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Abstract

Microarray images consist of thousands of spots, each of which corresponds to a different biological material. The
microarray segmentation problem is to work out which pixels belong to which spots, even in presence of noise and
corruption. We propose a solution based on deep neural networks, which achieves excellent results both on simulated
and experimental data. We have made the source code for our solution available on Github under a permissive license.

1 Introduction

In a typical two-channel comparative hybridization exper-
iment, RNA from a control sample is tagged with a green
fluorescent dye while RNA from an experimental sample is
tagged with a red fluorescent dye. The tagged samples are
mixed, then hybridized to a microarray. A microarray is a
small glass slide printed with a rectangular array of thou-
sands of spots. Each spot contains a specific DNA probe
sequence, which during hybridization can bind to comple-
mentary RNA from the sample. If a specific RNA sequence
is expressed more strongly in the experimental sample than
in the control sample, then the corresponding spot will flu-
oresce more strongly under a green laser than under a red.
The difference in fluorescence can be measured by scan-
ning the array with both kinds of laser, then comparing
the scanned images using software.

To measure the expression difference of a DNA probe,
the software needs to know which pixels belong to the spot
corresponding to that probe and which pixels belong to the
background. This is the microarray image segmentation
problem. It is complicated by issues in the manufacture
and processing of arrays, which leads variation in the loca-
tion, shape, size and intensity of spots. The same issues can
also corrupt whole regions with streaks or blotches - as in
Figure 1 - within which the intensity of a pixel in a channel
is not a reliable indicator of the corresponding sequence’s
expression level.

A variety of algorithms and software packages have been
developed to solve the segmentation problem [1, 5]. These
algorithms and packages generally reflect approaches that
have been applied to the more general problem of image
segmentation [22], in which an image is broken down into
regions corresponding to perceptually distinct objects or ar-
eas. One of the most successful approaches to image seg-
mentation in recent years has been deep neural networks
(16, 6, 18, 9].

1.1 Deep neural networks

For a detailed introduction to modern neural networks, see
Bengio et al.’s upcoming book [2].

At a conceptual level, a deep convolutional neural net-
work is formed from a stack of layers, with the input at the
bottom and the output at the top. Each layer is composed
of a large number of neurons, which look for specific pat-
terns in the output of the layer below, and pass the intensity
of the pattern to the layer above.

The neural network is taught which patterns to look for
by reinforcement learning. In reinforcement learning, the
network is repeatedly presented with samples from a train-
ing set. If the network generates the correct output, then
the neurons that contributed to the output have their im-
portance in the network increased. If the network gives
an incorrect response, those same neurons have their im-
portance reduced. Over thousands of samples, the network
learns to generate the responses the trainer is looking for.

Neural networks have been an active area of research
since the 1960s, but have undergone a renaissance in recent
years thanks to significant improvements in both theory and
hardware. The most important advancement has been the
discovery of initialization and training schemes that work
on networks with many layers. These ‘deep’ neural net-
works have produced impressive results in a wide range of
computer vision problems.

Neural networks have been applied to the microarray im-
age segmentation problem previously [19], but the networks
used were shallow (three layers) and applied only as part of
a larger heuristic. In contrast, our inspiration was Ciresan
et al. [4], where a deep network was used to identify neuron
membranes in electron microscopy images.

2 Methods

Our approach is similar to Ciresan et al.’s. To decide
whether a pixel belongs to a spot or to the background,
we take various windows centred on that pixel and ask a
neural network to score each window on a scale of [0,1]. A
score near 0 means the network thinks the window is cen-
tred on a background pixel, while a score near 1 means it’s
centred on a spot pixel.

Given the scores of all the windows centred on a pixel,
the score of a pixel is their median. This leads to a score
map similar to Figure 1, which can be thresholded to de-
cide which pixels should be considered spot-pixels and which
should be considered background.

2.1 Datasets

Our data was taken from Lehmussola et al.’s [15] evalua-
tion of various approaches to the microarray segmentation
problem. Although old, the data Lehmussola et al. used for
their evaluations is freely available on the website associated
with their paper, and several authors since have used it as
a benchmark.
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Figure 1: An example of a corrupted area in a sub-array, together with the scores reported by our neural network.

Lehmussola et al.’s benchmark uses two datasets. The
first dataset is of simulated microarray images, created us-
ing the image generator of Nykter et al [17]. It contains 50
‘high-quality’ images and 50 ‘low-quality’ images. The low
quality set has a larger fraction of damaged or misplaced
spots, and a higher level of background noise. Each image
contains 1,000 spots, and comes with a ground-truth chan-
nel that indicates which pixels belong to spots and which
belong to the background.

The ground truth is a real-valued number [0, 1], but for
the purposes of training and testing a classifier we assumed
pixels with a ground truth less than 0.5 were background,
while the rest belonged to spots.

The second dataset contains five real microarray images,
all replicates from the same experiment. Since no ground-
truth was available, we hand-labelled 3,000 spots in six
blocks in one of the benchmark images. FEach pixel was
labelled as belonging to a good spot, belonging to a dam-
aged spot, belonging to a missing spot, or left unlabelled to
indicate that it belonged to the background. Our labellings
were approximate rather than exact, as we believe that a
large number of spots with mostly-correct labels form a bet-
ter training set than a small number of spots with entirely
correct labels.

As well as marking individual spots, we also used the
image editor to outline blocks of spots, even if the spots
within weren’t individually labelled. This let us sample ran-
dom background pixels without accidentally choosing a spot
pixel.

2.2 Preprocessing

To deal with the huge range of microarray pixel intensities,
we used the log-intensity of the pixels, and normalized the
logged images so that they had mean 0 and variance 1.

For the experimental benchmark, we generated windows
of 61 x 61 pixels, while for the simulated benchmark we gen-
erate windows of 41 x 41 pixels. These each contained about
3 x 3 spots, with the spots in the simulated benchmark be-
ing smaller than those in the experimental benchmark. The
windows have an odd width so that reflections and 90° ro-
tations of the window would still be centred on the same
pixel.

For each pixel, we generated 8 windows: the original
window, its reflection, the three 90° rotations of the original
window and the three 90° rotations of the reflected window.
Each of these windows was scored by the network, and the
median of the results was taken to be the score of the pixel.

2.3 Network architecture

Our neural network architecture is detailed in Table 2.3. It
was derived from the architecture used by Ciresan et al, but
with some differences.

First, our network did not use foveation or non-uniform
sampling. We felt these would be counter-productive for our
specific segmentation problem, as exact knowledge of where
a spot’s neighbours are seems important in deducing where
the spot itself is.

Second, our network used one fewer convolution layer, as
the 41 x 41 windows used for the simulated data benchmark
are smaller than the 64 x 64 windows used by Ciresan et
al. With a 41 x 41 input, the output after three convolution


https://doi.org/10.1101/020404
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/020404; this version posted June 3, 2015. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

layers and three max-pool layers had shape 1 x 1; a fourth
convolution layer would have added little.

Third, our network used several recent advances in neu-
ral network theory. These include overlapping convolution
kernels [14], dropout layers [11] and ReLU nonlinearities [8].
Our network also used a smaller stride for its convolution
layers, made possible by advances in GPGPU hardware.

Type Channels Kernel Stride
Data 2

Convolution 32 4 x4 1
ReLU 32

Max Pool 32 4 x4 2
Convolution 64 4 x4 1
ReLLU 64

Max Pool 64 4 x4 2
Convolution 96 4 x4 1
ReLLU 96

Max Pool 96 4 x4 2
Fully-connected 192

ReLU 192

Dropout 192

Fully-connected 2

Sigmoid 2

Table 1: Network architecture

2.4 Network training

We trained two networks, one for each benchmark. This was
necessary because of differences in array properties between
the two benchmarks (like spots in the simulated benchmark
being much smaller than those in the experimental bench-
mark).

In each case, the network was implemented using the
Caffe framework [12]. The weights were initialized using
the PReLU scheme [10], and the network was trained using
SGD with momentum, weight decay and a stepped learning
rate. For further details, the code and the model definitions
can be found on Github.

2.4.1 Simulated Data Training and Test Sets

We used low-quality images 1 through 25 from Lehmussola
et al.’s simulated dataset to generate the training and test
sets. In total, 800,000 windows were created, of which

e 25% were centred on pixels that belong to a spot.

e 25% were centred on pixels that belong to ‘damaged’
spots, which are either misshapen, an unusual size or
misaligned.

e 12.5% were centred on pixels that belong to the back-
ground.

e 12.5% were centred on pixels that belong to the back-
ground near damaged spots.

e 12.5% were centred on pixels that belong to the back-
ground near the perimeter of a block of spots.

e 12.5% were centred on pixels that belong to the back-
ground between different spots.

The first two classes constituted the positive examples and
were labelled 1, while the others were labelled 0. We orig-
inally sampled just from background pixels and spot pix-
els rather than from these specific classes, but found that
this lead to an implicit ‘class imbalance’ problem. Because
most spots are undamaged, the network wouldn’t learn to
recognise damaged spots, and would instead predict pixels
around damaged areas as if they were undamaged. Sim-
ilarly, because most spots lie in the interior of a block of
spots, the network wouldn’t learn to identify the boundary
of a block and instead would continue to predict spots where
none existed.

2.4.2 Experimental Data Training and Test Sets

For the experimental benchmark we generated 400, 000 win-
dows in much the same way as for the simulated data, but
using our hand-labellings as the ground truth. The re-
duced number of windows was because the number of hand-
labelled spot pixels is far smaller than the number of spot
pixels in the simulated data’s ground truths.

2.5 Visualization

Although it didn’t contribute directly to our results, we feel
it’s worth discussing the visualization of two-channel mi-
croarray images. The most common way to visualize a two-
channel microarray is to map the raw intensity values onto
[0, 255] and interpret them as the red and green channels of
a 24-bit image, as on the left-hand side of Figure 2.

The problem with this approach is that raw intensity
values have a range of [0,65536] (or 216), yet 90% of pixels
in a typical microarray have a value below 1,000. Although
this representation is perceptually faithful, it can hide many
weak spots that are in fact perfectly recognisable, as demon-
strated in Figure 2.

As an alternative, we propose mapping channels to 24-
bit RGB using

1
(r,9,b) = 255 x (lo, §(l0 + 51)711>

. Inc; — ps
li=clipg; | ————
’ P95 — D5

where ¢; is the intensity in channel ¢ and ps, pg5 are the fifth
and ninety-fifth percentiles of the log-intensities across all
channels. The effect of this transformation can be seen in
Figure 2.

In the above, ps; and pg; were chosen arbitrarily - if a
specific visualization comes out too light, ps can be replaced
with a higher percentile, while if the visualization comes out
too dark, pgs can be replaced with a lower percentile.

Normalization aside, we experimented with several dif-
ferent mappings of microarray channels onto colour chan-
nels. We found the most aesthetically pleasing to be map-
ping each channel onto R and B directly, with G being the
mean of the two.

3 Results

As discussed in Section 2.1, we benchmarked our approach
on the two datasets of Lehmussola et al.
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Traditional visualization

Logspace visualization

Figure 2: Traditional visualization of a two-channel microarray image versus the log-space visualization.

3.1 Simulated Data Benchmark

On the simulated data benchmark, we tested our model on
the 25 low-quality images that were not used for training,
along with the 50 high-quality images that were not used for
training. As in Lehmussola et al., in Table 2 we report the
pixel classification error rate and the discrepancy distance -
the average distance of a misclassified pixel from the nearest
pixel of the correct class. Both metrics were calculated for
each image individually, with the medians being reported
here.
We provide six algorithms for comparison:

FC is the fixed-circle approach, which applies a circular
mask of constant radius to each spot.

KM is the k-means approach of Bozinov and Rahnenfithrer
[3], which forms a foreground cluster and a back-
ground cluster from the pixels around a spot based
on their intensities in each channel.

HKM is the hybrid k-means approach also of Bozinov and
Rahnenfiihrer, which augments the KM approach with
a mask that can be used to eliminate outliers [3].

Together, FC, KM and HKM represent the best-performing
algorithms of those reported on in Lehmussola et al. The
next three algorithms are drawn from other papers that have
reported on the Lehmussola et al. benchmark.

AG is the adaptive graph method of Karimi et al. [13]
which uses minimum graph cuts to segment the re-
gion around a spot into foreground and background.

3D is the 3D spot modelling algorithm of Zacharia and
Maroulis [21] which models each spot as a 3D model,
then tries to approximate the model using a smooth
function generated by a genetic algorithm.

PASS is the probabilistically-assisted spot segmentation
algorithm of Gjerstad et al. [7], which iteratively fits
a Gaussian to a spot and uses the fit to decide which
pixels should be used to fit the next iteration.

The results of these six - plus NN, our neural network
method - on the simulated data benchmark can be seen in
Table 2. Our method matches the best existing methods on
three of the four metrics, only falling short on pixel error
rate on the low-quality data.

Most of our neural network’s 0.8% error rate on the low-
quality data is due to spots similar to the one shown in
the lower row of Figure 3. There, the spot is both shifted
from the grid and has low expression levels in both channels,
making the dislocation invisible even to a human - but not
to PASS’s statistical approach.

Measure Error (%) Discrepancy (0.01px)
Dataset Good Low  Good Low

FC 4.9 4.9 2.7 2.7

KM 0.0 2.5 0.0 4.1

HKM 1.7 2.0 1.6 2.9

AG 1.2 2.1 1.7 2.9

3D 0.0 1.2 0.0 1.8

PASS 0.0 0.0 0.0 0.0

NN 0.009 0.847 0.001 0.062

Table 2: Performance on the simulated data benchmark.

3.2 Experimental Data Benchmark

On the experimental data benchmark, we tested our model
on the four images not used for training. We used a simple
Hough-line based gridding heuristic to index the spots iden-
tified by our neural network, then calculated the expression
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Figure 3: Upper row: example of results for poor-quality simulated data. Lower row: zoom on the spot in seventh row,

first column, which has been badly misclassified.

ratio of each spot using Lehmussola et al.’s methodology.
Their methodology estimates the expression level of a spot
as the median of the pixel intensities assigned to the spot,
applies a morphological background correction [20] to the
levels, then takes the ratio of the corrected levels to be the
expression ratio of the spot.

Similarly to Lehmussola et al., we found that about
2,000 of the 12,000 spots were missing in one or more of
the images. On the basis of the expression levels of the re-
maining 10, 000 spots, we calculated the six pairwise correla-
tions and mean-absolute-errors, which can be seen in Figure
4. Unfortunately of the six algorithms given as comparison
on the simulated data, only the three from Lehmussola et
al. have readily-available results on this dataset; the other
three all benchmark on their own experimental microarray
datasets.

Our method improves on those detailed in Lehmussola
et al. in terms of correlation, but is slightly poorer than
the FC method in terms of mean absolute error. We believe
this is because the error is in terms of the ratio, which is
very sensitive to anomalously small denominators - some-
thing that is more of a problem for our method, which is
happy to assign a spot with an area of just a few pixels.
Clipping the expression ratios at the 99th percentile is an
easy way to counter this, and leads to a more respectable
0.22 for the median of the mean absolute errors.

An example of the outlines generated by our approach
can be seen in Figure 5.

4 Discussion

While our method performs well on the traditional bench-
marks, its greatest advantage is in it’s robustness. Array
images like Figure 1 are common in experimental work, yet
are absent from the microarray segmentation literature.

It’s also notable that our approach and network archi-
tecture are both similar to the one used by Ciresan et al. to
solve a completely different image segmentation task. This
indicates that our approach is likely to generalize very well
to different kinds of array and different kinds of corruption.
If the network repeatedly misclassifies a certain kind of cor-
rupted spot, all that is required to fix it is for a human to
label a few examples and add them to the training set.

Finally, these results were achieved on the back of a fairly
simple neural network architecture. As the field matures, we
expect the performance of neural networks on these kinds of
segmentation problems will improve with it. To encourage
this, we have made all our code available on Github® under
a BSD license.
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