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Abstract 

Human genes perform different functions and exhibit different effects on fitness 

in cancer and normal cell populations. Here, we present an evolutionary approach to 

measuring the selective pressure on human genes in cancer and normal cell genomes 

using the well-known dN/dS (nonsynonymous to synonymous substitution rate) ratio. 

We develop a new method called the mutation-profile-based Nei-Gojobori (mpNG) 

method, which applies sample-specific nucleotide substitution profiles instead of 

conventional substitution models to calculating dN/dS ratios in cancer and normal 

populations. Using 7,042 exome sequences from tumor-normal pairs, and germline 

variations from 6,500 exome sequences (ESP6500) as references, we found a 

significant relaxation of selective constraint for human genes in cancer cells. 

Compared with previous studies that focused on positively selected genes in cancer 

genomes, which potentially represent the driving force behind tumor initiation and 

development, we employed an alternative approach to identifying cancer constrained 

genes that strengthen negative selection pressure in tumor cells. As a conservative 

estimate of positively and negatively selected genes in cancer, we found 45 genes 

under intensified positive selection and 16 genes under strengthened purifying 

selection in cancer cells compared with germline cells. The cancer-specific positively 

selected genes are enriched for cancer genes and human essential genes, while several 

cancer-specific negatively selected genes have been reported as prognostic biomarkers 

for cancers. Therefore, our computation pipeline used to identify cancer positively and 

negatively genes may provide useful information for understanding the evolution of 
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Introduction 

Since the pioneering work of Cairns and Nowell [1, 2], the evolutionary concept 

of cancer progression has been widely accepted [3-7]. Essentially, cancer cells evolve 

through random somatic mutations and epigenetic changes that may alter several 

crucial pathways, a process that is followed by the clonal selection of the resulting 

cells. Consequently, cancer cells can survive and proliferate under deleterious 

circumstances [8, 9]. Hence, knowledge of evolutionary dynamics will benefit our 

understanding of cancer initiation and progression. For instance, there are two types 

of somatic mutations in cancer genomes: driver mutations and passenger mutations 

[10, 11]. Driver mutations are those that confer a selective advantage on cancer cells, 

as indicated by statistical evidence of positive selection. However, some passenger 

mutations undergo purifying selection because they would have potentially 

deleterious effects on cancer cells [12, 13]. Between these two cases are passenger 

mutations that are usually considered to be neutral in cancer. 

  Analyses of large-scale cancer somatic mutation data have revealed that the effects 

of positive selection on cancer cells are much stronger than on germline cells [14, 15]. 

Given that many of the positively selected genes in tumor development act as the 

driving force behind tumor initiation and progression, it is understandable that almost 

all previous studies focused on the positively selected genes in cancer genomes [3, 

16-19]. We have realized that an alternative approach, i.e., identifying cancer 

constrained genes that are highly conserved in tumor cell populations (under purifying 

selection), is also valuable. As we have known that essential genes are more 
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evolutionary conserved [20], it would be feasible to identify cancer essential genes 

from the genes that are evolutionary conserved in cancer cells. As cancer essential 

genes may be not the driver genes for carcinogenesis, but are crucial for cancer cell 

proliferation and survival [21], this idea may be advantageous in addressing issues 

related to drug resistance in cancer therapies, especially in cancers with high 

intratumor heterogeneity.  

Many previous studies used the ratio of nonsynonymous and synonymous 

substitution rate (dN/dS) to identify genes that might be under strong positive 

selection both in organismal evolution and tumorigenesis (e.g., [22-24, 14, 25, 15, 11, 

26]). However, most of these studies applied well-known methods that are usually 

based on simple nucleotide mutation/substitution models, e.g., every mutation or 

substitution pattern having the same probability [27]. However, this may not be a 

realistic biological model because many recent cancer genomics studies have shown 

that mutation profiles are quite different between different cancer samples [28, 15]. In 

addition, context-dependent mutation bias, that is to say, base-substitution profiles 

that consider the flanking 5’ and 3’ bases of each mutated base, should be taken into 

consideration [28, 29].  

In this study, we describe a new method, called the mutation-profile-based 

Nei-Gojobori (mpNG) method, to estimate the selective constraint in cancer somatic 

mutations. Simply stated, mpNG method removes an unrealistic assumption inherent 

in the original NG method (named NG86), wherein each type of nucleotide change 

has the same mutation rate [27], which can lead to nontrivial biased estimations when 
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this assumption is violated considerably. Instead, mpNG implements an empirical 

nucleotide mutation model that simultaneously takes into account several factors, 

including single-base mutation patterns, local-specific effects of surrounding DNA 

regions, and tissue/cancer types. Using 7,042 tumor-normal paired whole-exome 

sequences (WESs), as well as rare germline variations from 6,500 exome sequences 

(ESP6500) as references, we used the mpNG method to identify the selective 

constraint of human genes in cancer cells. The potential for our computational 

pipeline to identify cancer constrained genes may provide useful information for 

identifying promising drug targets or prognostic biomarkers. 

 

Results 

The mutation profiles in cancer genomes and human populations are different 

Estimating evolutionary selective pressure on human genes is a practicable 

method of inferring the functional importance of genes to a specific population. By 

comparing selective pressures on genes in cancer cell populations with those in 

normal cell populations, we may identify different functional and fitness effects of 

human genes in cancer and normal cells. The conventional method for measuring 

selective pressure is to calculate the dN/dS ratio using the NG86 method [27], which 

assumes equal substitution rates among different nucleotides. In our study, we used 

the cancer somatic mutations from 7,042 tumor-normal pairs as well as rare variations 

from 6,500 exome sequences from the National Heart, Lung, and Blood Institute 

(NHLBI) Grant Opportunity (GO) Exome Sequencing Project (ESP6500) as a 
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reference, in order to compared the relative mutation probabilities from cancer 

somatic mutations and germline substitutions for all possible base substitutions, 

considering the identities of the bases immediately 5’ and 3’ of each mutated bases 

and depicted the mutation profiles as 96 substitution classifications [28, 29]. The 

mutation profiles exhibits the prevalence of each substitution pattern for somatic point 

mutations, which present not only the substitution types but also the sequence context 

(see Materials and Methods) [29]. The exonic mutation profiles of cancer somatic 

substitutions and germline substitutions were differed from one another, and the 

intronic and intergenic mutation profiles were quite different from the exonic 

mutation profile of cancer cells (Figure 1). We also calculated the exonic mutation 

profiles of four different cancer types: colon adenocarcinoma (COAD), lung 

adenocarcinoma (LUAD), skin cutaneous melanoma (SKCM), and breast carcinoma 

(BRCA). These cancer types varied considerably not only in mutation rates but also in 

mutation patterns. Especially, the mutation rate of SKCM was much higher than other 

three types and the mutation profiles of SKCM were highly enriched in the C-to-T 

substitution pattern (Figure 1), indicating a direct mutagenic role of ultraviolet (UV) 

light in SKCM pathogenesis [30]. The different mutation profiles may present 

different biological progresses in carcinogenesis, which have been depicted in several 

publication [17, 28]. Hence, it is inappropriate to use conventional methods such as 

NG86 [27] to measure selective pressure by means of dN/dS calculation, which 

ignores the mutation bias of different nucleotide substitution types.  
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Measuring selective pressure on human genes in cancer and germline cells using 

the mpNG method 

We therefore formulated an evolutionary approach that were designed specifically 

to estimate the selective pressure imposed on human genes in cancer cells and to then 

identify genes that had undergone positive and purifying selection in cancer cells 

rather than in normal cells (see Figure 2 for illustration). We developed the mpNG 

method to estimate the dN/dS ratio of each human gene based on the mutation profiles 

of cancer somatic mutations and germline substitutions. In contrast to the NG86 

method [27], our method considered the substitution rate difference and took the 

overall mutation profile as the weight matrix (Figure 1).  

We calculated the expected number of nonsynonymous and synonymous sites 

based on the exonic mutation profiles and counted the number of nonsynonymous and 

synonymous substitutions in protein-coding region of each human gene for all 

cancer/normal samples. A χ2 test was performed to identify the genes whose dN/dS 

values were significantly greater than one or less than one, which indicates positive or 

negative (purifying) selection, respectively. Of the 18,602 genes with at least one 

germline substitution and cancer somatic substitution, the overall dN/dS value for 

cancer somatic substitutions (mean±s.e.=1.367±0.009) is much greater than that of 

germline substitutions (mean±s.e.=0.903±0.006) (Wilcoxon test, P<10-16) (Table 1, 

Supplementary Table S1). In cancer genomes, 1,230 genes have dN/dS values 

significantly greater than one and 326 genes have dN/dS values significantly less than 

one (χ2 test, P<0.05). In contrast, the germline substitutions include only 306 genes 
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with dN/dS values significantly greater than one, whereas 4,357 genes have dN/dS 

values significantly less than one (χ2 test, P<0.05) (Table 1). Among these, 1,191 

genes exhibit positive selection in cancer genomes but non-positive selection in 

germline genomes and 275 genes exhibit negative selection in cancer genomes but 

non-negative selection in germline genomes. These genes may therefore be under 

different selective pressure in cancer and normal genomes. 

Considering that different models might provide varying estimates, we used the 

NG86 method [27] as the simplest model to calculate the numbers of nonsynonymous 

and synonymous sites. The overall dN/dS value for cancer somatic substitutions 

(mean±s.e.=0.990±0.006) is greater than that for germline substitutions 

(mean±s.e.=0.624±0.004) for the 18,602 genes (Supplementary Table S1), whereas it 

is less than that calculated using mpNG method (Wilcoxon test, P<10-16) (Table 1). 

Consequently, for both germline and cancer somatic substitutions, the number of 

genes with dN/dS values >1 (χ2 test, P<0.05) is much lower, whereas the number of 

genes with dN/dS values <1 (χ2 test, P<0.05) is much greater, than those calculated 

using the exonic mutation profiles (Table 1). We further used the intergenic and 

intronic somatic mutation profiles of 507 cancer samples with whole-genome 

sequences (WGSs) within the 7,042 tumor-normal pairs as a contrast. The overall 

dN/dS values calculated using these mutation profiles were between those obtained 

using the NG86 method and the exonic mutation profiles, as were the number of 

genes under positive and negative selection (Table 1, Table S1). Different models 

show different properties of single-nucleotide substitution, which resulted in the 
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different list of candidate genes under positive and negative selection. However, the 

genes under positive and negative selection calculated using different models are 

almost overlapped (Figure 3A,B). The NG86 method ignores the mutation rate bias 

between different substitution types, leading to underestimation of the dN/dS ratio. 

Therefore, the NG86 method is strict with regard to detecting positive selection, and 

is relaxed about detection of negative selection [31]. Whereas the mpNG method 

takes the mutation bias, which can be depicted as the internal variance between 

mutation rates of different substitution types, into consideration. Thus, the mpNG 

method could recover the underestimation of the true dN/dS ratio estimated by NG86 

method, while would increase the sampling errors and false discovery rates (FDRs). It 

would increase the false positive results for detecting positively selected genes, 

whereas be more conserved for detecting negatively selected genes. The mutation bias 

does not affect the detection of genes under strong selection pressure, while may 

affect the detection of genes under weak selection pressure. The mutation bias could 

be depicted by the internal variance of different substitution types. The exonic 

mutation profile has greater internal variance (σ=0.015) than that of intronic (σ=0.008) 

and intergenic (σ=0.008) mutation profiles, leading to the maximum estimation of 

dN/dS ratios.  

Regardless of the method used to calculate the dN/dS values for germline and 

cancer somatic substitutions, we found that the dN/dS value for cancer somatic 

substitutions is much greater than that for germline substitutions. Previous studies 

have attributed the elevated dN/dS values to the relaxation of purifying selection [14] 
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or the increased positive selection of globally expressed genes [15]. Our results show 

that the number of genes under positive selection increased, whereas the number of 

genes under negative selection decreased in cancer genomes compared with germline 

genomes. This result indicates that both the relaxation of purifying selection on 

passenger mutations and the positive selection of driver mutations may contribute to 

the increased dN/dS values of human genes in cancer genomes.  

 

Relaxation of purifying selection for human genes in cancer cells 

In this study, we used the mpNG method with exonic mutation profiles for 

estimation the dN/dS values for germline substitutions and cancer somatic mutations. 

The Cancer Gene Census [32, 33] contains more than 500 cancer genes that have been 

reported in the literatures to exhibit mutations and that are causally implicated in 

cancer development, of which 503 genes were included in the 18,602 genes we tested. 

These known cancer genes have significantly lower dN/dS values for germline 

substitutions (Wilcoxon test, P<10-16), but slightly greater dN/dS values (Wilcoxon 

test, P=0.01) for cancer somatic mutations than those of other genes (Table 2A). For 

selection over longer time scales, we extracted the dN/dS values between 

human-mouse orthologs from the Ensembl database (Release 73) [34, 35]. The known 

cancer genes have significantly lower human-mouse dN/dS values than other human 

genes. Among the cancer genes, oncogenes (OGs) have significantly lower dN/dS 

values than non-cancer genes (Wilcoxon test, P<10-15), whereas the mean dN/dS 

values of tumor suppressor genes (TSGs) are not significantly different from those of 
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non-cancer genes (Wilcoxon test, P=0.89). These results support the work of Thomas 

et al. [36], who showed that known cancer genes may be more constrained and more 

important than other genes at the species and population levels, especially for 

oncogenes. In contrast, known cancer genes are more likely to gain functional somatic 

mutations in cancer relative to all other genes. However, within the known cancer 

genes, only 53 genes exhibited positive selection (χ2 test, P<0.05) for cancer somatic 

substitutions, which suggests that positive selection for driver mutations is obscured 

by the relaxed purifying selection of passenger mutations.  

We also examined human essential genes [37] and cancer common essential 

genes [21]. We extracted 2,452 human essential genes from DEG10 (the Database of 

Essential Genes) [37]. These genes are critical for cell survival, and are of cause more 

conserved than other genes in species and population levels. Human essential genes 

have significantly lower dN/dS values of human-mouse orthologs and germline 

substitution, while similar dN/dS values for cancer somatic mutations, comparing to 

non-essential genes (Table 2A). Cancer essential genes were identified by performing 

genome-scale pooled RNAi screens. RNAi screens with the 45ksh RNA pool in 12 

cancer cell lines, including small-cell lung cancer, non-small-cell lung cancer, 

glioblastoma, chronic myelogenous leukemia, and lymphocytic leukemia, revealed 

268 common essential genes [21]. These cancer essential genes also have significantly 

lower dN/dS values of human-mouse orthologs and germline substitutions, while 

similar dN/dS values for cancer somatic mutations, comparing to other human genes 

(Table 2A). 
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 The cancer positively selected genes showed similar pattern with the cancer genes, 

cancer common essential genes, and human essential genes. These genes have lower 

dN/dS values for human-mouse orthologs (Wilcoxon test, P=4.5×10-4) and germline 

substitutions (Wilcoxon test, P=0.01), while significantly greater dN/dS values for 

cancer somatic mutations (Wilcoxon test, P<10-16). However, the cancer negatively 

selected genes showed the different pattern, which have greater dN/dS values for 

human-mouse orthologs (Wilcoxon test, P=7.3×10-4) and germline substitutions 

(Wilcoxon test, P=2.3×10--4), while significantly lower dN/dS values for cancer 

somatic mutations (Wilcoxon test, P<10-16). These results indicate that the positively 

selected genes may include the cancer associate genes or human essential genes, 

while the negatively selected genes may include genes strengthened selective 

constraint in cancer cells than that in normal cells. 

We further tested the correlation of dN/dS values of human genes for 

human-mouse orthologs, germline substitutions and cancer somatic mutations, to 

compare selective pressures among species, population and cancers (Table 2B). For 

different gene sets, the dN/dS values between human-mouse orthologs show a weak 

positive correlation with those of germline substitutions, but no correlation with those 

of cancer somatic substitutions. The dN/dS values for human germline and cancer 

somatic substitutions show different correlation patterns between different gene sets. 

The tumor suppressor genes and cancer positively selected genes show weak positive 

correlation, while other gene sets have no correlation.  
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Roles of cancer positively and negatively selected genes in cancer cells 

We then tested the genes under positive or purifying selection for their roles in 

cancer. Functional annotation analysis based on the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) v6.7 [38, 39] showed an enrichment 

of genes involved in cell morphogenesis and pathways in cancer for cancer positively 

selected genes (Table 3A), while an enrichment of genes involved in sensory 

perception for cancer negatively selected genes (Table 3B) . As we only used a 

relaxed filter (P<0.05) for detecting cancer positively or negatively genes, which 

would lead to high FDRs. We further calculated the FDR for each P-value, using the 

qvalue (Table S1) [40]. We set the strengthened filter for detecting positively and 

negatively selected genes as P<10-3 and FDR<0.25. There are only 61 genes meeting 

this requirement, which include 45 cancer positively selected genes and 16 cancer 

negatively selected genes (Table S2).  

Among the 45 cancer positively selected genes, there are three oncogenes (GANP, 

NFE2L2, RHOA) and five tumor suppressor genes (TP53, CSMD1, CDKN2A and 

SPOP), according to the Cancer Gene Census [32]. Fourteen out of these genes are 

human essential genes, and seven genes are orthologs of mouse or yeast essential 

genes, according to the DEG10 [37]. Besides these genes, four cancer positively 

selected genes (IKBIP, TEX13A, FZD10 and PGAP2) also have dN/dS values 

significantly greater than one (P<0.01, FDR<0.05) for germline substitutions. Six 

genes show negative selection (P<0.01, FDR<0.5) in germline substitutions. Among 

these six genes, CAMD2, CSMD1 and CSMD3 have been reported as candidate 
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tumor suppressor genes [41-44]. ACTG1 is associated with cancer cell migration [45]. 

There are also thirteen cancer positively selected genes show neutral selection for 

germline substitutions. It would be interesting to investigate the roles to cancer of 

these cancer-specific positively selected genes and four human essential genes which 

are not identified to be cancer related genes.  

Among the 16 cancer negatively selected genes, there are two human essential 

genes, which are oncogene (FUS) and tumor suppressor gene (APC). These two genes 

are also under negative selection (P<0.02, FDR<0.06) for germline substitutions. The 

BRCA1 mutations, which would increase cancer risk for breast and ovarian cancer, 

can also be germline mutations, besides somatic mutations [46]. The other thirteen 

genes show strengthened selective constraint in cancer cells than in normal cells. It 

would attract much interest to uncover the roles of these evolutionary conserved genes 

in cancer cells. Several of these genes were reported to be required for the survival 

and proliferation of cancer cells and might therefore serve as potential drug targets or 

prognostic biomarkers. For example, BCL2L12 is a member of the BCL2 family and 

is an anti-apoptotic factor that can inhibit the p53 tumor suppressor as well as 

caspases 3 and 7 [47, 48]. Overexpression of BCL2L12 has been detected in several 

cancer types, and BCL2L12 can be considered as a molecular prognostic biomarker in 

these cancers [49-52]. MAP4 is a major non-neuronal microtubule-associated protein 

that promotes microtubule assembly. Ou et al. have reported that the protein level of 

MAP4 is positively correlated with the bladder cancer grade. And silencing MAP4 

can efficiently disrupt the microtubule cytoskeleton, inhibiting the invasion and 
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migration of bladder cancer cells [53]. EPPK1 is a member of plakin family, which 

plays a role in the organization of cytoskeletal architecture. Guo et al. identified 

EPPK1 as a predictive plasma biomarker for cervical cancer by proteomics [54]. 

These cancer-specific negatively selected genes are more conserved in cancer cells 

than in normal cells, indicating they may be crucial for the basic cellular processes of 

cancer cells. 

  

Discussion 

A key goal of cancer research is to identify cancer-related genes, such as OGs 

and TSGs, whose mutation might promote the occurrence and progression of tumors 

[28]. There are also cancer essential genes that are important for the growth and 

survival of cancer cells [21]. Different methods are needed to identify different types 

of cancer-related genes. In contrast to recent studies focused on the detection of driver 

mutations [16-18, 55], we aimed to detect cancer essential genes using a molecular 

evolution approach. Advances in the understanding of positively selected cancer 

drivers, as well as the severe side effects of classical chemotherapy and radiation 

therapies that target DNA integrity and cell divisions, have fueled efforts to develop 

anticancer drugs with more precise molecular targeting and fewer side effects. Though 

personalized therapeutic approaches that target genetically activated drivers have 

greatly improved patient outcomes in a number of common and rare cancers, the rapid 

acquisition of drug resistance due to high intra-tumor heterogeneity is becoming a 

challenging problem [56]. In other words, driver mutations may differ considerably 
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among tumor sub-clones. Instead of looking for cancer-causing genes with multiple 

driver mutations, an alternative approach is to identify cancer essential genes that are 

highly conserved in tumor cell populations because they are crucial for carcinogenesis, 

progression and metastasis. To some extent, this idea may overcome drug resistance 

in targeted cancer therapies, as mutations in cancer essential genes are deleterious in 

tumor populations. 

Several approaches can be utilized to identify cancer essential genes suitable for 

targeting with drugs, including siRNA-mediated knockdown of specific components 

and genetic tumor models. The genome-wide pooled shRNA screens promoted by the 

RNAi Consortium [57], however, can only be performed in cell lines in vitro and are 

limited to the analysis of genes important for proliferation and survival [21, 58, 59]. 

Thus, these screens will miss certain classes of genes that may function only in the 

proper in vivo tumor environment. Furthermore, siRNA screens may not be sensitive 

to target genes whose products are components of the cellular machinery. These types 

of targets may be frequently stabilized by their participation in complexes with a long 

biological half-life. Indeed, this longevity may be the reason why not all such targets 

seem to be essential for cancer cells in standard short-term siRNA screens [8]. Genetic 

tumor models can also enable screening strategies within an entire organism to 

identify cancer essential genes. However, this method is not suitable for large-scale 

screening. With the explosive increase in cancer somatic mutation data from cancer 

genome sequencing, it is now possible to investigate the natural selection of each 

human gene in cancer genomes using evolutionary genomics methods [8]. One major 
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aim is to identify genes that was significantly strengthened purifying selective 

constraint from normal to cancer cells, which would suggest that these genes are 

cancer-specific essential genes. 

Through analyses of large-scale cancer somatic mutation data derived from The 

Cancer Genome Atlas (TCGA) or International Cancer Genome Consortium (ICGC), 

previous studies found important differences between the evolutionary dynamics of 

cancer somatic cells and whole organisms [14, 6, 16]. However, these studies applied 

canonical nucleotide substitution models to identify the molecular signatures of 

natural selection in cancer cells or human populations, which neglected the apparently 

different mutation profiles between these cell types. Here, we developed a new 

mutation-profile-based Nei-Gojobori method (mpNG) to calculate the dN/dS values 

of 18,602 human genes for both cancer somatic and normal human germline 

substitutions.  

 Two prerequisites are crucial to apply the mpNG method properly. First, a large 

number of samples with similar mutation profiles is necessary to increase the power 

of selection pressure detection. Second, a subset of nucleotide substitutions should be 

chosen to represent the background neutral mutation profiles among the samples. In 

this study, because of the limitation of the number of cancer samples, especially the 

number of whole-genome sequenced cancer-normal tissue pairs, we pooled all the 

samples to analyze pan-cancer-level selection pressures. Mutation profiles are well 

known to be heterogeneous, even for samples with the same tissue origin [28, 17]. As 

an increasing number of cancer genomes are sequenced in the near future, we can 
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classify cancer samples by their specific mutation profiles and infer evolutionarily 

selective pressures using the mpNG method. With respect to background neutral 

mutation profiles, it will be appropriate to calculate them based on intergenic regions 

from the corresponding samples. However, only a small number of cancer-normal 

paired WGSs are currently available. Therefore, in this study, we assume that most 

exonic somatic mutations in the cancer samples do not have significant effects on the 

fitness of cancer cells. Under this assumption, we can apply the mutation profiles of 

WESs to approximate the background. The exonic mutation profiles used in our 

mpNG method consider the weight of the 96 substitution classifications within the 

cancer exomes, which may reflect the mutation bias of different substitution types 

within the protein-coding regions. This method would recover the underestimation of 

the dN/dS value by the NG86 method [31]. Using the mpNG method, the detection of 

positive selection would be relaxed, whereas the detection of negative selection would 

be conservative when comparing to the NG86 method. Were more cancer-normal 

WGSs available, it would be better to choose suitable mutation profiles for the mpNG 

method. With the expansion of these data in the future, we may apply more precise 

methods to identify neutral background mutation properties. 

 As a conservative estimate of positively and negatively selected genes in cancer, 

we found 45 genes under intensified positive selection and 16 genes under 

strengthened purifying selection in cancer cells compared with germline cells. The 

cancer-specific positively selected genes are enriched for known cancer genes and/or 

human essential genes, while several cancer-specific negatively selected genes have 
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been reported as prognostic biomarkers for cancers. As cancer-specific negatively 

selected genes are more evolutionarily constrained in cancer cells than in normal cells, 

identification of cancer-specific negatively selected genes would inform the potential 

resource of therapeutic targets or diagnostic biomarkers for cancers. However, cancer 

somatic mutations vary greatly among different cancer types and even among 

individual cancer genomes [28, 60, 17, 18], further studies will be needed to better 

understand the evolution of human cancer. 

 

Methods 

Datasets 

Cancer somatic mutation data from 7,042 primary cancers corresponding to 30 

different classes were extracted from the work of Alexandrov et al. [28], which 

includes 4,938,362 somatic substitutions and small insertions/deletions from 507 

WGSs and 6,535 WESs. Data on human rare protein-coding variants (minor allele 

frequency < 0.01%) from 6,500 human WESs (ESP6500) were extracted from the 

ANNOVAR database [61] based on the NHLBI GO Exome Sequencing Project. A 

total of 522 known cancer genes were extracted from the Cancer Gene Census 

(http://cancer.sanger.ac.uk/cancergenome/projects/census/, COSMIC v68) [32, 33]. 

Sequences and annotations of human genes were extracted from the Ensembl 

database (Release 73) [34, 35]. For each gene, we only chose the longest sequence to 

avoid duplicate records of each single substitution. The HGNC (HUGO Gene 

Nomenclature Committee) database [62] (http://www.genenames.org/) and the 
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Genecards database [63] (http://www.genecards.org) were also used to map the gene 

IDs from different datasets. DAVID (Database for Annotation, Visualization and 

Integrated Discovery) v6.7 was utilized for the functional annotation analysis [38, 39]. 

 

Calculating mutation rate profiles  

We calculated the mutation rate profiles using the 96 substitution classifications 

[28, 29], which not only show the base substitution but also include information on 

the sequence context of each mutated base. We counted all the somatic substitutions 

in protein-coding regions of the 7,042 cancer-normal paired WESs as well as all the 

protein-coding variants of the ESP6500 data set. We also count the total number of 

each trinucleotide type for the exonic, intronic, and intergenic regions in human 

genome. We calculated the mutation rate of each substitution type as the number of 

substitution per trinucleotide type per patient. The mutation profiles were depicted as 

the mutation rate of each mutation type according to the 96 substitution 

classifications.  

 

Detection of positive and negative selections 

ANNOVAR was utilized to perform biological and functional annotations of the 

cancer somatic mutations and germline substitutions [61]. Substitutions within 

protein-coding genes were classified as nonsynonymous and synonymous. We 

counted the numbers of nonsynonymous (n) and synonymous (s) substitutions for 

each gene among all the somatic mutations of 7,042 cancer-normal pairs. Somatic 
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mutations at the same site and with the same mutation type that occurred in different 

patients were counted as different substitutions, as these substitutions, unlike germline 

evolution, occurred independently.  

 We further calculated the numbers of nonsynonymous (N) and synonymous (S) 

sites in each human protein-coding gene utilizing different models. The simple 

method of Nei and Gojobori was used [27]. We also considered cancer somatic 

mutation profiles, which were depicted as the percentage of each mutation type 

according to the 96 substitution classifications. For each gene, we calculated the 

proportion of substitutions that would be nonsynonymous or synonymous for each 

protein-coding site, as the probability of mutation types for each site was determined 

according to the mutation profiles. Then, we added up the proportions to calculate the 

total number of nonsynonymous (N) and synonymous (S) sites for each gene. 

 After counting the numbers of nonsynonymous (n) and synonymous (s) 

substitutions, as well as the numbers of nonsynonymous (N) and synonymous (S) 

sites for each gene, we calculated the ratio of the rates of nonsynonymous and 

synonymous substitutions (dN/dS) for each human gene as follows: 

/ N

s +0.5 / +0.5

dN n

dS S

（ ）（ ）

. 

 The dN/dS for germline substitutions was calculated using the same approach. 

 A χ2 test was used to compare the numbers of nonsynonymous and synonymous 

substitutions to the numbers of nonsynonymous and synonymous sites for each gene 

in order to test the statistical significance of the difference between the dN/dS values 

and one. The genes with dN/dS values significantly greater than one were classified as 
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being under positive selection in tumors, whereas the genes with dN/dS values 

significantly less than one were classified as being under negative, or purifying, 

selection. The false discovery rate was estimated using the qvalue package from 

Bioconductor [40]. A Wilcoxon test was performed to compare dN/dS values between 

cancer somatic substitutions and germline substitutions as well as between known 

cancer genes and all other genes. The software tool R was used for the statistical 

analysis (http://www.r-project.org/). 
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Figure Legends 

Figure 1. Mutation profiles of cancer somatic substitutions and germline substitutions, 

including the exonic mutation profile of 7,042 cancer samples, the exonic mutation 

profile of ESP6500, the intronic mutation profile of 507 cancer whole genomes, the 

intergenic mutation profile of 507 cancer whole genomes, and the exonic mutation 

profiles of breast carcinoma (BRCA), lung adenocarcinoma (LUAD), colon 

adenocarcinoma (COAD), and skin cutaneous melanoma (SKCM). 

Figure 2. The pipeline used to identify cancer positively and negatively selected 

genes with mpNG method. 

Figure 3. The overlap of positive selection (A) and negative selection (B) genes based 

on different models. 
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Tables 

Table 1. The dN/dS values and number of human genes under positive or negative 

selection in germline and cancer based on NG86 and mpNG methods with different 

mutation profiles. P-values are according to a χ2 test. 

 dN/dS # Positive selection* # Negative selection* 

Germline (NG86) 0.624 ± 0.004 42 9093 

Cancer (NG86) 0.990 ± 0.006 306 2330 

Cancer (intergenic) 1.240 ± 0.008 697 722 

Cancer (intronic) 1.281 ± 0.008 822 624 

Germline (exonic) 0.903 ± 0.006 264 4357 

Cancer (exonic) 1.367 ± 0.009 1230 326 

Note: *P<0.05 
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Table 2. The dN/dS values (A) and Correlation of dN/dS values (B) of different gene 

sets for human-mouse orthologs, germline and cancer somatic substitutions.  

(A) 

   Human-Mouse Germline Cancer 

All genes 0.155 ± 0.006 0.903 ± 0.006 1.367 ± 0.009 

Known cancer genes 0.111 ± 0.005 0.675 ± 0.017 1.350 ± 0.033 

Oncogenes 0.101 ± 0.006 0.665 ± 0.020 1.336 ± 0.038 

Tumor suppressor genes 0.151 ± 0.014 0.732 ± 0.039 1.350 ± 0.066 

Human essential genes 0.093 ± 0.002 0.704 ± 0.013 1.288 ± 0.015 

Cancer essential genes 0.089 ± 0.007 0.698 ± 0.032 1.413 ± 0.067 

Positively selected genes 0.136 ± 0.004 0.918 ± 0.029 3.216 ±0.091 

Negatively selected genes 0.172 ± 0.008 0.915 ± 0.023 0.479 ±0.009 

(B) 

 Human-Mouse vs Germline Human-Mouse vs Cancer Germline vs Cancer 

 r P-Value r P-Value r P-Value 

All genes 0.04 3.3×10-7 -0.01 0.47 0.10 <10-16 

Known cancer genes 0.45 <10-16 -0.02 0.72 0.11 0.02 

  Oncogenes 0.43 <10-16 -0.01 0.85 0.04 0.43 

  Tumor suppressor genes 0.52 1.0×10-8 0.04 0.66 0.36 1.6×10--4 

Human essential genes 0.19 <10-16 -0.05 0.01 0.06 1.4×10-3 

Cancer essential genes 0.30 5.7×10-7 -0.07 0.29 0.03 0.65 

Positively selected genes 0.17 2.4×10-9 -0.02 0.57 0.23 <10-16 

Negatively selected genes 0.22 6.3×10-5 0.10 0.07 0.04 0.60 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 20, 2015. ; https://doi.org/10.1101/021147doi: bioRxiv preprint 

https://doi.org/10.1101/021147
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

Table 3. Functional enrichment of positively and negatively selected genes in cancer 

genomes (P<0.01, FDR<10%). 

(A) 

Category Term P-Value FDR (%) 

GOTERM_BP_FAT GO:0032989~cellular component morphogenesis 7.42×10-4 1.34 

GOTERM_BP_FAT GO:0043009~chordate embryonic development 2.40×10-3 4.28 

GOTERM_BP_FAT 
GO:0009792~embryonic development ending in birth or 

egg hatching 
2.89×10-3 5.13 

GOTERM_BP_FAT GO:0000902~cell morphogenesis 3.28×10-3 5.80 

GOTERM_BP_FAT GO:0030098~lymphocyte differentiation 4.90×10-3 8.55 

GOTERM_BP_FAT GO:0051276~chromosome organization 5.19×10-3 9.02 

KEGG_PATHWAY hsa05200:Pathways in cancer 4.23×10-3 0.52 

KEGG_PATHWAY hsa05215:Prostate cancer 5.88×10-4 0.72 

KEGG_PATHWAY hsa05213:Endometrial cancer 1.46×10-3 1.78 

KEGG_PATHWAY hsa05210:Colorectal cancer 2.27×10-3 2.75 

KEGG_PATHWAY hsa05216:Thyroid cancer 2.74×10-3 3.32 

(B) 

Category Term P-Value FDR (%) 

GOTERM_BP_FAT GO:0007600~sensory perception 1.35×10-3 2.20 

GOTERM_BP_FAT GO:0050890~cognition 3.11×10-3 5.00 

GOTERM_BP_FAT GO:0007608~sensory perception of smell 4.27×10-3 6.80 

GOTERM_BP_FAT GO:0007606~sensory perception of chemical stimulus 4.67×10-3 7.41 

KEGG_PATHWAY hsa04740:Olfactory transduction 1.03×10-3 1.11 
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Figure 1 
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