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Abstract11

A major limitation in the analysis of genetic marker data from polyploid organisms is12

non-Mendelian segregation, particularly when a single marker yields allelic signals from13

multiple, independently segregating loci (isoloci). However, with markers such as mi-14

crosatellites that detect more than two alleles, it is sometimes possible to deduce which15

alleles belong to which isoloci. Here we describe a novel mathematical property of codom-16

inant marker data when it is recoded as binary (presence/absence) allelic variables: under17

random mating in an infinite population, two allelic variables will be negatively correlated18

if they belong to the same locus, but uncorrelated if they belong to different loci. We19

present an algorithm to take advantage of this mathematical property, sorting alleles into20

isoloci based on correlations, then refining the allele assignments after checking for consis-21

tency with individual genotypes. We demonstrate the utility of our method on simulated22

data, as well as a real microsatellite dataset from a natural population of octoploid white23

sturgeon (Acipenser transmontanus). Our methodology is implemented in the R package24

polysat version 1.5.25
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Introduction26

Polyploidy, both recent and ancient, is pervasive throughout the plant kingdom (Udall27

& Wendel, 2006), and to a lesser extent, the animal kingdom (Gregory & Mable, 2005).28

However, genetic studies of polyploid organisms face considerable limitations, given that29

most genetic analyses were designed under the paradigm of diploid Mendelian segregation.30

In polyploids, molecular markers typically produce signals from all copies of duplicated31

loci, causing difficulty in the interpretation of marker data (Dufresne et al , 2014). If signal32

(e.g. fluorescence in a SNP assay, or peak height of microsatellite amplicons in capillary33

electrophoresis) is not precisely proportional to allele copy number, partial heterozygotes34

may be impossible to distinguish from each other (e.g. AAAB vs. AABB vs. ABBB)35

(Clark & Jasieniuk, 2011; Dufresne et al , 2014). However, under polysomic inheritance (all36

copies of a locus having equal chances of pairing with each other at meiosis), it is possible37

to deal with allele copy number ambiguity using an iterative algorithm that estimates38

allele frequencies, estimates genotype probabilities, and re-estimates allele frequencies39

until convergence is achieved (De Silva et al , 2005; Falush et al , 2007). Genotypes cannot40

be determined with certainty using such methods, but population genetic parameters can41

be estimated.42

The situation is further complicated when not all copies of a locus pair with each other43

with equal probability at meiosis. “Disomic inheritance” refers to situations in which the44

locus behaves as multiple independent diploid loci (Obbard et al , 2006); similarly, one45

could refer to an octoploid locus as having “tetrasomic inheritance” if it behaved as two46

tetrasomic loci. In this manuscript we will refer to duplicated loci that do not pair with47

each other at meiosis (or pair infrequently) as “isoloci” after Obbard et al (2006). When48

a genetic marker consists of multiple isoloci, it is not appropriate to analyze that marker49

under the assumption of polysomic inheritance; for example, if allele A can be found at50

both isoloci but allele B is only found at one isolocus in a population, the genotypes51

AAAB and AABB are possible but ABBB is not (excluding rare events of meiotic pairing52

between isoloci). Markers from autopolyploids that have undergone diploidization are53
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likely to behave as multiple isoloci; a locus may still exist in multiple duplicated copies,54

but the chromosomes on which those copies reside may have diverged so much that they55

no longer pair at meiosis, or pair with different probabilities (Obbard et al , 2006). This56

segregation pattern is also typically the case in allopolyploids, in which homeologous57

chromosomes from two different parent species might not pair with each other during58

meiosis. Further, meiotic pairing in allopolyploids may occur between both homologous59

and homeologous chromosome pairs, but at different rates based on sequence similarity60

(Gaeta & Pires, 2010; Obbard et al , 2006), which often differs from locus to locus even61

within a species (Dufresne et al , 2014). Waples (1988) proposed a method for estimating62

allele freqencies in polyploids under disomic inheritance, although it requires that allele63

dosage can be determined in heterozygotes (in his example, by intensity of allozyme bands64

on a gel) and allows a maximum of two alleles per locus, with both isoloci posessing both65

alleles. De Silva et al (2005) describe how their method for estimating allele frequencies66

under polysomic inheritance, allowing for multiple alleles, can be extended to cases of67

disomic inheritance, but require that isoloci have non-overlapping allele sets, and do not68

address the issue of how to determine which alleles belong to which isolocus.69

Given that marker data do not follow straighforward Mendelian laws in polyploid70

organisms, they are often recoded as a matrix of ones and zeros reflecting the presence71

and absence of alleles (sometimes referred to as “allelic phenotypes”; Obbard et al , 2006).72

In mapping populations such binary data can be useful if one parent is heterozygous for73

a particular allele and the other parent lacks that allele, in which case segregation may74

follow a 1:1 ratio and can be analyzed under the diploid testcross model (Swaminathan75

et al , 2012; Rousseau-Gueutin et al , 2008) (other ratios are possible, in which case the76

testcross model does not apply). However, in natural populations, inheritance of dominant77

(presence/absence) markers typically remains ambiguous, and such markers are treated as78

binary variables that can be used to assess similarity among individuals and populations79

but are inappropriate for many population genetic analyses, e.g. tests that look for80

departures from or make assumptions of Hardy-Weinberg Equilibrium (Clark & Jasieniuk,81

3

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2016. ; https://doi.org/10.1101/020610doi: bioRxiv preprint 

https://doi.org/10.1101/020610
http://creativecommons.org/licenses/by/4.0/


2011).82

Microsatellites are a special case given that they have multiple alleles, allowing for the83

possibility of assigning alleles to isoloci, which would drastically reduce the complexity84

of interpreting genotypes in allopolyploids and diploidized autopolyploids. For example,85

if an allotetraploid individual has alleles A, B, and C, and if A and B are known to86

belong to one isolocus and C to the other, the genotype can be recoded as AB at one87

isolocus and CC at the other isolocus, and the data can be subsequently processed as if88

they were diploid. If two isoloci are sufficiently diverged from each other, they may have89

entirely different sets of alleles. This is in contrast to other markers such as SNPs and90

AFLPs that only have two alleles (except in rare cases of multi-allelic SNPs), in which case91

isoloci must share at least one allele (or be monomorphic, and therefore uninformative).92

With microsatellites, one could hypothetically examine all possible combinations of allele93

assignments to isoloci and see which combination was most consistent with the genotypes94

observed in the dataset, but this method would be impractical in terms of computation95

time and so alternative methods are needed. Catalán et al (2006) proposed a method96

for assigning microsatellite alleles to isoloci based on the inspection of fully homozygous97

genotypes in natural populations. In their example with an allotetraploid species, any98

genotype with just two alleles was assumed to be homozygous at both isoloci, and therefore99

those two alleles could be inferred to belong to different isoloci. With enough unique100

homozygous genotypes, all alleles could be assigned to one isolocus or the other, and both101

homozygous and heterozygous genotypes could be resolved. However, their method made102

the assumption of no null alleles, and would fail if it encountered any homoplasy between103

isoloci (alleles identical in amplicon size, but belonging to different isoloci). Moreover, in104

small datasets or datasets with rare alleles, it is likely that some alleles in the dataset will105

never be encountered in a fully homozygous genotype. The method of Catalán et al (2006)106

was never implemented in any software to the best of our knowledge, despite being the107

only published methodology for splitting polyploid microsatellite genotypes into diploid108

isoloci.109
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In this manuscript, we present a novel methodology for assigning microsatellite alle-110

les to isoloci based on the distribution of alleles among genotypes in the dataset. Our111

method is appropriate for natural populations, as long as the dataset can be split into112

reasonably-sized groups of individuals (∼ 100 individuals or more) lacking strong pop-113

ulation structure. It is also appropriate for certain mapping populations, including F2,114

recombinant inbred lines, and doubled haploids. It can be used on organisms of any115

ploidy as long as each subgenome has the same ploidy, for example octoploid species with116

four diploid subgenomes or two tetraploid subgenomes, but not two diploid subgenomes117

and one tetraploid subgenome. Negative correlations between allelic variables are used118

to cluster alleles into putative isolocus groups, which are then checked against individual119

genotypes. If necessary, alleles are swapped between clusters or declared homoplasious120

so that the clusters agree with the observed genotypes within a certain error tolerance.121

Genotypes can then be recoded, with each marker split into two or more isoloci, such that122

isoloci can then be analyzed as diploid or polysomic markers. Our method works when123

there are null alleles, homoplasy between isoloci, or occasional meiotic recombination be-124

tween isoloci, albeit with reduced power to find the correct set of allele assignments. We125

test our methodology on simulated allotetraploid, allohexaploid, and allo-octoploid (hav-126

ing two tetrasomic genomes) data, and compare its effectiveness to that of the method127

of Catalán et al (2006). We also demonstrate the utility of our method on a real dataset128

from a natural population of octoploid white sturgeon (Acipenser transmontanus). Our129

methodology, as well as a modified version of the Catalán et al (2006) methodology, are130

implemented in the R package polysat version 1.5.131

Materials and Methods132

Rationale133

Say that a microsatellite dataset is recoded as an “allelic phenotype” matrix, such that134

each row represents one individual, and each allele becomes a column (or an “allelic135
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variable”) of ones and zeros indicating whether that allele is present in that individual136

or not. Under Hardy-Weinberg equilibrium and in the absence of linkage disequilibrium,137

these allelic variables are expected to be independent if the alleles belong to different138

loci or different isoloci. However, if two alleles belong to the same locus (or isolocus),139

the allelic variables should be negatively correlated. This is somewhat intuitive given140

that the presence of a given allele means that there are fewer locus copies remaining in141

which the other allele might appear (Fig. 1A). The negative correlation can also be proved142

mathematically (Supplementary Materials and Methods). We use “correlation” in a broad143

sense here; “negative correlation” means that the presence of one allele is associated with144

the absence of another allele or vice versa.145

Algorithm for clustering alleles into isoloci146

Preliminary clusters: the alleleCorrelations function147

An overview of our algorithm is presented in Fig. 2. To test independence of two binary148

allelic variables, we use Fisher’s exact test since it is appropriate for small sample sizes,149

which are likely to occur in typical population genetics datasets when rare alleles are150

present. A 2-by-2 contingency table is generated for the test, with rows indicating presence151

or absence of the first allele, columns indicating presence or absence of the second allele,152

and each cell indicating the number of individuals in that category (Fig. 1B). A one-tailed153

Fisher’s exact test is used, with the alternative hypothesis being that more individuals just154

have one allele of the pair than would be expected if the allelic variables were independent,155

i.e. the alternative hypothesis is that the odds ratio is less than one, indicating a negative156

association between the presence of the first allele and the presence of the second allele.157

This alternative hypothesis corresponds to the two alleles belonging to the same isolocus,158

whereas the null hypothesis is that they belong to different isoloci and therefore assort159

independently. The P-values from Fisher’s exact test on each pair of allelic variables160

from a single microsatellite marker are then stored in a symmetric square matrix. We161

expect to see clusters of alleles with low P-values between them; alleles within a cluster162
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putatively belong to the same isolocus. For clustering algorithms, zeros are inserted along163

the diagonal of the matrix, since the P-values are used as a dissimilarity statistic. The164

function alleleCorrelations in polysat 1.5 produces such a matrix of P-values for a165

single microsatellite marker. The same function also produces two sets of preliminary166

assignments of alleles to isoloci, using UPGMA and the Hartigan & Wong (1979) method167

of K-means clustering, respectively. The n.subgen argument is used to specify how many168

subgenomes the organism has, i.e into how many isoloci each locus should be split.169

Population structure can also cause correlation between allelic variables, for example170

if two alleles are both common in one subpopulation and rare in another. Because correla-171

tion caused by population structure can potentially obscure the correlations that are used172

by our method, the alleleCorrelations function checks for significant positive correla-173

tions (after Holm-Bonferroni multiple testing correction) between allelic variables, which174

could only be caused by population structure, scoring error (such as stutter peaks being175

mis-called as alleles, and therefore tending to be present in the same genotypes as their176

corresponding alleles), or linkage disequilibrium (if two isoloci are part of a tandem du-177

plication on the same chromosome, as opposed to duplication resulting from polyploidy),178

and prints a warning if such correlations are found.179

If one or more alleles are present in all genotypes in a dataset, it is not possible to180

perform Fisher’s exact test to look for correlations between those fixed allelic variables and181

any others. The function alleleCorrelations therefore checks for fixed alleles before182

performing Fisher’s exact test. Each fixed allele is assigned to its own isolocus. If only183

one isolocus remains, all remaining alleles are assigned to it. If no isoloci remain (e.g.184

in an allotetraploid with two fixed alleles and several variable alleles), then all remaining185

alleles are assigned as homoplasious to all isoloci. If multiple isoloci remain (e.g. in186

an allohexaploid with one fixed allele), then Fisher’s exact test, K-means clustering and187

UPGMA are performed to assign the alleles to the remaining isoloci. It is possible that an188

allele with a very high frequency may be present in all genotypes but not truly fixed (i.e.189

some genotypes are heterozygous). However, allele swapping performed by testAlGroups190
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(see below) can assign alleles to an isolocus even if that isolocus already has an allele191

assigned to it that is present in all individuals.192

Corrected clusters: the testAlGroups function193

Although K-means was more accurate overall than UPGMA using simulated data (Supple-194

mentary Table 1), UPGMA sometimes assigned alleles correctly when K-means assigned195

them incorrectly. To choose between K-means and UPGMA when they give different196

results, the function testAlGroups in polysat checks every genotype in the dataset197

against both results. Assuming no null alleles or homoplasy (which are dealt with later198

in the algorithm), a genotype is consistent with a set of allele assignments if it has at199

least one allele belonging to each isolocus, and no more alleles belonging to each isolocus200

than the ploidy of that isolocus (e.g. two in an allotetraploid). The ploidy of isoloci is201

specified using the SGploidy argument. The set of results that is consistent with the202

greatest number of genotypes is selected, or K-means in the event of a tie. Selecting the203

best results out of K-means and UPGMA improved the accuracy of allele assignments at204

all ploidies, particularly hexaploids (Supplementary Table 1).205

We expected that rarer alleles would be more likely to be assigned incorrectly, given206

that they would be present in fewer genotypes and therefore there would be less statistical207

power to detect correlations between their variables and other allelic variables. To cor-208

rect the allele assignments, an algorithm was added to the testAlGroups function that209

individually swaps the assignment of each rare allele to the other isolocus (or isoloci) and210

then checks whether the new set of assignments is consistent with a greater number of211

genotypes than the old set of assignments. If an allele is successfully swapped, then every212

other rare allele is checked once again, until no more swaps are made. The maximum213

number of genotypes in which an allele must be present to be considered a rare allele is214

adjusted using the rare.al.check argument to the testAlGroups function. We found215

that swapping alleles present in ≤ 50% of genotypes (rare.al.check = 0.5) improved216

the accuracy of the algorithm (Supplementary Table 1), so we used that setting in all217
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evaluations of the algorithm except where noted otherwise. Note that the frequency of218

genotypes with a given allele will always be higher than the allele frequency itself, al-219

though a 50% threshold is still much higher than the cutoff for considering an allele to be220

“rare” in most population genetic analyses.221

Although our algorithm attempts primarily to sort alleles into non-overlapping groups,222

there is always a possibility that different isoloci have some alleles with identical amplicon223

sizes (homoplasy). Therefore, we introduced an algorithm to the testAlGroups function224

to check whether any genotypes were still inconsistent with the allele assignments after225

the allele swapping step, and assign alleles to multiple isoloci until all genotypes (or a226

particular proportion that can be adjusted with the threshold argument, to allow for227

meiotic or scoring error) are consistent with the allele assignments. The allele that could228

correct the greatest number of inconsistent genotypes (or in the event of a tie, the one229

with the lowest P-values from Fisher’s exact test between it and the alleles in the other230

isolocus) is made homoplasious first, then all genotypes are re-checked and the cycle is231

repeated until the desired level of agreement between allele assignments and genotypes is232

met.233

Mutations in primer annealing sites are a common occurrence with microsatellite mark-234

ers, and result in alleles that produce no PCR product, known as null alleles. One po-235

tential issue with null alleles is that, when homozygous, they can result in genotypes236

that do not appear to have any alleles from one isolocus. Such genotypes are used by237

the testAlGroups function as an indicator that alleles should be swapped or made ho-238

moplasious, which would be incorrect actions if the genotype resulted from a null allele239

rather than inaccuracy of allele assignment. We therefore added an argument to the240

testAlGroups function, null.weight, to indicate how genotypes with no apparent alleles241

for one isolocus should be prioritized for determining which alleles to assign as homopla-242

sious. If null alleles are expected to be common, null.weight can be set to zero so that243

genotypes with no apparent alleles for one isolocus are not used for assigning homoplasy.244

The default value of 0.5 for null.weight will cause testAlGroups to use genotypes with245
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no apparent alleles for one isolocus as evidence of homoplasy, but with lower priority than246

genotypes with too many alleles per isolocus. (No argument was added to adjust the allele247

swapping algorithm, since it only swaps alleles if the overall agreement with the dataset248

is improved.)249

Recoding datasets based on allele assignments: the processDatasetAllo and250

recodeAllopoly functions251

The function processDatasetAllo is a wrapper function that runs alleleCorrelations252

and testAlGroups in sequence on every marker in the dataset. It tests several parameter253

sets for testAlGroups. If the dataset was divided into subpopulations to prevent bias from254

population structure, allele assignments from the same parameter set are merged across255

subpopulations using the mergeAlleleAssignments function. processDatasetAllo gen-256

erates a series of plots to indicate assignment quality, and selects a suggested best param-257

eter set for each locus by first selecting the parameter set that results in the least amount258

of missing data when the genotypes are recoded, or in the case of a tie the parameter set259

that results in the fewest homoplasious alleles.260

The list of allele assignments (output by processDatasetAllo) and the original261

dataset are then passed to the recodeAllopoly function, which produces a new dataset262

in which each marker is split into multiple isoloci. Missing data are substituted for geno-263

types that cannot be resolved due to homoplasy in the allele assignments. (For example,264

if alleles A and B belong to different isoloci, and C belongs to both, the genotype ABC265

could be AA BC, AC BB, or AC BC, assuming no null alleles.) An argument called266

allowAneuploidy lets the user specify whether to allow for apparent meiotic error. If267

allowAneuploidy = TRUE, for genotypes with too many alleles for one isolocus, the func-268

tion will adjust the recorded ploidy for the relevant samples and isoloci. (Ploidy is used269

by other polysat functions, such as those that estimate allele frequency.) Otherwise,270

missing data are inserted where there are too many alleles per isolocus.271
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Implementation of the Catalán method: the catalanAlleles function272

polysat 1.5 also includes an implementation of the algorithm of Catalán et al (2006).273

One difference between our implementation and the original is that we allow ploidies274

higher than tetraploid, e.g. in a hexaploid, a genotype with three alleles is assumed to275

be fully homozygous. Additionally, after fully homozygous genotypes are examined, fully276

heterozygous genotypes are also examined if necessary for assigning alleles that were not277

present in any fully homozygous genotypes. The output of catalanAlleles can be passed278

directly to recodeAllopoly.279

Simulated datasets280

The function simAllopoly was added to polysat in order to generate simulated datasets281

for testing the accuracy of allele assignment methods. It simulates one locus at a time, and282

allows for adjustment of the number of isoloci, the ploidy of each isolocus, the number of283

alleles for each isolocus, the number of alleles that are homoplasious between isoloci, the284

number of null alleles (producing no amplicon), allele frequencies in the population, the285

meiotic error rate (frequency at which different isoloci pair with each other at meiosis),286

and the number of individual genotypes to output. By default, alleles from the first287

isolocus are labeled A1, A2, etc., alleles from the second isolocus labeled B1, B2, etc., and288

homoplasious alleles labeled H1, H2, etc.289

For initial evaluation of clustering methods (Supplementary Table 1), 10,000 simulated290

markers were generated for 100 individuals each for allotetraploid, allohexaploid, and allo-291

octoploid (two tetrasomic isoloci) species under Hardy-Weinberg Equilibrium. Although292

not included in the simulated datasets, note that it is also possible for an octoploid to293

possess four diploid subgenomes, as in strawberry. Each isolocus had a randomly chosen294

number of alleles between two and eight, and allele frequencies were generated randomly.295

A set of allele assignments for one marker was considered to be correct if no alleles were296

assigned incorrectly.297

To evaluate the effect of sample size on assignment accuracy, 1000 additional markers298
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were simulated for populations of 50, 100, 200, 400, and 800 individuals for allotetraploid,299

allohexaploid, and allo-octoploid species.300

To simulate population structure, 5000 simulated markers were generated for two pop-301

ulations of 50 allotetraploid individuals. Allele frequencies differed by five fixed amounts302

(Table 1) between the two populations, with 1000 markers simulated for each amount.303

The effect of homoplasy on allele assignment methods was evaluated by simulating304

1000 allotetraploid markers each for sample sizes of 50, 100, 200, 400, and 800, and305

homoplasious allele frequencies of 0.1, 0.2, 0.3, 0.4, and 0.5.306

To evaluate allele assignment when null alleles were present, 5000 markers were sim-307

ulated for 100 allotetraploid individuals, with 1000 simulated markers at each null allele308

frequency of 0.1, 0.2, 0.3, 0.4, and 0.5.309

Occasional pairing between homeologous (in an allopolyploid) or paralogous (in an310

autopolyploid) chromosomes may occur during meiosis. As a result, offspring may be311

aneuploid, having too many or too few chromosomes from either homologous pair, or may312

have translocations between homeologous or paralogous chromosomes. Most commonly,313

the aneuploidy or translocations will occur in a compensated manner (Chester et al , 2015),314

meaning that for a given pair of isoloci, the total number of copies will be the same as in a315

non-aneuploid, but one isolocus will have more copies than expected and the other isolocus316

will have fewer (e.g. three copies of one isolocus and one copy of the other isolocus in an317

allotetraploid). To evaluate the accuracy of allele assignment for isoloci that occasionally318

pair at meiosis, 4000 markers were simulated for 100 allotetraploid individuals, with 1000319

simulated markers at each meiotic error rate of 0.01, 0.05, 0.10, and 0.20.320

A custom script was written to simulate genotypes in allopolyploid mapping popula-321

tions. Allotetraploid, allohexaploid, and allo-octoploid (with two tetrasomic subgenomes)322

populations were simulated, with 200 individuals in each population. For each ploidy,323

1000 loci were simulated for each generation spanning F2 to F8, assuming completely324

homozygous parents. Allele assignments were performed with the alleleCorrelations325

and testAlGroups functions, with null.weight = 1 and rare.al.check = 0.25.326

12

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2016. ; https://doi.org/10.1101/020610doi: bioRxiv preprint 

https://doi.org/10.1101/020610
http://creativecommons.org/licenses/by/4.0/


Empirical dataset327

To demonstrate the usefulness of our allele assignment method on a real dataset, we used328

previously published data from natural populations of octoploid white sturgeon (Acipenser329

transmontanus ; Drauch Schreier et al , 2012). Previous studies of inheritance patterns in330

this species suggested that it possesses two tetrasomic subgenomes, at least for portions331

of its genome (Rodzen & May, 2002; Drauch Schreier et al , 2011). We selected for allele332

assignment the eight microsatellite markers that, based on number of alleles per genotype,333

appeared to be present in eight copies rather than four.334

Because population structure can impact allele clustering, we first performed a prelim-335

inary analysis of population structure using the Lynch.distance dissimilarity statistic in336

polysat and principal coordinates analysis (PCoA) using the cmdscale function in R.337

Thirteen microsatellite markers were used for PCoA, including the eight used for allele338

assignment and five tetrasomic (present in four copies rather than eight) markers. Al-339

lele assignment methods were then tested on the whole dataset and on a subpopulation340

identified by PCoA.341

The testAlGroups function was run on the sturgeon dataset with and without allele342

swapping (rare.al.check set to 0.5 and 0, respectively). In checking for homoplasy, we343

allowed up to 5% of genotypes to disagree with allele assignments in anticipation of meiotic344

error, scoring error, or genotypes homozygous for null alleles (tolerance = 0.05), and345

to allow for null alleles at low frequency we set null.weight = 0.5 so that genotypes346

with too many alleles per isolocus would be used for assignment of homoplasy first, before347

genotypes with no alleles for one of their isoloci.348

To evaluate the accuracy and usefulness of allele assignments, we compared GST (Nei349

& Chesser, 1983) estimates using the five tetrasomic loci to estimates using the putatively350

tetrasomic recoded isoloci. Pairs of isoloci were excluded from GST estimates if they had351

any homoplasious alleles. Allele frequencies for tetrasomic loci and isoloci were estimated352

using the method of De Silva et al (2005) using the deSilvaFreq function in polysat353

with the selfing rate set to 0.0001. Pairwise GST between sampling regions was then354
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estimated with the calcPopDiff function in polysat.355

Results356

Simulated natural populations357

For all ploidies, we found that the accuracy of both our method and the Catalán et al358

(2006) method was dependent on sample size, and that our method performed better359

than the Catalán et al (2006) method at all sample sizes (Fig. 3). For tetraploids and360

hexaploids, the effect of sample size was greater on the Catalán et al (2006) method than361

on our method, particularly at small sample sizes. For octoploids, the success of the362

Catalán et al (2006) method was near zero even with 800 individuals in the dataset (due363

to the low probabiltiy of producing fully homozygous genotypes at tetrasomic isoloci),364

whereas our method had an accuracy of 93% with 800 octoploid individuals.365

Both negative and positive correlations between allelic variables at different loci can366

occur when the assumption of random mating is violated by population structure, con-367

founding the use of negative correlations for assigning alleles to isoloci. We found that368

accuracy of our method remained high (∼ 90%) even at moderate levels of FST (∼ 0.2;369

Table 1). Interestingly, low levels of population structure (FST ≈ 0.02) improved the370

accuracy of our method to 99%, compared to 94% when FST = 0 (Table 1), probably as371

a result of an increase in the number of double homozygous genotypes, which would have372

been informative during the allele swapping step. For this same reason, the Catalán et al373

(2006) method, which depends on double homozygous genotypes, had an improved success374

rate as population structure increased, and exceeded our method in accuracy at moderate375

levels of FST (Table 1). However, accuracy of our method decreased with increasing FST376

when FST > 0.02 (Table 1), likely because correlations between alleles caused by popu-377

lation structure outweighed the benefits of increased homozygosity. In our simulations,378

significant postive correlations between allelic variables were found in most datasets that379

had moderate population structure (Table 1).380
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One advantage of our method over that of Catalán et al (2006) is that our method381

allows for alleles belonging to different isoloci to have identical amplicon sizes (homoplasy).382

We tested the accuracy of allele assignments across several sample sizes and frequencies383

of homoplasious alleles, with and without the allele swapping algorithm (Fig. 4). Allele384

assignments were most accurate when allele swapping was not performed before testing for385

homoplasious alleles, and when the homoplasious allele was at a frequency of 0.3 in both386

isoloci. When allele assignments were correct, we tested the mean proportion of genotypes387

that were resolvable, given several frequencies of a homoplasious allele (Table 2). Although388

accuracy of assignment had been highest with a homoplasious allele frequency of 0.3, only389

57% of genotypes could be resolved in such datasets (Table 2).390

To test the effect of null alleles on the accuracy of our allele assignment method,391

we simulated datasets in which one isolocus had a null allele (Fig. 5). We found that,392

when null alleles were present, the accuracy of the algorithm was greatly improved when393

genotypes lacking alleles for one isolocus were not used as evidence of homoplasy. We394

also found that the allele swapping algorithm improved the accuracy of allele assignments395

when the null allele was at a frequency of 0.1 in the population. However, at higher null396

allele frequencies (≥ 0.4) allele assignments were more accurate without allele swapping.397

We simulated datasets in which gametes resulting in compensated aneuploidy (meiotic398

error) occured at a range of frequencies from 0.01 to 0.2 (Fig. 6). At all meiotic error399

rates, the allele swapping algorithm from testAlGroups improved the accuracy of allele400

assignment (Fig. 6). Meiotic error did not have a large impact on the success of our401

method; even at a meiotic error rate of 0.2 (where 0.5 would be fully autopolyploid), our402

algorithm still had an accuracy of 62% on datasets of 100 individuals with no homoplasy,403

null alleles, or population structure (Fig. 6).404

We also examined the effect of number of alleles on the accuracy of our method. Ac-405

curacy was highest when the number of alleles was similar among isoloci (Supplementary406

Table 2).407
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Assignment of alleles to isoloci in octoploid sturgeon408

When using principal coordinates analysis to test for genetic structure prior to perform-409

ing allele assignment, we identified two major genetic groups (Supplementary Table 3,410

Supplementary Fig. 1) that were similar to the population structure previously observed411

(Drauch Schreier et al , 2012). The smaller group (Pop 2) consisted of only 66 individuals412

and, likely due to small sample size, produced poor quality allele assignments with high413

levels of homoplasy when analyzed by itself (data not shown). We therefore tested our414

method on Pop 1 (183 individuals) and on the combined set of 249 individuals.415

For five out of eight loci, our algorithm found allele assignments devoid of homoplasy416

when only Pop 1 was used for assignment and when the allele swapping algorithm was417

used (Table 3). Eliminating the allele swapping algorithm or using the whole dataset for418

allele assignment increased the number of apparent homoplasious alleles in most cases,419

and did not reduce the number of apparent homoplasious alleles for any locus (Table 3).420

For the three loci with homoplasy, most genotypes in the dataset could not be assigned421

unambiguously (Table 3). For the five loci with no apparent homoplasy, nearly all geno-422

types in Pop 1 could be assigned unambiguously, and approximately one half to three423

quarters of the genotypes in Pop 2 (which was not used for creating the assignments)424

could be assigned unambiguously (Table 3). Despite the fact that Pop 1 was previously425

determined to consist of three subpopulations with pairwise Phi-PT [an FST analog that426

can be used on both dominant and codominant markers (Peakall et al , 1995)] values rang-427

ing from 0.06 to 0.17 (Drauch Schreier et al , 2012), allelic variable correlations resulting428

from population structure did not appear to prevent us from obtaining reasonable allele429

assignments for the five loci without homoplasy. Significant positive correlations between430

allelic variables were found at one and two out of eight loci when Pop 1 and the whole431

dataset were used to make assignments, respectively (data not shown).432

By recoding allo-octoploid markers as tetrasomic isoloci, we were able to estimate433

allele frequencies, which would not have been possible otherwise. We were then able to434

use allele frequencies to estimate pairwise GST between white sturgeon sampling regions.435
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GST estimates using recoded isoloci were very similar to estimates obtained using known436

tetrasomic microsatellite markers (Supplementary Fig. 2), suggesting that allele assign-437

ments were accurate. Out of the ten recoded isoloci, only one (Atr117 1) was consistently438

an outlier in terms of GST estimates, giving especially high estimates between sampling439

regions corresponding to Pop 1 and Pop 2 (Supplementary Fig. 2, Supplementary Table440

3). Atr117 1 had especially low genotype variability due to an allele that was present441

in all Pop 1 genotypes (Table 3), which likely accounted for the unusual GST estimates442

at that isolocus. Otherwise, GST estimates appeared unaffected by the large amounts443

of missing data introduced into Pop 2 by our method (Table 3, Supplementary Fig. 2),444

suggesting any bias in allele frequencies caused by the missing data was negligible.445

Simulated mapping populations446

Negative correlations between allelic variables at the same isolocus can also occur in cer-447

tain types of mapping populations, enabling the use of our algorithm to assign alleles448

to isoloci in these populations. There are several requirements that must be met how-449

ever. 1) To prevent correlations between unlinked allelic variables, all individiduals in the450

population must be equally related to each other. Pedigrees, nested association mapping451

(NAM) populations, and multiple-cross mating designs are therefore not appropriate. 2)452

No allele should be present in all individuals in the population. Our method therefore453

cannot be used on backcross or near isogenic line (NIL) populations, which are expected to454

segregate only AB and BB genotypes. 3) All alleles belonging to one isolocus should have455

had the opportunity to pair with each other at meiosis. This eliminates F1 populations,456

where an individual with genotype AB might be crossed to an individual with genotype457

CD. However, allele assignments in F2 populations, as well as related populations such458

as recombinant inbred line (RIL) and doubled haploid (DH), can be peformed with very459

high accuracy using our algorithm.460

Accuracy of allele assignment was 100% for allotetraploids and allohexaploids for all461

population types tested (F2 to F8; Table 4). Due to the highly heterozygous nature of462
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tetrasomic loci, accuracy was 14% for allo-octoploids in the F2 generation. However, accu-463

racy for allo-octoploids increased to 91% in the F3 and 100% in F4 and higher populations,464

due to increased homozygosity from selfing.465

Discussion466

Here we introduce the R package polysat version 1.5, with several new functions ap-467

plicable to the analysis of allopolyploids and diploidized autopolyploids. These include468

simAllopoly, which generates simulated datasets; catalanAlleles, which uses the the469

Catalán et al (2006) method to assign alleles to isoloci; alleleCorrelations, which per-470

forms Fisher’s exact test between each pair of allelic variables from a marker, and then471

uses K-means clustering and UPGMA to make initial assignments of alleles to isoloci;472

testAlGroups, which checks the consistency of allele assignments with individual geno-473

types, chooses between the K-means and UPGMA method, swaps alleles to different isoloci474

if it improves consistency, and identifies homoplasious alleles; mergeAlleleAssignments,475

which merges the allele assignments from two different populations using the same mi-476

crosatellite marker; processDatasetAllo, which runs alleleCorrelations, testAlGroups477

(with multiple parameter sets), and mergeAlleleAssignments on an entire dataset; and478

recodeAllopoly, which uses allele assignments to recode the dataset, splitting each mi-479

crosatellite marker into multiple isoloci. An overview of the data analysis workflow is480

given in Fig. 2. Previous versions of polysat (1.3 and earlier) were restricted in that481

estimation of allele frequency and certain inter-individual distance metrics could only be482

performed on autopolyploids. With the ability to assign alleles to isoloci, these parameters483

may now be estimated for allopolyploids as well.484

We found that, with simulated data, the accuracy of our allele assignment algorithm485

was impacted by issues such as homoplasy and null alleles, and that the optimal param-486

eters for the algorithm depended on which of these issues were present in the dataset.487

This suggests, since most users will not know whether their dataset has homoplasy or488
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null alleles, that the testAlGroups function should initially be run with several different489

parameter sets, and for each locus, the results with the fewest homoplasious alleles should490

be chosen. A heatmap of the P-values generated from Fisher’s exact test can also serve491

as a qualitative visual indicator of how well the alleles can be separated into isolocus492

groups. We also found that, although our allele assignment algorithm was negatively493

impacted by meiotic error (pairing of non-homologous chromosomes during meiosis) and494

moderate population structure, its accuracy remained fairly high in both cases. Assuming495

correct allele assignments in a population with meiotic error, recodeAllopoly is able to496

identify some but not all individuals with meiotic error, for example if alleles A, B, and497

C belonged to one isolocus and D to another, an ABC D individual would be correctly498

recoded, where as an ABB D individual would be incorrectly recoded as AB DD. Other-499

wise, recodeAllopoly should give 100% accurate results if allele assignments are correct.500

Sensitivity to population structure is the biggest drawback of our method in comparison501

to that of Catalán et al (2006), which actually has improved results as population struc-502

ture increases. However, even low frequencies of null alleles, homoplasy, or meiotic error503

can cause the method of Catalán et al (2006) to fail completely.504

When discussing homoplasy with respect to our algorithm, we have referred exclu-505

sively to homoplasy between alleles belonging to different isoloci. It is important to note506

that homoplasy between alleles within an isolocus is also possible, meaning that two or507

more alleles belonging to one isolocus are identical in amplicon size but not identical by508

descent. Although such homoplasy is an important consideration for analyses that deter-509

mine similarity between individuals and populations, homoplasy within isoloci does not510

affect the allele assignment methods described in this manuscript. Additionally, when511

discussing null alleles, we have assumed that non-null alleles still exist for all isoloci. It is512

also possible for an entire isolocus to be null. This is often apparent when a marker has513

fewer alleles per genotype than expected, e.g. a maximum of two alleles per individual in514

a tetraploid. Such loci should be excluded from the allele assignment analysis described515

in this manuscript. If they are included in an analysis accidentally, they can be identified516
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by weak K-means/UPGMA clustering of alleles (which can be evaluated from the graph-517

ical output of processDatasetAllo) and by a high proportion of alleles appearing to be518

homoplasious.519

Using a real microsatellite dataset from natural populations of white sturgeon, we520

found that our method was useful for recoding over half of the markers into two inde-521

pendently segregating isoloci each. Given that white sturgeon are octoploid with two522

tetrasomic subgenomes (Drauch Schreier et al , 2011), we expected this dataset to be523

problematic; having tetrasomic isoloci as opposed to disomic isoloci would reduce the524

magnitude of the negative correlations between allelic variables, and was observed in sim-525

ulations to reduce the accuracy of assignment using our method, although not nearly as526

severly as the reduction in efficacy of the Catalán et al (2006) method (Supplementary527

Table 1, Fig. 3). In population genetic studies, we expect that microsatellite markers528

that can be recoded using our method could be used for analyses requiring polysomic or529

disomic inheritance [for example, estimation of allele frequency and population differenti-530

ation (Supplementary Fig. 2), Structure (Falush et al , 2007), or tests of Hardy-Weinberg531

Equilibrium], while the remaining markers will still be useful for other analysis (for ex-532

ample, Mantel tests using simple dissimilarity statistics). Additionally, we found that the533

allele assignments that we made were still moderately useful for recoding genotypes in a534

population that was not used for making the assignments. Despite the introduction of535

missing data into Pop 2 when its genotypes were recoded, GST estimates were similar536

to those obtained from non-recoded tetrasomic microsatellites in the same populations537

(Supplementary Fig. 2). We do however recommend caution when interpreting results538

from loci where our method has introduced missing data for a large portion of individuals.539

Such results can be confirmed by comparison to results from loci with little or no missing540

data.541

Although inappropriate for biallelic marker systems such as single nucleotide poly-542

morphisms (SNPs) and dominant marker systems such as AFLPs, the method that we543

have described could theoretically be used to assign alleles to isoloci in any marker sys-544
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tem in which multiple alleles are the norm. Allozymes, although rarely used in modern545

studies, are one such system. Although data from genotyping-by-sequencing (GBS, and546

the related technique restriction site-associated DNA sequencing, or RAD-seq) are typi-547

cally processed to yield biallelic SNP markers, in the future as typical DNA sequencing548

read lengths increase, it may become common to find multiple SNPs within the physical549

distance covered by one read. In that case, haplotypes may be treated as alleles, and550

negative correlations between haplotypes may be used to assign them to isoloci.551

Obtaining polysat 1.5552

To obtain polysat, first install the most recent version of R (available at http://www.r-project.org),553

launch R, then at the prompt type:554

install.packages("polysat")555

In the “doc” subdirectory of the package installation, PDF tutorials are available for556

polysat as a whole and for the methodology described in this manuscript. Source code557

is available at https://github.com/lvclark/polysat/ under a GNU GPL-2 license.558
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Table 1: Percentages of simulated datasets with correct allele assignments under differ-
ent levels of population structure. Two populations of 50 allotetraploid individuals were
simulated under different allele frequencies, then merged into one dataset that was then
used for making allele assignments. The value shown in the leftmost column was ran-
domly added or subtracted from the frequency of each allele in the first population to
generate the allele frequencies of the second population. For isoloci with odd numbers of
alleles, one allele had the same frequency in both populations. For each difference in allele
frequency, 1000 simulations were performed (5000 total). FST was calculated from allele
frequencies as (HT −HS)/HT , where HS is the expected heterozytosity in each subpopu-
lation, averaged across the two subpopulations, and HT is the expected heterozytosity if
the two subpopulations were combined into one population with random mating. Means
and standard deviations across 1000 simulations are shown for FST . The third column
shows the percentages of datasets in which significant positive correlations were detected
between any pair of alleles; positive correlations can be used as an indication that there
is population structure in the dataset. The fourth and fifth columns indicate the percent-
ages of datasets with correct allele assignments, using our method and that of Catalán
et al (2006). 95% confidence intervals are given for percentages.

Difference in Significant K-means +
allele frequency FST positive correlations UPGMA + swap ≤ 0.50 Catalán

0.0 0.000 ± 0.000 0% ± 0% 94% ± 1% 84% ± 2%
0.1 0.016 ± 0.004 2% ± 1% 99% ± 1% 89% ± 2%
0.2 0.062 ± 0.013 21% ± 3% 93% ± 2% 94% ± 1%
0.3 0.117 ± 0.021 62% ± 3% 88% ± 2% 99% ± 1%
0.4 0.176 ± 0.026 82% ± 2% 88% ± 2% 100% ± 0%

Table 2: For datasets from Fig. 4 with correct allele assignments at rare.al.check = 0

(no swapping), percentages of genotypes that could be unambiguously resolved. Means
and standard deviations are shown.
Freq. of homoplasious allele Mean percentage of genotypes

that could be resolved
0.1 85.6% ± 5.6%
0.2 71.2% ± 8.3%
0.3 59.4% ± 9.4%
0.4 51.5% ± 9.0%
0.5 48.5% ± 7.0%
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Table 3: Assignment of alleles from eight microsatellite markers to two tetrasomic genomes in octoploid white sturgeon (Acipenser
transmontanus). Alleles were assigned using negative correlations, with the exception of Atr117 in Pop 1 due to a fixed allele in that
locus and population. Assignments were performed without allele swapping (“No swapping”, rare.al.check = 0 in testAlGroups)
and with allele swapping (“Swap ≤ 0.5”, rare.al.check = 0.5). In testing for homoplasy testAlGroups was run with the defaults
of tolerance = 0.05 to allow for 5% of genotypes to disagree with allele assignments, and null.weight=0.5 to allow for the
possibility of null alleles. Assignments were performed using the whole dataset of 249 individuals (“whole set”) or a subset of 183
individuals based on population structure (“Pop 1”, Supplementary Table 3 and Supplementary Fig. 1). The assignments from Pop
1 with Swap ≤ 0.5 were then used to split the dataset into isoloci using the recodeAllopoly function. Genotypes that could not be
unambiguously determined were coded as missing data; percentages of missing data in each of two isoloci in Pop 1 and Pop 2 are
shown.

Number of homoplasious alleles Percent missing data
Number of Whole set used for assignment Pop 1 used for assignment in recoded dataset

Marker alleles No swapping Swap ≤ 0.5 No swapping Swap ≤ 0.5 Pop 1 Pop 2
AciG110 20 3 1 0 0 0%, 1% 29%, 29%
As015 18 3 1 2 1 57%, 82% 62%, 80%
AciG35 18 2 0 1 0 0%, 1% 26%, 26%
Atr109 25 6 3 4 3 73%, 74% 70%, 65%
Atr117 22 1 1 0 0 0%, 0% 36%, 36%
AciG52 22 4 1 0 0 0%, 1% 32%, 33%
Atr107 24 3 1 0 0 0%, 1% 45%, 45%
Atr1173 18 3 2 3 2 62%, 77% 64%, 91%
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Table 4: Accuracy of allele assignment in mapping populations. Percentages of datasets
with accurate allele assigments are shown. 95% confidence intervals are indicated. 1000
loci were simulated, each with 200 individuals.
Generation Allotetraploid Allohexaploid Allo-octoploid
F2 100% ± 0% 100% ± 0% 13.6% ± 2.1%
F3 100% ± 0% 100% ± 0% 91.4% ± 1.7%
F4 100% ± 0% 100% ± 0% 100% ± 0%
F5 100% ± 0% 100% ± 0% 100% ± 0%
F6 100% ± 0% 100% ± 0% 100% ± 0%
F7 100% ± 0% 100% ± 0% 100% ± 0%
F8 100% ± 0% 100% ± 0% 100% ± 0%

Figure 1: Negative correlation between two allelic variables at a locus. (A) Qualitative
reasoning for the expectation of negative correlation between two allelic variables at the
same isolocus. (B) Use of Fisher’s exact test to identify negative correlation between a
pair of allelic variables. Ten individuals are shown for the sake of illustration, but an ideal
dataset would have 100 or more individuals. In the allelic variables, presence of an allele
in an individual is indicated by 1, and absence is indicated by 0.
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Figure 2: Overview of functions in polysat 1.5 for processing allopolyploid and
diploidized autopolyploid datasets. Additionally, the processDatasetAllo function can
be used to automatically run alleleCorrelations and testAlGroups on every locus in a
dataset. In the box representing the alleleCorrelations function, all alleles belonging
to the locus on the left are variable in the dataset, so Fisher’s exact test is used to find
correlations between allelic variables, then K-means and UPGMA are used to perform
clustering. The locus on the right has one allele (4) that is present in all individuals,
making it impossible to assign alleles to isoloci using Fisher’s exact test. In the box
representing the testAlGroups function, all steps are performed on all loci regardless of
whether or not fixed alleles are present.
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Figure 3: Accuracy of allele assignments with different sample sizes. For each ploidy
and sample size, 1000 simulations were performed. Octoploids were simulated with two
tetraploid genomes. Whiskers indicate 95% confidence intervals. “Swap ≤ 0.5” indi-
cates that testAlGroups was used with rare.al.check = 0.5. The y-axis indicates the
percentage of datasets for which allele assignments were completely correct.
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Figure 4: Percentages of simulated datasets with correct allele assignments when ho-
moplasious alleles are present. Whiskers indicate 95% confidence intervals. The y-axis
indicates the percentage of datasets for which allele assignments were completely correct.
Allotetraploid datasets were simulated with one pair of homoplasious alleles (alleles from
two different isoloci, but with identical amplicon size) for each locus. The frequency of
homoplasious alleles was identical at both isoloci in each dataset, and was set at five dif-
ferent levels (0.1 through 0.5). Five different sample sizes were tested (50, 100, 200, 400,
and 800). For each homoplasious allele frequency and sample size, 1000 datasets were
simulated. Allele assignments were made using three methods: K-means + UPGMA (A;
rare.al.check = 0), K-means + UPGMA + swap ≤ 0.25 (B; rare.al.check = 0.25),
or K-means + UPGMA + swap ≤ 0.50 (C; rare.al.check = 0.5); plus an algorithm in
the function testAlGroups that identifies the alleles most likely to be homoplasious, and
assigns alleles as homoplasious until all genotypes are consistent with allele assignments.
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Figure 5: Percentages of simulated datasets with correct allele assignments when one
isolocus has a null allele. Whiskers indicate 95% confidence intervals. The y-axis in-
dicates the percentage of datasets for which allele assignments were completely correct.
Allotetraploid datasets were simulated, and frequency of the null allele was set at one
of five levels (x-axis). 1000 datasets were simulated at each null allele frequency. Two
parameters for testAlGroups were adjusted: rare.al.check at values of zero, 0.25, and
0.5 (corresponding to the methods K-means + UPGMA, K-means + UPGMA + swap
≤ 0.25, and K-means + UPGMA + swap ≤ 0.50, respectively); and null.weight at
values of zero (null alleles are allowed when checking for evidence of homoplasy) and 0.5
(genotypes lacking alleles belonging to a given isolocus are taken as evidence that their
other alleles are homoplasious).
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Figure 6: Percentages of simulated datasets with correct allele assignments when meiotic
error causes compensated aneuploidy. Whiskers indicate 95% confidence intervals. The
y-axis indicates the percentage of datasets for which allele assignments were completely
correct. Meiotic error was simulated in the simAllopoly function on a per-gamete basis,
with each error causing an allele from one isolocus to be substituted with an allele from
the other isolocus. Each dataset was otherwise simulated for an allotetraploid organism
with 100 individuals. Meiotic error rate, as shown in the x-axis, was controlled using
the meiotic.error.rate argument of simAllopoly. For each error rate, 1000 datasets
were simulated. For the testAlGroups function, the tolerance argument was set to 1 to
prevent the function from checking for homoplasy, and rare.al.check was set to zero,
0.25, or 0.5 (corresponding to the methods K-means + UPGMA, K-means + UPGMA +
swap ≤ 0.25, and K-means + UPGMA + swap ≤ 0.50, respectively). Each dataset was
tested for all three values of rare.al.check.
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