (between
each biomarker value and waiting time to cancer) and the number of biopsies collected at time
Tb = 50. Lines denote different measures based on the multiple biopsies: average biomarker
value across biopsies (red); maximum value (green); minimum value (blue); difference between
maximum and minimum values (black); and variance in values (cyan).
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Figure S1

Variation of the absolute value of the correlation coefficient, as a function of sampling
time Tb, for additional indices considered in Text S1. Data shown are for the case where
Nm = 10, sp = sd = 0.2, and µ = 0.1, over 1000 runs, for indices taken on circular biopsies with
radius Nb = 20.
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Figure S2

Cumulative distribution functions for the time to mutant fixation in a spatial Moran model
with von Neumann and Moore neighbourhoods. The model includes a single, neutral, irre-
versible mutation (sp = sd = 0, µ = 0) and each simulation is initiated with a single mutant cell in
the centre of the lattice. The blue and red curves correspond to the von Neumann and Moore
neighbourhoods, respectively. Left: The case µ = 0; results from 105 simulations. Right: The
case µ = 0.3; results from 2000 simulations.
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Figure S3

Cumulative distribution functions for the time to mutant fixation in a spatial Moran model
under different update rules. The model includes a single, neutral, irreversible mutation
(sp = sd = 0, µ = 0) and each simulation is initiated with a single mutant cell in the centre of the
lattice. Legend: B and D correspond to birth and death respectively, written in the order in which
these processes are implemented in the update rule, with capitalized letters indicating random
selection of cells biased by their inverse fitness to account for the effects of selective advantage.
Results are generated from 2000 simulations of a small 10× 10 lattice.

57

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2015. ; https://doi.org/10.1101/020222doi: bioRxiv preprint 

https://doi.org/10.1101/020222
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S4

Taking the difference across serial biopsies provides only marginal additional prognostic
information. Heat maps depicting the relative value of taking serial biopsies at different time
points. Positive values (warm colours) indicate that prognostic value was improved by taking
the difference between the biomarker value across the two time-points; negative values (cool
colours) indicate that more information was available at the second time point alone. Results
from 1000 simulations for each pair of time points, with Nm = 10, sp = sd = 0.2, µ = 0.1 and
Nb = 20.
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Figure S5

Maximizing biomarker values across serial biopsies provides only marginal additional
prognostic information. Heat maps depicting the relative value of taking serial biopsies at
different time points. Positive values (warm colours) indicate that prognostic value was improved
by taking the maximum of the biomarker value across the two time-points; negative values (cool
colours) indicate that more information was available at the second time point alone. Results
from 1000 simulations for each pair of time points, with Nm = 10, sp = sd = 0.2, µ = 0.1 and
Nb = 20.

59

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 27, 2015. ; https://doi.org/10.1101/020222doi: bioRxiv preprint 

https://doi.org/10.1101/020222
http://creativecommons.org/licenses/by-nc-nd/4.0/

