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Abstract 
Transcription factors (TFs) recognize small DNA sequence motifs directly or 
through their sequence-dependent structure. While sequence composition and 
degeneracy are verified to be the defining factors of TF binding specificity, the 
role of conformational dynamics of the DNA remains poorly understood. With 
growing evidence from next generation sequencing (NGS) data suggesting the 
inadequacy of sequence-only models, alternative models for describing the TF 
binding preferences are required, wherein the conformational dynamics 
presents an attractive option. Here, we report a novel method (DynaSeq) which 
accurately predicts DNA-conformational ensembles for genomic targets of TFs. 
Using DynaSeq we demonstrate how the dynamics of binding sites and their 
distal flanking regions can be used to elucidate TF-binding patterns for two 
model systems: cell type-specific binding of STAT3 and chromatin structural 
specificity of 3 functional TF classes viz. pioneers, settlers and migrants. We find 
that TF preferences in both these systems can be accurately explained by the 
conformational dynamics of their binding sites and their distal flanking DNA 
regions. Conformational dynamics not only distinguishes binding sites from 
genomic backgrounds in STAT3; it also points to a modular organization of their 
surrounding regions. Further, the differential binding modes of STAT3-DNA 
reveal a potential mechanism of cellular specificity. Our model identifies clear 
signatures to accurately classify pioneer, migrant and settler TF targets from the 
dynamics of distal flanking regions. This suggests that the chromatin preferences 
of TFs are significantly influenced by the intrinsic conformational dynamics of 
the DNA surrounding the TF binding sites.  
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Introduction: 
The physical basis of protein-DNA interactions has thus far been investigated 
from the perspective of direct recognition of nucleic acid bases by 
complementary TF residues or through an indirect recognition of sequence-
dependent DNA structure[1-4].  While the former ignores the differential 
accessibilities of DNA bases in the double helix the latter assumes the existence 
of a unique and exclusive structure of the DNA. We have previously, developed 
techniques to thread DNA sequences onto the structure of a known protein-DNA 
complex and determine the energy of native and designed sets of sequences[5-
11]. Using these predicted intrinsic DNA energies, sequence specificity of the 
DNA structure in a given protein-DNA complex was successfully explained. 
However, focused on the assumption of an energetically most favorable 
structure, none of these methods addresses the dynamics of the molecules. Since 
the system has been assumed to be rigid the role of conformational dynamics in 
shape component or indirect readout mechanism of protein-DNA recognition has 
been overlooked.  
 
In addition to the assumption of a static structure of the binding site the role of 
its flanking regions and their structure at a genomic scale also remains 
unexplored. Since most high resolution studies on this subject rely on crystal 
structures of TFs bound with small DNA fragments (typically just 7-8 bp DNA), 
structural information away from the binding sites are unavailable and 
commonly ignored[12]. Yet, structural patterns around the binding sites may be 
crucial for cellular and in vivo (versus in vitro) TF binding specificities [13]. It is 
therefore important to develop a method to investigate the sequence-dependent 
DNA-conformational dynamics at a genomic scale and examine its role in binding 
site recognition.. Here, we present a novel approach, called DynaSeq to model 
DNA sequence specificity by sequence-dependent conformational ensembles. 
DynaSeq is a set of support vector regression models (SVMs), trained over 
molecular dynamic trajectories of tetranucleotides and thoroughly benchmarked 
by cross-validation during the training of the model followed by  comparison  of 
the  predictions with structures in protein data bank (PDB).  
 
We investigated the role of conformational dynamics in TF binding by applying 
DynaSeq to two model systems. In the first case, the DNA conformational 
dynamics of genome-wide binding sites of STAT3 reported in four distinct cell 
types[14] were predicted and analyzed. We report that the DNA conformational 
dynamics successfully explains observed genome-wide STAT3 binding data with 
high accuracy, without explicit use of sequence information. Further, DynaSeq 
reveals distinct blocks of information-rich regions whose importance to TF 
binding falls off at different rates. Conformational dynamics profiles of sequence 
data as well as the consensus DNA conformation alignments with PDB structure 
reveal cellular-specificity and a potential mechanism of recognition.  
 
We also looked into the patterns of TF recognition in the chromatins using 
DynaSeq. Recently TFs have been characterized as pioneer, migrant and settler 
factors [15].  We investigated if these three groups of TFs recognize similar DNA 
structures and whether the members of each group can be predicted directly 
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from the DNA conformational dynamics of their binding sites and/or flanking 
regions.  
 
Analysis of putative binding sites within 200 base pairs stretches in both the 
above systems indicates that sequence regions flanking the core binding sites are 
highly informative for TF binding preferences. These findings are significant 
because they may provide a missing link between condition-specific TF binding 
and the description of cellular environments. Taken together, this study provides 
a novel approach to study DNA structural dynamics at a genomic scale and 
indicates that information about TF-DNA binding is contained not only in the 
exact site of TF-binding but also extends to much larger flanking region of DNA.  
 

Results:  
DynaSeq takes a DNA sequence as input and for each base position it predicts a 
60-dimensional ensemble (12 conformational parameters reported by the 3DNA 
program[16] with 5 bins each) (See Methods). DynaSeq was benchmarked and 
employed to investigate the conformational ensembles of STAT3’s genome-wide 
binding sites and to distinguish between pioneer, migrant and settler TFs. 
 

Development and benchmarking of DynaSeq:  

DynaSeq was trained on Molecular dynamic (MD) simulations data of 136 unique 
tetranucleotides, represented by 60-dimensional conformational ensemble for 
each nucleotide position (see Supplementary Methods SM1-SM7; Supplementary 
Results SR1; Supplementary Table ST1). To evaluate DynaSeq, we created 
independent training and test sets in a leave-one-tetranucleotide-data-out 

fashion; train the ensemble populations for all base positions in 135 
tetranucleotides and test the predictive power for the left-out 136th. Results from 
an exhaustive set of 136 combinations were pooled and evaluated.  
 
The predictive model in each case is a set of 60 SVMs (one SVM for each 
ensemble dimension), where the inputs to the SVM are identities (A, C, G or T) of 
a DNA base and its sequence neighbors within a window and the outputs are the 
corresponding ensemble populations. Figure 1 summarizes the prediction 
performance of these cross-validated models. We trained and tested various 
window spans and found that a 5-nucleotide window is optimum for the 
prediction model. Based on this optimized model, most of the populations are 
well predicted (~87%) with an absolute error of 5 percentage points (global 
mean for each bin is 20%) (Figure 1b). A high correlation (R=0.88) between the 
predicted and observed values in the entire population range further indicates 
the stability of the prediction model (Figure 1c). Furthermore Figures 1(c) and 
(d) indicate that the populations, highly skewed from their global 20% value are 
estimated well albeit with a slightly higher error rate than for the values in the 
middle. However, the worst-case MAE is only about 6% (observed in the first bin 
of the helical twist) providing confidence for its genome-wide applicability.  
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We also evaluated DynaSeq as a predictor of static DNA structure in addition to 
dynamics utilizing solved crystal structures in Protein Data Bank (PDB). The 
results indicate that real DNA structures could be favorably modeled from their 
predicted dynamics with an RMSD of 3.74Å compared to 6.28Å for randomly 
generated sequences. This result also corresponds to a negative Z-score of 1.38 
(all median values used). (Supplementary Results SR2, and Supplementary 
Tables ST2 and ST3). These results provide additional support for DynaSeq 
applicability on a blind data set. 
 
Thus, DynaSeq, which can capture sequence-dependent patterns of 
conformational dynamics, is a powerful tool providing useful insights into TF-
DNA binding. Furthermore, owing to its low computational cost DynaSeq makes 
its highly feasible to investigate the conformational dynamics of the high-
throughput genomic data being produced at an unprecedented scale.  
 
Our aim is to obtain biological insights into the genome-wide TF recognition 
process using conformational dynamics through DynaSeq. Even though some of 
the information that DynaSeq produces may also be obtained from DNAShape [2], 
there are significant differences, as the latter cannot produce all the information 
provided by DynaSeq. Firstly, DNAShape gives only four structure-based 
parameters and hence does not provide comprehensive prediction of DNA 
structure. More importantly, conformational ensembles can exclusively be 
computed by DynaSeq hence making a comparison between structure and 
dynamics possible. On the technical side, conformations used in DNAShape are 
derived from Monte Carlo simulations whereas DynaSeq is based on MD, even 
though it is not clearly know which proves to be a better predictor for DNA 
structure. Nevertheless, we compared the four predicted parameters of 
DNAShape with all the 60 ensemble bin population predictions of DynaSeq (and 
also the 12 parameters denoting its averaged structure) for all unique DNA 6-
mers. Even though the conformational parameter definitions do not have an 
exact correspondence between the two sets, we observed good agreement 
between several pairs particularly the propeller twist from both methods and 
other pairs involving the DNAShape’s minor groove width (Pearson correlation 
exceeding 0.4 in both cases) suggesting a reasonable degree of consistency 
between the two approaches (Detailed comparisons in Supplementary Table 
ST4).  In summary, even though some similar information on DNA descriptors 
can be obtained by DNAShape, DynaSeq makes possible a more thorough analysis 
of both structure and dynamics.  
 

DNA conformational dynamics in STAT3 target sequences: 

STAT3 is an important TF with numerous cellular functions. [17]. It is a key 
regulator of immune response, interacting with other key factors leading to its 
phosphorylation, dimerization and translocation to the nucleus, where it binds 
the promoters of downstream host defense genes, regulating their expression. 
The mechanism by which STAT3 recognizes its DNA targets is not well described 
and hence its binding to DNA under different cellular contexts is nearly 
indistinguishable [14, 18]. Even though a canonical sequence motif 
(TCCnnnGAA) has been reported, it appears to be non-essential for STAT3 
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binding[14]. The absence of a core sequence motif in all STAT3-bound genomic 
targets prompts us to look for an alternative model of TF recognition and DNA 
conformation provides an excellent opportunity to do so.  Interestingly, the role 
of DNA shape in distinguishing STAT1 and STAT3 binding  mode to its target has 
been recently suggested[19] further strengthening our idea of a using 
conformational dynamics for target selection. We recently discovered a novel 
non-canonical target of STAT3 in Saa gene with the help of our DNA-structure 
threading method Readout [7, 20].  To investigate the DNA-conformational 
dynamics of STAT3 targets, we exploited its genome-wide binding site data in 
four distinct cell types available in the public domain [14, 18, 21]. Four cell types 
namely (1) Embryonic Stem Cell [22] (2) CD4+ T cells [23] (3) AtT-20 
corticotroph cells [24] and (4) macrophages [25] for which ChIP-Seq  data are 
available were analyzed. These ChIP-Seq experiments for all four cell-types have 
been performed independently, addressing specific questions focused in 
corresponding publications. We have earlier reported an integrated analysis of 
these results [14] and compiled a set of STAT3 from the cell-type specific data. 
The same targets have been reused in this work for a genome-wide 
conformational dynamics analysis as per the protocol summarized in Figure 2. 
General and cell-specific conformational dynamics patterns, revealed from this 
analysis are presented in the following.  
 
Overall conformational dynamics of genome-wide binding sites: 

As illustrated in Figure 2, we aligned stretches of putative binding sites reported 
from ChIP-Seq data by their summit positions and analyzed the patterns of 
conformational dynamics in contrast to random genomic backgrounds at various 
alignment positions. We computed the Mean Absolute Divergence (MAD) of 
conformational ensembles, which quantifies how the individual alignment 
positions of binding data differ from the controls over a large distance range, in 
terms of conformational dynamics-derived features (Figure 3(a)). MAD scores 
indicate binding site regions surrounding the summit to be composed of four 
distinct regions such that the extent of conformational divergence within each 
region follows a specific pattern. The first, ~ 19-nucleotide window Region-I, 
(summit +/-9 bases) has the expected highest MAD scores as this is the region, 
where the TF is presumed to directly bind its anticipated sequence-specific 
binding site. We observe that the divergences at the summit positions are 
smaller than the adjacent regions  (positive slope in Region-I), along expected 
lines as the summit position of STAT3 binding region corresponds to the linker 
region of its canonical binding motif, whereas the actual binding regions are a 
few bases apart [14]. More interestingly, there appears a Region-II (10th to 50th 
base positions from the summit), in which the divergence variation is almost 
constant (the slope of the linear regression curve within this region is 0.0062, 
which is about 1/3rd of the slope of the regression curve of the next region) 
indicating an equal contribution to TF recognition from all the bases within this 
region.  In the Region-III (position 50-100), the information falls off almost 
linearly and suddenly drops at its boundary with the next region (d~100). In the 
last region (Region-IV), the distribution becomes flat again (slope falling to about 
half as compared to the previous region), slowly converging to a background 
value (Figire 3(a)). A non-zero background value is indicative of random 
variations and provides a good reference point for other meaningful positions. 
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For this particular plot, similar patterns are observed in the dynamics and the 
averaged structure. However, Pearson correlations between predicted values 
from fitted linear models in each region are consistently higher, which suggests 
that the former is a more accurate reflection of TF-binding activity. Since all 
these correlation coefficients are reasonably high (0.44 to 0.86 for the dynamics 
model) their contributions to TF activity are statistically appealing.  
 
We next analyzed the conformational dynamics in and around the neighborhood 
of Region-I by plotting divergence scores of individual conformational 
parametres for a 25-nucleotide window placed at the summit position. Here, we 
show plots from a selected number of conformational parameters prop_tw, shift, 
tilt and buckle and twist dynamics and for selected parameters for the averaged 
structures (Figure 3(b), complete set of heatmaps for the divergence scores for 
the 12 conformational parameters are included in Supplementary Figure SF4). 
We observe that certain features (predicted ensemble population in a bin for a 
given conformational parameter such as prop_tw slide, opening, roll, stretch and 
rise) show a largely constant divergence within the distance range considered. 
Higher value of rise is generally indicative of the elongation of minor or major 
groove, which results in a possible increase in chromatin accessibility, and its 
prominence in our data is consistent with the previous reports on their role in 
DNA recognition[26, 27]. However, this type of position-independent divergence 
of ensemble populations could simply be an sign of compositional biases of 
nucleosome-free or of other regions involved in DNA-binding and hence the 
divergences in certain positions for several other conformations such as shift, tilt, 
buckle and twist are probably more meaningful for specificity. For example, -5 to 
-8 base positions are characterized by high buckle conformation, whereas 
positions +2 to +12 are more informative in terms of shift and tilt parameters. 
The enriched bins near the summit positions for some of the parameters (slide 

and twist) are not skewed in just one direction but are separated by a disfavored 
bin between two or more enriched bins. This observation is unique to few 
parameters as the conformational features of most other parameters show a 
systematic shift only in one direction. The two distinct conformations for these 
parameters seem to form stable STAT3 target complex indicating the possibility 
of multiple and compound binding patterns.  The complex statistics of these 
conformational parameters and their clear role in target recognition by TFs may 
possibly be utilized in designing high affinity targets and DNA inhibitors, not 
investigated in this work. 

 
To estimate the collective role of several neighboring bases for distinguishing 
binding site sequences from controls, we developed simple multiple linear 
regression (MLR) classifiers using DynaSeq-predicted ensemble populations as 
the model inputs. The prediction performance of these models is a good measure 
of binding site information contained in a certain window (size=W). To estimate 
whether the ensemble populations (60xW-dimensions) are more (or less) 
informative than sequence information (4xW-dimensions) or the DynaSeq-
derived averaged structure (12xW-dimensions), similar models were created for 
them as well. Several cross-validation models were developed by training 80% of 
the sampled data, testing the remaining 20% and averaging the performances 
from these cycles. We point out that cross-validation is somewhat ‘unfair’ to the 
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dynamics-based models compared to sequence and structure (due to a larger 
number of features  that could lead to over-fitting on training data, thereby 
reducing the predictive ability on the test samples), especially for the larger 
window sizes. Nonetheless, if we can show that the dynamics models perform 
better or equally well compared to sequence and structure based models, their 
superiority would be convincingly established. Figure 3(c) shows the results 
obtained from these cross-validated models. It becomes clear that at the summit 
and nearby positions, the dynamics based models perform better than sequence 
and structure; especially at small window sizes (small windows are less likely to 
be over-trained and reflect a more realistic scenario for comparison). At the very 
least, we have clearly established that the structure and dynamics carry all the 
information contained in the sequence (in a latter section, we convincing 
establish that dynamics is consistently more informative than a static structure 
in its predictive power). Interestingly, the sequence-encoded DNA-
conformational dynamics remains informative more than 100 bases away from 
the summit position, which is also revealed by the MAD score presented in 
Figure 3(a). Finally, more than 70% of the binding site data could be 
distinguished from control sequences using dynamics alone at the summit 
positions, which is clearly better than sequence-based PWMs as reported 
earlier[14].   

 
Conformational ensemble and cellular specificity:  

In order to determine the relative effectiveness of sequence, structural and 
dynamics-based features in modeling the cellular specificity of STAT3 targets, we 
repeated the above MAD analysis for cell-type specific binding sites. Statistical 
details of these analyses are shown in Supplementary Figure SF5. We observed 
that the boundaries of the four regions identified above are more or less retained 
in at least two of the four cell-type specific data sets, macrophages and CD4+ T 
cells. However, the pattern of information distribution is vastly different in each. 
For example, the Region-II and not the Region-I is surprisingly more informative 
in macrophages unlike other cell-types. In the case of CD4+ T cells, Region-III is 
more informative than Region-II and the information drop at the start of Region-
IV is the sharpest of all cell types. In the case of ES and AtT-20 cell types, the 
information falls off from Region-I to IV almost linearly, suggesting that the four 
regions almost merge with each other. The exact reason of such variations in the 
information storage patterns is not clear, but it is remarkable that the DNA-
conformational dynamics carry a cell-specific signature for up to a couple of 
hundred bases from the summit, potentially playing a critical role in cell type-
specific patterns of gene expression. 
 
 
STAT3 binding centered on STAT3 DNA motif location: 
The results above provide useful clues into the general and tissue-specific 
recognition of genomic targets by STAT3. To gain further confidence in these 
results, we attempt to rule out the following potentially confounding factors: (a) 
Typical ChIP-Seq data have low base pair resolution and the precise location of 
STAT3 binding sites remains ambiguous. Therefore, some actual binding sites 
are likely to be present away from the summit positions. Although this bias 
cannot be completely eliminated, we believe that a significant enrichment of 
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binding sites beyond a certain distance from summit position is highly unlikely 
[25]. Yet, a dataset accurately aligned by their precise binding sites will be 
helpful in establishing beyond doubt, if the binding site distal regions contribute 
to STAT3 recognition, as proposed above (b) We compared in the previous 
sections, the ability of the sequence, structure and dynamics to explain the 
STAT3 binding sites by training MLR models and used cross-validation strategy 
to eliminate the undue advantage to higher dimensional models (e.g. dynamics 
versus sequence (Figure 3c). This in turn gives advantage to lower-dimensional 
models, due to an over-fitting on the training data for higher dimensional models. 
A thorough distinction between the effectiveness of sequence, structure and 
dynamics based models can be established if the three feature sets in them could 
be uniformly represented.  
 
We reanalyzed our data presented in the previous sections by addressing these 
two issues simultaneously. We created a subset of our ChIP-Seq reads by 
identifying the motif positions and aligning them by these motif centers, rather 
than the peak summit. This process of subset selection is disadvantageous as not 
all STAT3 binding sites actually contain a STAT3 DNA binding motif [14], and 
such STAT3 bound DNA having low quality motifs will be discarded. Indeed only 
a small fraction of ChIP-Seq reads were found to contain the detected sequence 
motif as shown in Table 1.  Nevertheless, it will provide an unambiguous 
understanding of the patterns of information contained in regions free from 
actual binding sites. To analyze this motif-centered data, we computed principal 
components (PC) of the structure and dynamics representations for all possible 
5-mer sequences (see Methods), which allowed us to compare the three feature 
sets under uniform dimensionality. We selected three sets of principal 
components (PC1-4, PC5-8, PC9-12) to create MLR classifiers similar to previous 
sections, and investigated their performance at the precise binding sites and in 
their neighborhood by placing a fixed window at these positions. Figure 4 shows 
the results of both (a) and (b) and provides powerful insights into the way 
conformational ensembles can be exploited by TFs for target recognition.  
 
We observed that at single base resolution, sequence, structure and dynamics 
present a similar level of information as their capacity to distinguish between 
STAT3 binding sites from genomic sequences is comparable as seen from results 
for a single base window size (WS=1 in Figure 4(a)). However, the gap between 
structure and dynamics versus sequence widens indicating that the former have 
a higher predictive power than the latter. The structure captures the 
cooperativity between the TF and its target bases, whereas the sequence works 
largely at single base resolution. Secondly, the performance with the first four 
principle components of structure and dynamics are almost identical and hence 
dynamics provide no advantage over structure in these components. However, in 
higher components (PC5-8 and higher; second and third row of Figure 4(a)), 
dynamics-based MLR models clearly outperform structure-only models. Thus, 
the conformational dynamics predicted by DynaSeq is a better representation of 
TF binding sites than sequence or structure alone.  Third the possible existence 
of three regions of ~50-base each is broadly supported by plots in Figure 4(a) 
and (b). We do observe secondary and tertiary peaks in the MLR model 
performances around the same intervals as reported above. However, clear 
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distinctions of the three regions, outlined by MAD in Figure 3 are blurred in 
some of these plots, which is likely due to multiple sources of noise in these 
positions and the fact that we are working on a smaller data set of only the 
sequences containing a sequence motif We also confirm the predictive power of 
regions far from the motif center, which is encoded in the sequence-dependent 
structure and dynamics.  Finally, Figure 4(b) supports that the conformational 
ensemble profiles as being tissue-specific as the shape and locations of 
secondary peaks in the MLR model show subtle differences in all principal 
components examined here.  
 

Comparison with the crystal structure of the STAT3/DNA complex in the PDB: 

Mouse STAT3 dimer structure in complex with DNA has been solved by Xray-
crystallography at 2.5Å resolution[28]. To gain insights into the cell-type-specific 
mechanism of complex formation, we compared the DynaSeq-derived averaged 
conformational parameters from each cell type with those in the crystal 
structure of the DNA in this complex. We created DNA sub-structures from the 
complex and aligned these “structure motifs” with consensus signatures derived 
from DynaSeq-predictions for the genomic data of each cell type (see methods). 
Curiously, ChIP-Seq summit positions from each cell type were found to align 
differently when a comparison between predicted structure for binding sites 
from a cell-type and the observed structure in the crystal structure was 
performed i.e. the best structural alignment was found to be slightly different 
sequence positions in different cell type data. Preferred “structural motifs” (here 
represented in terms of the DNA-sequence fragments in the PDB) from each cell 
type are shown in Figure 5a and the mapped alignments are shown in Figure 5c 
and Figure 5d. Macrophage targets of STAT3 are found to be unique in terms of 
size, location and the fact that only two (very similar) alignments were observed. 
The summit position from macrophage targets aligns best with the central base 
in the first TTT occurrence in the PDB structure (6th base from the terminal), 
seemingly indicating a STAT3 half-site, something seen commonly in 
macrophages as compared to the other cell types[14]. On the other hand, target 
data from ES cells and At-T20 cells share their top two alignments, a 
trinucleotide (CCC) at the 9th base position and CGT at the 11th base position. 
Target data from CD4+T cells aligned best around position 8, overlapping with 
the well-known half-site of the canonical motif (TCC). Longer alignments around 
the same position are also observed for the same cell-type data. Thus, when 
mapped to their crystal structure, we observe that the conformational ensembles 
at the summit position resemble slightly different sites. The data does indicate 
that there is a small shift between the exact summit positions with respect to the 
DNA structural elements required for binding, pointing to cellular specificity of 
information-rich regions (Supplementary Figure SF5). The crystal structure data 
also suggest that there are higher resolution changes in protein-DNA 
interactions across cell-types, requiring further investigation. 
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TF classification by target chromatin state: 

One of the mechanisms for context-specific activation of target genes by TFs is 
based on cooperative activation such that two or more TFs recognize their 
binding sites on promoter DNA sequence [29]. Cooperative recognition may 
follow either a prior formation of protein-protein complex or may proceed in a 
sequential manner whereby one TF opens the chromatin structure to enable the 
other to bind, the latter having no ability to binding closed chromatin state [15, 
30]. Decoding these sequential patterns of cooperativity is critical to understand 
the molecular basis of gene expression in the genomic context. Recently, three 
categories of TFs namely Pioneer Settler and migrant have been defined based on 
the kind of target chromatin structure recognized by them. Sherwood et al. have 
provided a comprehensive characterization of TFs into these three groups using 
DNase-Seq profiles [15]. The pioneer TFs, are proposed to be distinct from others 
as they can occupy and are capable of opening the previously closed chromatin. 
After a pioneer opens the chromatin, TFs belonging to the second group called 
settlers bind to their targets[31] followed by a third group called migrants, whose 
member TFs do not bind independently but instead require co-factor 
interactions for DNA binding. Despite providing profound insights into TF 
recognition of various chromatin states, it is unclear what structural features of 
TFs or DNA determine its above characterization. We investigated whether the 
features derived from the intrinsic DNA conformational dynamics of TF targets 
(predicted by DynaSeq) can be useful to characterize them into these groups. 
We started with the analysis of mouse ES cell DNase-Seq data described in 
Sherwood et al. Genome-wide TF-bound sequences were aligned by the first base 
of their respective motif start positions and computed the conformational 
ensemble signatures for each binding site followed by averaging of signatures for 
each TF (Figure 6). We investigated if there exists a common intrinsic 
conformational dynamics signature in the binding sites of these TF groups and if 
so, whether this signature is located on the putative binding-site, its flanking 
regions or both. As a first step, we asked whether the ensemble-based signatures 
of individual TFs within each of the three factor groups (pioneer, migrant and 
settler) correlate better within the group or across these groups. Figure 6(a) and 
6(b) show the Pearson’s correlations between these ensemble signatures. 
Position-wise inter-group and intra-group TF-TF correlations within a 10-base 
window clearly show that the ensemble profiles at binding sites would not be 
able to distinguish between TF groups. However, ensemble profile similarities 
sharply increase away from the binding sites both for inter- and intra-group 
comparisons. This may not be surprising given that the distal regions of all TFs 
may represent similar chromatin locations, leading to similar conformational 
dynamics. What is remarkable, however, is that the intra-group correlations are 
consistently better than the inter-group correlations for the entire range of 200-
base distances examined in this analysis. Figure 6(b) confirms that these 
differences are not caused by the presence of a few TFs with similar motifs, but 
present a more consistent trend. Heatmaps showing a comparison of predicted 
conformational dynamics, also demonstrate that the motif-depleted regions are 
powerful indicators of TF-TF similarities within a group Figure 6(a). Indeed, the 
two heatmaps in Figire 6(a) also show that pioneer and settlers are more similar 
to each other than each of them is to the migrants. This trend is in good 
agreement with the original definitions of migrants, which show weak activities 
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of their own and requires other co-factors for binding. However, a remarkable 
outcome of this analysis is that the TF-binding classification by the chromatin 
state is encoded in the conformational ensembles of distal binding-site-flanking 
DNA sequences and not in the TFs or the sequence-specific TF binding sites 
themselves. The lack of a common ensemble signature between intra-group TFs 
may reflect sensitivity to individual aligned positions. Since each base position 
within the binding site contributes differently to binding in each TF, a common 
signature for several TFs cannot be defined.  However, binding site-flanking 
regions are less position-specific and hence their TF-TF relationships are 
preserved. Irrespective of this possibility, the fact remains that distal binding-
site flanking regions carry a strong signature of the group to which a TF belongs.  
 
Furthermore, ensemble signatures are informative of TF-group can also be seen 
from the pair-wise mean absolute divergence of ensemble populations at each 
alignment position (Figure 6(c)). As shown in Figure 6(c), pioneer and migrant 
factors are the two most distinct TF groups where the ensemble populations in 
each bin differ from each other by a modest 40% of standard deviation at the 
binding sites but by as much as 80-100% in their flanking regions. Other pairs of 
TF groups also show similar patterns of divergences albeit with a much lesser 
magnitude. Since on the average each single base position carries strong pair-
wise divergence, a cumulative signature comprising multiple positions is 
expected to be a powerful predictor of TF group. To quantify the ability of 
ensemble profiles of sequence regions (+/-200 bases of motif start position), we 
developed bootstrap cross-validation linear regression models with the aim to 
predict one TF group versus the rest in a binary manner. These models were 
developed for 5-base windows at each position and then averaged for the entire 
range to obtain a single value or “propensity” of a TF to belong to a particular 
group. Figure 6(d) plots the propensity scores against the chromatin-opening 
index (taken from Sherwood et al.[15]). (Complete results are in Supplementary 
Table ST5). Remarkably, we observe near perfect classification in predicting 
pioneer TFs, as all-but-one TFs were correctly identified as belonging to the 
pioneer group. Migrant TFs were also identified but with a much reduced 
accuracy (Figure 6(d)). Finally, settler TFs could not be predicted using this 
strategy, because their ensemble properties are in the ranges between migrants 
and pioneers, making a linear regression model unsuitable to classify them. More 
complex computational models are likely to show a better performance for 
settler prediction. Current data are sufficient to demonstrate that the 
conformational dynamics of the three groups of TFs significantly differ from one 
another and that these differences are most obvious at distal binding site-
flanking regions instead of the binding sites. 
 
In an attempt to find useful features at the binding sites, which could distinguish 
between the three groups of factors, we identified GC-content to be of interest. 
Both pioneer and settler factors show high GC contents in their binding regions 
which are depleted in the case of migrant factors (Figure 6(e)). However, as 
shown in this figure, despite differences in their mean values, TF-TF variations in 
GC content (revealed by standard deviations) are too high to consider them for 
predicting a TF group from this property. Additionally there is little difference 
between pioneers and migrants, whereas our classification model can accurately 
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discriminate between these two groups. Conformational dynamics ensemble 

features therefore provide a much more comprehensive tool for TF group 
characterization.  

Discussion and Conclusions: 
The exact nature of conformational dynamics in TF recruitment, target search 
and complex stabilization is poorly understood and the role of binding site 
proximal and contiguous regions at genomic scales has not been reported before. 
Indeed, exactly how TFs scan the genome to find their binding sites is poorly 
understood [1]. Conformational dynamics of genomic targets of TFs has been 
elusive partly due to the lack of methods to perform large-scale simulations. 
With this work, we attempt to bridge this gap and show that predicted 
conformational dynamics provide important biological insights into TF 
recognition of its genomic targets. 
 
TFs -exemplified by STAT3 in this work- show highly redundant sequence-
specific DNA binding [32] yet at  the same time, they can exhibit highly specific 
cell-type activity. Moreover, the same family of TFs can be pioneers, settlers or 
migrants with no obvious link to their DNA-binding sequence. Here we show that 
the DNA regions much larger than the well known TF binding sequence motifs 
encode shape and specificity information for TFs, indicating that the genomic 
DNA is not just a ‘passive observer’ of TF binding. Instead, TF-DNA interaction is 
a mutual event between the DNA sequence and the TF, which act in unison to 
bring about a specific biological activity. This also reiterates the significance of 
allostery and cooperativity in protein-DNA recognition as implied from our 
previous works [29, 33-35] The allosteric effect in DNA targets in the recognition 
process is a subject of great interest [33-39]. Even though not reported for 
STAT3 targets before, our analysis suggests a role for allosteric control in STAT3 
target recognition. The observation of four distinct regions around a binding site 
revealed by our analysis tempts us to think of them as composed of “direct 

recognition”, “binding site stabilizing”, “recruitment and steering” and 
“background” properties. However, additional data is needed to establish a 
functional association of these modular regions and to establish whether such 
modularity is universal to all TFs.  
 
Binding site information away from the summits in STAT3 data are derived from 
ChIP-Seq and one could argue this to be an artifact caused by noisy mapping of 
summit positions. We believe that the number of binding sites is large enough to 
remove that noise. The clear separation between selected regions, existence of 
relatively sharp boundaries between them, and large changes in the slopes of 
piece-wise regression lines, suggest that distinct recognition regions do exist. 
The same has also been supported by a limited subset of data which contains 
high quality motifs, even though the sharpness witnessed in global data are 
somewhat blurred.  
 
DNase-Seq data for pioneer, settler and migrant factors are more reliable in 
terms of the exact location of binding sites due to the experimental resolution 
and because it is pre-aligned by sequence motifs. Here also we established a role 
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for conformational dynamics of binding site distal regions. Taken together, we 
believe that TF recognition in the genome is strongly influenced by 
conformational dynamics of much longer regions than previously assumed. 
 
In conclusion, in this work, we present a novel approach to predict sequence-
dependent DNA-conformational ensembles directly from sequences, which does 
not require detailed simulations of their structures. Models were trained and 
cross-validated on MD simulations of all unique tetra-nucleotides and perform 
well in various evaluation tests. Two complementary model systems 
representing genome-wide binding preferences of TFs in a cell type-specific and 
mode of TF-binding were analyzed. In the first, genome-wide binding 
preferences of STAT3 across different cell-types could be modeled using features 
derived from predicted conformational ensembles with accuracies better than 
sequence-only information. Superiority of DNA conformational dynamics over its 
static structures in accurately modeling STAT3 binding data is also established. 
In the second, TF characterization as pioneer, settler and migrant transcription 
factors is explained with high accuracy by conformational dynamics of regions 
distal to, but not at the binding sites. Together, these results suggest the 
cooperation of much larger chromatin regions in transcription factor binding 
activities than realized so far.  
 

Methods: 

Definitions: 

Base-step at a position i in a DNA sequence is defined as the pair of nucleic acid 
bases at position i and its 3’ neighbor i+1.  
 

Conformational parameters here correspond to 12 unique helical and base-step 
parameters: shear, stretch, stagger, buckle, prop-tw, opening, shift, slide, rise, tilt, 

roll and twist, as provided by the analyze option of 3DNA[16]. These are 
summarized in Supplementary Table ST1. While, helical parameters are 
straightforward to assign to each base position, the base-step parameters, 
strictly defined for a pair of bases rather than a single base have been also 
assigned to each base position i in this work. 
 

DNA conformational ensemble or just ensemble refers to the observed or 
predicted population density distribution of a single base (and by extension for a 
DNA sequence) in pre-defined bins (ensemble bins) representing ranges of base-
step conformational parameters. One ensemble contains population density data 
from 12 conformational parameters and is computed from snapshots of the 3D 
structure in a Molecular Dynamics (MD) trajectory or predicted by a trained 
model directly from the sequence. There are five bins for each conformational 
parameter, whose ranges are defined by equal frequency distribution in the 
global data (see Supplementary Methods SM2).   
 

Window size: This term has been used to indicate the sequence-window being 
under consideration in a given model and its actual value depends on the context. 
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For example, the final sequence-based SVM model DynaSeq is based on a 5-base 
window. Once the ensemble is predicted by DynaSeq, predicted features with a 
sequence window of a larger size are often concatenated, and the same is 
specified in the corresponding results accordingly.  
 

Principle components: 

Sequence data at each base position is encoded by a four dimensional binary 
vector, in which a non-zero value represents the identity of the base located at 
that position. Conformational ensembles is encoded by 60 dimensions 
(dynamics) and its averaged structure is encoded by 12 dimensions, as described 
above. Principle components of the dynamics and structure are computed by 
first predicting a them in their native dimensionality (60 and 12 respectively) for 
all the unique 6-mers (for consistency with DNA Shape, needed in some 
comparisons) and then computing their principle components using the R-
package prcomp (www.r-project.org).  

STAT3 targets data sets: 

Mapping and alignments: 

Genome-wide STAT3 binding data from ChIP-Seq experiments in four cellular 
and contexts, were used for these comparisons and obtained from our recent 
works, where the complete procedures for mapping and peak calling are 
described in detail[14]. Sequences were aligned by their motif centers detected 
by MEME-CHIP program [40] . In each case three motifs were detected and 
sequences containing these motifs were compiled for motif-aligned analysis.  
 
Cell type names are abbreviated as MO for macrophages, ES for embryonic stem 
cells, T4 for CD4+ T cells and AT for At-T20 cells. 
 
ChIP-Seq summit or simply a summit position in TF binding site data is defined 
as a genomic position, where a local maxima of the number of aligned sequence 
reads is observed. This position is believed to be the midpoint of a putative 
binding site and multiple summits each corresponding to an independent 
putative binding site are observed in a single ChIP-Seq experiment. 
 
Control genomic sequences: Genomic background sequences for each set of 
STAT3 binding sites are equally sized sequences centered at the random control 
tags taken from the corresponding ChIP-Seq library data of the four cell types 
considered in this work.  
 

Pioneer, migrant and settler factor data sets: 

List of pioneer and migrant factors was taken from the supplementary tables 
provided in[15]. Binding site coordinates data were taken from the related 
online resource located at 
 (http://piq.csail.mit.edu/data/v1.3.calls/140906.mES.calls.tar.gz) from the 
same authors (data was downloaded on October 1, 2014 and has been 
reorganized on the authors’ website since then). Final list of pioneer and migrant 
TFs used in the current work is shown in Supplementary Table ST5, along with 
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chromatin opening index from the original source and pioneer propensity score 
predicted by our method.  

Feature enrichment analysis: 

Predicted population in a bin or the averaged value of a conformational 
parameter represents a feature, which may or may not contain information 
about sequence specificity. Predicted conformational ensemble for each position 
in the data set is expected to have a score of 0.20 (there are five equal probability 
bins) and this reference can in principle be used to determine 
specificity/enrichment of ensemble features in ChIP-Seq data sets. However, 
actual genomic sequences may have different nucleotide composition than those 
used in defining equal frequency bins and therefore signatures of target 
sequences are determined by comparing predicted ensemble populations 
between ChIP-Seq data with those for the random genomic ones. A specific 
divergence D for a between control and real ChIP Seq ensemble for a feature F  is 
computed as: 

 

�� �
� �������� � � � ����	
�� � 

�	����	
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Here feature F refers to the population of a single conformational bin 
(comparison of dynamics), or averaged predicted value of conformational 
parameter (comparing of structures), <x> and �(x) respectively denote the 
average and standard deviation of x. Thus 60 and 12 divergence scores at each 
position (distance from the summit) respectively characterize how the dynamics 
and structure of observed targets differs from control. 
 
Assuming the random sequences to be non-binding, we trained multiple linear 
regression (MLR) classifiers to distinguish between binding and non-binding 
sequences. Inputs to these regression models are predicted ensemble 
populations for all nucleotide positions within a fixed window size and expected 
output is a score representing the probability of the sequence being binding or 
not. In all cases training is performed over 80% of the sequences, selected 
randomly and tested on the remaining 20% data. Five such cycles of sampling 
are carried out and performance scores are averaged. In order to make a fair 
comparison of dynamics-based models with sequence-only and structure-only 
models, similar independent MLR models were generated for each of these 
feature sets as inputs. MLR coefficients were obtained using GLM package in R 
programming environment and prediction scores were for the test data were 
computed using in-house dedicated scripts, all implemented in R[41]. 

Prediction of pioneer, migrant and settler propensity: 

Prediction of pioneer, migrant and settler propensities for a TF is performed in 
two steps i.e. bootstrapped regression models trained over features from small 
sequence sliding windows (5-base window in all cases) followed by averaging 
over all window positions over all bootstrapped cycles. For example, when 
predicting pioneer propensity of a TF, first a class label of +1 or 0 is assigned to 
all pioneers (positive class) or non-pioneers (control class) respectively. A 60-
dimensional ensemble signature is computed for each TF at each position (motif 
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start +/-200) by taking the average ensemble from all its binding sites.  Using a 
5-base window at a specific alignment position for all TFs a regression model is 
trained in a bootstrapping cross-validation i.e. training 70% randomly sampled 
data and finding predicted score for the remaining 30%. Sampling and training 
are repeated for 100 bootstrap cycles and the sliding window is moved for all 
alignment positions (200*2+1 minus 4 terminal positions). All predictions from 
all bootstrap and sliding window predictions are averaged to obtain a single 
propensity score. Three such independent propensity scores corresponding to 
pioneer, migrant and settler as positive class respectively for each TF are 
obtained in this way.  
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Table 1. Summary of sequence motifs in STAT3 binding sites detected by MEME.  
  E-value #sites Sequence logo 
ES cells Motif 1 1.0e-303 400 

 
Motif 2 5.1e-113 130 

 
Motif 3 7.1e-8 31 

 
T4 cells Motif 1 9.3e-222 420 

 
Motif 2 5.6e-48 112 

 
Motif 3 5.7e-24 92 

 
AT cells Motif 1 2.0e-176 285 

 
Motif 2 4.5e-10 31 

 
Motif 3 3.5e-5 74 

 
MO 
cells 

Motif 1 5.1e-35 15 

 
Motif 2 9.2e-26 51 

 
Motif 3 4.5e-11 278 

 
All data Motif 1 3.3e-147 274 

 
Motif 2 1.9e-16 33 

 
Motif 3 4.8e-11 63 
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Figure 1. Cross-validation predictability of DNA conformational ensembles at each base position 
(a) variation of mean absolute error (absolute difference between prediction and observed 
population density in each bin) with training window size. Standard deviation in the overall data 
is shown in red, whereas other values represent cross-validation performances (b) Overall 
cumulative frequency of absolute error distribution at window size=5. Prediction for each base in 
any position of a tetranucleotide is counted once and errors computed are for the left out sets of 
leave-one-tetranucleotide cross-validations. First few populations are labelled.  (c) Scatterplot of 
predicted versus observed population in all bins and all conformational parameters (d) Mean 
absolute error averages within each bin of all parameters. 
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Figure 2. Flowchart for the analysis of genome-wide STAT3 binding sites. (a) ChIP-Seq peaks are 
first aligned by their summit positions and a data set of genomic sequences around summit 
positions (200 bases on either side) is compiled. Equal number of randomly tagged genomic 
sequences is also collected to serve as control. (b) DynaSeq is used to predict conformational 
ensemble for each position in each binding site and control sequences. This returns a 60-
dimensional feature vector representing conformational ensemble (dynamics model) at each 
position in each sequence.  Averaged values of 12 conformational parameters (structure model) 
are also obtained. Feature values between control and binding data are compared at each 
position individually (feature divergence) and as an average of all features (Mean absolute 
divergence or MAD). (c) Multiple linear regression models are created to assess the ability of 
computed features within a window to distinguish binding site sequences from controls. 
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Ensemble bin 

 
Figure 3.  Enrichment of conformational ensemble features in STAT3-binding sites compared to 
genomic controls: (a) Variation of Mean absolute divergence (MAD) with distance from summit 
position (moving average of 3-base window), indicating how different is the DNA structural 
dynamics  profile in binding site sequences compared to control data. Sequence regions as far as 
200 bases from the summit positions show sufficient enrichment in each ensemble populations. 
MAD scores show sudden drops at about 18, 50 and 100 base positions from the summits, 
suggesting that the genomic sequences form distinct structural blocks each with a potentially 
different role in nucleotide positions in the sequence.  Four contiguous regions are labeled and 
piece-wise linear regression plots are used to show that the slopes (m) within each region are 
distinctly different  and that the dynamics fit regression model with better correlations (r) in 
each region.(b) Conformational variations at short distances from the summit positions. Some 
parameters show a constant position-independent variation indicating general compositional 
bias, whereas others form a clear structural signature (e.g. higher of tilt at specific 5’ positions 
and a clear pattern of high buckle in -6 to -9 base positions). Many of the conformational 
populations are also reflected in their predicted average structures. (c) Ability of cross-validated 
linear regression models to distinguish genome-wide STAT3 target sites from genomic 
backgrounds, and thereby explain the results of ChIP-Seq experiments. Similar regression models 
of various window sizes  are created from sparse-encoded sequence, predicted conformational 
ensembles and predicted averaged structure. Regression model performance at position “d” and 
“–d” are computed in a cross-validation manner and the AUC of ROC indicating predictability of 
models to identify unseen binding sites from the two models are averaged. These plots show that 
the sequences far from summit position contain significant structural information, which may be 
crucial for transcription factor activity. 

(a) 

  

(b) 
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Figure 4. Specificity of STAT3 binding sites aligned by MEME-detected sequence motifs in terms 
of information contained in a set of four principle components. (a) Three motifs were detected by 
MEME in the overall data and sites containing these motifs are used to develop self-trained MLR 
models using differently defined 4 features derived from sparse-encoded sequence,  sets of four 
principal components (PC1-4, PC5-8 and PC9-12) from structure and dynamics based ensembles 
(b) Sequence motifs similar to (a) derived for STAT3-sites for each motifs and sequences 
collected for each cell-type independently. Structure is found to provide long-range cooperativity 
between nuclic acid sites (supported by the observation of higher performances on larger 
windows), and dynamics-based ensembles easily outperforms averaged structure-based models 
establishing the significance of conformational ensemble in addition to a static structure. 
Predictability of STAT3 sites at distances away from motif center support the conclusions 
derived from preceding sections (see manuscript text). 
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Figure 5. Structural regions 
containing summit positions from 
binding sites taken from different 
cell-types align to different positions 
of DNA in a crystal structure 
reported in the Protein Data Bank.  
Alignments are scored by the 
average of the 12 Pearson 
correlations between pairs of 
conformational parameters from 
predicted and observed structures. 
(a) Clustering cell-types and 
sequences in terms of alignment 
scores.  Sequence names used are 
the ones observed in PDB and the 
number attached to the sequence at 
the end is the position of the first 
base in PDB at the start of an 
alignment. (b) Crystal structure of 
STAT3 complex with a DNA target 
sequence taken from PDB 
(presumed biological unit, PDB ID: 
1bg1) (c) DNA molecule extracted 
from crystal structure and the  best-
aligned predicted region of the 
genomic targets from four different 
cell types (d) Same information as in 
(c) mapped to the sequence 
observed in PDB.  

  (a) 
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Figure 6 (a) TF-TF correlations between 10-base windows ensemble profiles. Motif-enriched positions 
show poor correlations between or within a TF group presumably because the importance of individual 
positions is highly TF-specific and TF-TF alignments distort any potential similarity. On the other hand 
motif-depleted regions show strong intra- and inter-group correlations, as distant regions become more 
and more similar to one another. However, intra-group TF-TF correlations are significantly better than 
inter-group correlations, especially in motif-depleted regions. Heatmaps show how TFs within the three 
groups of factors correlate with one another (b) Detailed distributions of the data for selected positions 
in (a), which confirms statistical significance of difference. (c) pairwise mean absolute divergence 
between factor groups, showing pioneer/migrant comparison is most significant as their mean 
ensemble populations differ from each other by about 100% of standard deviation. (d) Prediction 
performance of binary classifiers based on multiple linear regressions of ensemble-based features. 
Even though, the exact performance shown in this plot may be somewhat exaggerated due to 
redundancy between training and test data sets (similar TFs being present in the data), a relationship 
between conformational dynamics and pioneer behaviour detected in (a-c) is well supported (e) 
Average GC-content in the binding sites of each factor groups (standard deviations across TFs in 
pioneer and migrants shown as error bars). There is a significant GC-content enrichment in pioneers 
and settlers, but the same is accompanied by large inter-factor variation  
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