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Abstract 34 

 35 

Computational tools are quickly becoming the main bottleneck to analyze large-scale 36 

genomic and genetic data. This big-data problem, affecting a wide range of fields, is 37 

becoming more acute with the fast increase of data available. To address it, we 38 

developed DISSECT, a new, easy to use, and freely available software able to exploit 39 

the parallel computer architectures of supercomputers to perform a wide range of 40 

genomic and epidemiologic analyses which currently can only be carried out on reduced 41 

sample sizes or in restricted conditions. We showcased our new tool by addressing the 42 

challenge of predicting phenotypes from genotype data in human populations using 43 

Mixed Linear Model analysis. We analyzed simulated traits from half a million 44 

individuals genotyped for 590,004 SNPs using the combined computational power of 45 

8,400 processor cores. We found that prediction accuracies in excess of 80% of the 46 

theoretical maximum could be achieved with large numbers of training individuals. 47 

  48 

 49 
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Introduction 50 

The astonishing rate at which genomic and genetic data is generated is rapidly propelling 51 

genomics and genetics research into the realm of big data1. This great opportunity is also 52 

becoming a big challenge because success in extracting useful information will depend on our 53 

ability to properly analyze extremely large datasets. The problems associated with big data 54 

become critical when, for instance, fitting Mixed-Linear Models (MLMs) and performing Principal 55 

Component Analyses (PCA)2–9. These analyses are used in a wide range of fields ranging from 56 

predictive medicine and epidemiology, to animal and plant breeding, or pharmacogenomics. 57 

However, when they are applied to large datasets, one needs to apply workarounds such as 58 

performing approximations3,8, restricting the applicability to particular cases9, and often, even 59 

the workarounds need at least one highly computationally demanding step5. Furthermore, these 60 

workarounds are not scalable. That is, they cannot accommodate increasing compute 61 

workloads and volumes of data because they are limited by the memory and computational 62 

power available within a single computer. As has happened in other fields1, to overcome these 63 

limitations the next step must be to move to software capable of combining the computational 64 

power of thousands of processor cores distributed across the compute nodes of large 65 

supercomputers. 66 

To fill this gap, we developed DISSECT (http://www.dissect.ed.ac.uk/), a highly scalable, easy-67 

to-use and freely available tool able to perform a large variety of genomic analyses with huge 68 

numbers of individuals using supercomputers. We showcase our tool by addressing the 69 

challenge of predicting phenotypes from genotype data in unrelated human populations. 70 

Phenotypic prediction is of central interest to many disciplines and is one of the driving forces 71 

behind large-scale genotyping and sequencing projects in a wide range of species10–14. Despite 72 

considerable efforts, predicting complex traits in unrelated humans has been an elusive 73 

goal12,15. Accurate prediction of complex traits is expected to be strongly dependent on the 74 
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availability of sufficiently large datasets11,15,16 and the capacity to analyze them together, 75 

therefore this being a good challenge to show DISSECT’s capabilities. With this in mind, we 76 

simulated a cohort of up to half a million individuals and used DISSECT and the aggregated 77 

power of up to 8,400 processor cores to analyze it. We showed that MLMs could predict 78 

quantitative traits with increasing accuracy as the sample size of the training cohort increased, 79 

and achieved over 80% of the theoretical maximum accuracy when the training cohort had 80 

470,000 individuals. Interestingly, our results also showed that the noise introduced by 81 

increasing SNP density has a detrimental effect on the prediction accuracy thus indicating that 82 

this increase may not always be desirable.  83 

 84 

 85 

Results 86 

Overview of DISSECT 87 

 88 

DISSECT can take advantage of the aggregate power of thousands of processor cores 89 

available in supercomputers to perform a wide range of genomic analyses with very large 90 

sample sizes.  It does that by distributing both data and computations over multiple networked 91 

compute nodes that share the computational task, each node having access to only a small 92 

portion of the data. Therefore, this computational approach is necessarily more involved than 93 

parallelization for desktops, workstations, or single compute nodes on a cluster (in the following 94 

text these will be referred to as a single compute node). In addition, the distribution of workload 95 

introduces a relative loss of computational power due to the need for communication between 96 

compute nodes, which is limited by the speed of the network connection. However, its broad 97 

scalability enables the analysis of datasets of sizes that are well beyond the computing capacity 98 

of a single compute node, and importantly it does it without the need of performing any 99 
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mathematical approximation. DISSECT can also analyze moderately large sample sizes with 100 

considerably reduced computational time, or run on a single computer when the sample size 101 

and computational requirements of the analyses do not require a supercomputer. DISSECT 102 

linear algebra computations are based on optimized versions of the ScaLAPACK17 libraries to 103 

ensure optimal computational performance. 104 

 105 

DISSECT implements several highly computational demanding analyses. Some of the most 106 

relevant are: performing PCA for studying population structure in large datasets; fitting 107 

univariate MLMs; fitting bivariate MLMs, which greatly increase power to detect pleiotropic 108 

loci18,  but require a computational time that is rougly eight times bigger than fitting univariate 109 

MLMs to datasets of the same size; regional MLM fitting for studying the accumulated variance 110 

explained by the alleles within genomic regions19,20, each region having similar computational 111 

cost regardless of the number of SNPs fitted but requiring and independent fit; standard 112 

regression models with very large number of fixed effects (i.e. fitting the markers of a whole 113 

chromosome as fixed effects when extremely large sample sizes are available). DISSECT also 114 

allows other computationally less demanding analyses such as the prediction of individual 115 

phenotypes from estimated marker effects (i.e. polygenic scores21) or standard GWAS 116 

analyses. Furthermore, it also implements optimized routines similar to those found in GEMMA5 117 

which allow DISSECT to run much faster analyses with less resources when it is possible. For 118 

instance, by diagonalizing the covariance matrix, thus enabling fast MLM fitting. 119 

 120 

Computational performance 121 

 122 

We performed MLM and PCA analyses using simulated cohorts (Online Methods) of different 123 

sample size (N) (Fig. 1) to show the computational capabilities of DISSECT. We selected these 124 
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two examples because they are highly computational demanding analyses, requiring a running 125 

time of O(N3). The analyses were run on the UK National Supercomputing Service (ARCHER), 126 

a supercomputer with 4,920 computer nodes containing 9,840 processors with 12 cores each 127 

(i.e. a total of 118,080 cores available). DISSECT is able to fit, after eight iterations, a MLM to a 128 

sample of 470,000 individuals and 590,004 SNPs in less than four hours using the aggregated 129 

power of 8,400 cores and a total of ~16TB of memory (~2GB of memory per core). The running 130 

time included estimation of the variances using REML22,23, best linear predictions of the 131 

individual’s genetic values and best linear predictions of SNP effects24,25. If we disregard the 132 

computational performance loss due to communication between nodes, we can roughly 133 

estimate the computational time required by a computer with one core to complete the analysis 134 

by multiplying the number of used cores with the computation time (core-hours). In this situation, 135 

the MLM fit would need 3.6 years (Fig. 1a). Performing a PCA for 108,000 individuals and same 136 

number of SNPs, required ~2 hours using 1,920 cores. That is, arround ~4,000 core-hours 137 

which would be equivalent to ~160 days of computation on a single core (Fig. 1b). All these 138 

results show both the high computational demands required for performing these analyses 139 

together with the ability of DISSECT to perform them. 140 

 141 

Prediction results with huge sample sizes 142 

 143 

We tested the accuracy of phenotypic prediction from genotype data when large numbers of 144 

individuals are available. To this end, more than half a million SNP genotypes for over half a 145 

million individuals were simulated based on linkage disequilibrium (LD) patterns and allele 146 

frequencies of Hapmap CEU population. Then, we simulated several quantitative traits by using 147 

both, different heritabilities (h2), and numbers of quantitative trait nucleotides (QTNs). In each 148 

case, we divided the cohort in two subsets, one for training the models and another for 149 

validating the predictions (Online Methods). Predictions were based on the effects of all 150 
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available SNPs estimated jointly from the MLM fit. As expected, prediction accuracy increased 151 

with the heritability of the trait and the size of the training dataset (Fig. 2). The MLM efficiently 152 

captured the effects of large numbers of genotyped and ungenotyped QTNs and its 153 

performance was unaffected by the number of QTNs affecting the trait (Fig. 2 and 154 

Supplementary Fig. 1). Importantly, high accuracies were only achieved when large numbers of 155 

individuals were used to train the prediction model. For instance, training the MLM with 470,000 156 

individuals yielded correlations of 0.72, 0.57, and 0.30 for traits with 10,000 QTNs and 157 

heritabilities of 0.7, 0.5, and 0.2, respectively. That is, between 86% and 68% of the theoretical 158 

maximum, which is the square root of the heritability. Simulated traits determined by 1,000 159 

QTNs gave very similar results to traits determined by 10,000 QTNs (Supplementary Fig. 1). We 160 

explored why even when training the models with this extremely large sample sizes, the limit of 161 

prediction accuracy was yet not close to the theoretical maximum. Estimation of QTN effects is 162 

very accurate (Supplementary Fig. 2), therefore we hypothesised that the loss in accuracy could 163 

be due to QTNs not being properly tagged by markers in the array, or due to the the noise 164 

introduced by the linkage disequilibrium structure of the genome. 165 

  166 

Prediction accuracy when all QTNs are genotyped 167 

 168 

An important question is whether one could reach the theoretical limit of prediction accuracy by 169 

genotyping or sequencing all QTNs26 whilst being unable to discriminate causal from non-causal 170 

variants. We simulated new phenotypes assuming the genotypes for all QTNs were included in 171 

the genotyping array. We repeated all our previous analysis and showed that the prediction 172 

accuracy for traits with 10,000 QTNs increased only slightly (Fig. 3). Traits with 1,000 QTNs 173 

give very similar results (Supplementary Fig. 3). Since this increase was not as high as we 174 

expected, it raises serious doubts that genotyping or sequencing the QTNs will improve 175 

prediction accuracy if the QTNs effects cannot be disentangled from the effects of other 176 
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correlated SNPs (Supplementary Fig. 4). These results indicate that the noise introduced by 177 

SNPs that are not QTNs significantly reduce the accuracy of prediction, even for very large 178 

number of individuals.  179 

 180 

Discussion 181 

We have presented DISSECT, a new tool to perform a wide range of genetic and genomic 182 

analyses that overcomes the limitations of single compute nodes, when huge sample sizes are 183 

available, without the need of performing approximations or compromises in terms of the model 184 

fitted to the data. An ever more pressing need if one considers the release of very large 185 

genotyped cohorts like the UK Biobank.  186 

We showcased DISSECT by addressing the timely topic of complex trait phenotypic prediction, 187 

which is of central interest to many disciplines. Prediction in unrelated humans has been an 188 

elusive goal12,15 due to a combination of suboptimal statistical methodology, small training 189 

datasets, and lack of computational tools. DISSECT allowed us to fit MLMs to near 500,000 190 

individuals and around 600,000 SNPs reaching prediction accuracies of up to 80% of the 191 

theoretical maximum on simulated quantitative traits. We also have shown that the noise 192 

introduced by highly correlated SNPs has a strong impact on the accuracy of prediction when 193 

using MLMs for prediction, and therefore increasing SNP density could have an adverse effect 194 

on the accuracy of prediction even for extremely large sample sizes. 195 

Although we showcased DISSECT by addressing the problem of phenotypic prediction in 196 

humans, it can also be used in plant and animal breeding and perform a wide range of 197 

commonly used analyses. In addition, DISSECT is under active development and there are 198 

several new functionalities planned or in testing stage. 199 

 200 

Methods 201 
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 202 

Simulations 203 

We used the HAPGEN 2 software27 for simulating half a million individuals -based on linkage 204 

disequilibrium (LD) patterns and allele frequencies of 2,543,887 SNPs available in the Hapmap 205 

2 (release 22) CEU population28- from which we generated subsets of 20, 40, 60, 80, 120, 300, 206 

and 500 thousand individuals. From each subset of data, we used 90% of the individuals for 207 

training the models and the rest for validating the predictions. The only exception was the 208 

subset including 500,000 individuals, where we used 470,000 individuals for training and 30,000 209 

for validation. We simulated polygenic and highly polygenic quantitative traits that were 210 

determined by 1,000 and 10,000 randomly distributed quantitative trait nucleotides (QTNs), 211 

respectively. The QTNs were randomly distributed across the genome and their combined 212 

effects explained 20, 50 and 70% of the phenotypic variation. That is, we simulated heritabilities 213 

(h2) of 0.2, 0.5, and 0.7. The QTNs effects were the same for all data subsets. Six replicates 214 

were performed for each trait heritability and genetic architecture. Each replica assumed 215 

different QTNs with different random effects. 216 

The simulations were performed using DISSECT assuming an additive genetic model: 217 

𝑦𝑖 = 𝑔𝑖 + 𝑒𝑖 =∑𝑧𝑖𝑗𝑢𝑗

𝑚

𝑗=1

+ 𝑒𝑖 218 

with yi being the quantitative trait of individual i, uj the effect of QTN j drawn from a normal 219 

distribution with mean zero and variance one, m the number of assumed QTNs and ei a normal 220 

distributed random variable with zero mean and variance 𝜎𝑔
2(1 − h2)/h2 where 𝜎𝑔

2 is the 221 

variance of gi. zij is the normalized genotype of individual i at QTN j. It is defined as 𝑧𝑖𝑗 =222 

(𝑠𝑖𝑗 − 𝜇𝑗)/𝜎𝑗 where sij is the number of reference alleles at QTN j of individual i, 𝜇𝑗 = 2𝑝𝑗 and 223 

𝜎𝑗 = √2𝑝𝑗(1 − 𝑝𝑗). 𝜇𝑗 and 𝜎𝑗 are the mean and the standard deviation of the reference allele 224 

among the individuals genotyped, defined as a function of the reference allele frequency (pj). 225 
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 226 

MLM and Prediction 227 

 228 

MLMs analyses were performed using DISSECT. For our first set of analyses we excluded all 229 

SNPs not present on the Illumina Human OmniExpress BeadChip (i.e., we analyzed a total of 230 

590,004 SNPs), that is only ~20% of the QTNs were genotyped. Later, we investigated the 231 

effect of having the QTNs in the genotyping array and included the remaining ~80% of QTNs to 232 

the genotyping array.  233 

The model fitted was: 234 

𝑦𝑖 = 𝜇 +∑𝑧𝑖𝑗𝑎𝑗

𝑚

𝑗

+ 𝑒𝑖 235 

where 𝜇 is the mean term and ei the residual. zij is the normalized genotype of individual i at 236 

QTN j. The vector of random SNP effects a is distributed as N(0, 𝐈𝜎𝑢
2). ∑ 𝑧𝑖𝑗𝑎𝑗

𝑚
𝑗  is the total 237 

genetic effect for individual i. The phenotypic variance-covariance matrix is var(𝐲) = 𝐕 =238 

𝐙𝐙T𝜎𝑢
2 + 𝐈𝜎𝑒

2. 𝜎𝑢
2 and 𝜎𝑒

2 were fitted using the AI REML method22,23. SNP effects were estimated 239 

using the formula24: 240 

𝐚 = 𝜎𝑢
2𝐙𝑇𝐕−1(𝐲 − 𝛍) 241 

SNP effects were used as an input for DISSECT to predict phenotypes on the validation cohort. 242 

DISSECT computes the prediction for individual i as a sum of the product of the SNP effects 243 

and the number of reference alleles of the corresponding SNPs: 244 

𝑦�̂� =∑
(𝑠𝑖𝑗 − 𝜇𝑗

∗)

𝜎𝑗
∗ 𝑎𝑗

𝑙

𝑗=1

 245 

Where sij is the number of copies of the reference allele at SNP j of individual i, l is the number 246 

of SNPs used for the prediction, and aj the effect of SNP j estimated from the MLM analyses. 𝜇𝑗
∗ 247 
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and 𝜎𝑗
∗ are the mean and the standard deviation of the reference allele in the training 248 

population. 249 

 250 
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Figures 337 

 338 

 339 

Figure 1: Computational requirements for MLM and PCA. 340 

(a, b) Computational time (blue lines, left axis) and number of processor cores used (red lines, 341 

right axis) in log scale for MLM (a) and PCA (b) analyses as a function of sample size. Core-342 

days is the amount of time in days required to complete the analyses multiplied by the number 343 

of cores used. It is a roughly estimate of the computational time a single computer with a single 344 

core would require for performing the analyses if DISSECT scaled perfectly (i.e. there was not 345 

computational performance penalization due to communication between computer nodes). 346 

 347 
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 348 

Figure 2: Prediction accuracy of MLM as a function of sample size and heritability. 349 

Correlation between true and predicted phenotypes as a function of cohort size for a trait 350 

determined by 10,000 QTNs. Black, blue and red curves represent heritabilities of 0.2, 0.5, and 351 

0.7, respectively. Constant dashed lines indicate the theoretical maximum achievable for each 352 

heritability. Error bars are two times the standard deviation.  353 

 354 
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 355 

Figure 3: Prediction accuracy when all QTNs were genotyped.  356 

Correlation between true and predicted phenotypes as a function of the cohort size when the 357 

trait is determined by 10,000 QTNs. Black, blue and red curves represent traits with heritabilities 358 

of 0.2, 0.5, and 0.7, respectively. Solid lines are the correlations obtained when all QTNs were 359 

genotyped. Dotted lines are the correlations obtained when only ~20% of QTNs were 360 

genotyped. Constant dashed lines indicate the maximum theoretical correlation for each 361 

heritability. 362 

 363 

 364 
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