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Abstract

We analyze a class of chemical reaction networks for which all moments can be computed
by finite-dimensional linear differential equations. This class allows second and higher order
reactions, but only under special assumptions on structure and/or conservation laws.

1 Preliminaries on stochastic chemical kinetics

We start by reviewing standard concepts regarding master equations for biochemical networks,
see for instance [3].

Chemical systems are inherently stochastic, as reactions depend on random (thermal) motion.
Deterministic models represent an aggregate behavior of the system. They are accurate in
much of classical chemistry, where the numbers of molecules are usually expressed in multiples
of Avogadro’s number, which is ≈ 6×1023. In such cases, basically by the law of large numbers,
the mean behavior is a good description of the system. The main advantage of deterministic
models is that they are comparatively easier to study than probabilistic ones. However, they
may be inadequate when the “copy numbers” of species, i.e. the numbers of units (ions, atoms,
molecules, individuals) are very small, as is often the case in molecular biology when looking
at single cells: copy numbers are small for genes (usually one or a few copies), mRNA’s (in the
tens), ribosomes and RNA polymerases (up to hundreds) and certain proteins may be at low
abundances as well. Analogous situations arise in other areas, such as the modeling of epidemics
(where the “species” are individuals in various classes), if populations are small. This motivates
the study of stochastic models. We assume that temperature and volume Ω are constant, and
the system is well-mixed.

We consider a chemical reaction network consisting of m reactions which involve the n species

Si, i ∈ {1, 2, . . . n} .

The reactions Rj , j ∈ {1, 2, . . . ,m} are specified by combinations of reactants and products:

Rj :

n∑
i=1

aijSi →
n∑
i=1

bijSi (1)
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where the aij and bij are non-negative integers, the stoichiometry coefficients, and the sums are
understood informally, indicating combinations of elements.

The data in (1) serves to specify the stoichiometry of the network. The n ×m stoichiometry
matrix Γ = {γij} has entries:

γij = bij − aij , i = 1, . . . , n , j = 1, . . . ,m . (2)

Thus, γij counts the net change in the number of units of species Si each time that reaction Rj
takes place. We will denote by γj the jth column of Γ:

γj = bj − aj

where
aj = (a1j , . . . , anj)

′ and bj = (b1j , . . . , bnj)
′

(prime indicates transpose) and assume that no γj = 0 (that is, every reaction changes at least
one species).

In general, for every v ∈ Zn≥0, we denote ⊕v = ⊕(v1, . . . , vn) := v1 + . . .+ vn. In particular, for
each j ∈ {1, . . . ,m}, we define the order of reaction Rj as

Aj = ⊕aj =
n∑
i=1

aij

(the total number of units of all species participating in the reaction). One allows the possibility
of zero order, that is, for some reactions j, aij = 0 for all i. This is the case when there is
“birth” of species out of the blue, or more precisely, a species is created by what biologists
call a “constitutive” process, such as the production of an mRNA molecule by a gene that is
always active. Zeroth order reactions may also be used to represent inflows to a system from
its environment. Similarly, also allowed is the possibility that, for some reactions j, bij = 0 for
all i. This is the case for reactions that involve degradation, dilution, decay, or outflows.

Stoichiometry information is not sufficient, by itself, to completely characterize the behavior of
the network: one must also specify the rates at which the various reactions take place. This
can be done by specifying “propensity” or “intensity” functions.

1.1 Stochastic models of chemical reactions

Stochastic models of chemical reaction networks are described by a column-vector Markov
stochastic process X = (X1, . . . , Xn)′ which is indexed by time t ≥ 0 and takes values in Zn≥0.
Thus, X(t) is a Zn≥0-valued random variable, for each t ≥ 0. Abusing notation, we also write
X(t) to represent an outcome of this random variable on a realization of the process. The
interpretation is:

Xi(t) = number of units of species i at time t .

One is interested in computing the probability that, at time t, there are k1 units of species 1,
k2 units of species 2, k3 units of species 3, and so forth:

pk(t) = P [X(t) = k]

for each k ∈ Zn≥0. We call the vector k the state of the process at time t.
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Arranging the collection of all the pk(t)’s into an infinite-dimensional vector, after an arbitrary
order has been imposed on the integer lattice Zn≥0, we have that p(t) = (pk)k∈Zn

≥0
is the discrete

probability density (also called the “probability mass function”) of X(t).

This note is concerned with the computation of moments, such as the expectation or mean (i.e,
the average over all possible random outcomes) of the numbers of units of species at time t:

E [X(t)] =
∑
k∈Zn

≥0

pk(t)k

which is a column vector whose entries are the means

E [Xi(t)] =
∑
k∈Zn

≥0

pk(t)ki =
∞∑
`=0

`
∑

{k∈Zn
≥0,ki=`}

pk(t) =
∞∑
`=0

` p
(i)
` (t)

of the Xi(t)’s, where the vector (p
(i)
0 (t), p

(i)
1 (t), p

(i)
2 (t), . . .) is the marginal density of Xi(t). Also

of interest, to understand variability, are the matrix of second moments at time t:

E
[
X(t)X(t)′

]
whose (i, j)th entry is E [Xi(t)Xj(t)] and the (co)variance matrix at time t:

Var [X(t)] = E
[
(X(t)− E [X(t)]) (X(t)− E [X(t)])′

]
= E

[
X(t)X(t)′

]
− E [X(t)]E [X(t)]′

whose (i, j)th entry is the covariance of Xi(t) and Xj(t), E [Xi(t)Xj(t)]− E [Xi(t)]E [Xj(t)].

1.2 The Chemical Master Equation

A Chemical Master Equation (CME) (also known as a Kolmogorov forward equation) is a system
of linear differential equations for the pk’s, of the following form. Suppose given m functions

ρj : Zn≥0 → R≥0 , j = 1, . . . ,m , with ρj(0) = 0 .

These are the propensity functions for the respective reactions Rj . An intuitive interpretation
is that ρj(k)dt is the probability that reaction Rj takes place, in a short interval of length dt,
provided that the state was k at the beginning of the interval. The CME is:

dpk
dt

=

m∑
j=1

ρj(k − γj) pk−γj −
m∑
j=1

ρj(k) pk , k ∈ Zn≥0 (3)

where, for notational simplicity, we omitted the time argument “t” from p, and where we make
the convention that ρj(k − γj) = 0 unless k ≥ γj (coordinatewise inequality). There is one
equation for each k ∈ Zn≥0, so this is an infinite system of linked equations. When discussing
the CME, we will assume that an initial probability vector p(0) has been specified, and that
there is a unique solution of (3) defined for all t ≥ 0. A different CME results for each choice
of propensity functions, a choice that is dictated by physical chemistry considerations. Here we
will restrict attention to the most standard model, mass-action kinetics propensities.

We will also introduce the n-column vector:

f(k) :=
m∑
j=1

ρj(k) γj = ΓR(k) k ∈ Zn≥0
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where R(k) = (ρ1(k), . . . , ρm(k))′. One may interpret f(k)dt as the expected change of state
during an interval (since γj quantifies the size of the jump if the reaction is Rj). Thus, f(k)
may be thought of as the rate of change of the state, if the state is k.

1.3 Propensity functions for mass-action kinetics

For each k = (k1, . . . , kn)′ ∈ Zn≥0, we let (recall that aj denotes the vector (a1j , . . . , anj)
′):(

k

aj

)
=

n∏
i=1

(
ki
aij

)

where
(
ki
aij

)
is the usual combinatorial number ki!/(ki − aij)!aij !, which we define to be zero if

ki < aij .

The most commonly used propensity functions, and the ones best-justified from elementary
physical principles, are ideal mass action kinetics propensities, defined as follows:

ρj(k) = κaj

(
k

aj

)
, j = 1, . . . ,m .

The m non-negative constants κ1, . . . , κm are arbitrary, and they represent quantities related
to the volume, shapes of the reactants, chemical and physical information, and temperature.
Notice that ρj(k) can be expanded into a polynomial in which each variable ki has an exponent
less or equal to aij . In other words,

ρj(k) =
∑
cj≤aj

κcj k
cj (4)

(“≤” is understood coordinatewise, and by definition kcj = k
c1j
1 . . . k

cnj
n and r0 = 1 for all

integers), for suitably redefined coefficients κcj ’s. Often one uses the simplification

ρj(k) = κj k
aj , j = 1, . . . ,m . (5)

This simplification means that we approximate x(x− 1) . . . (x− r + 1) ≈ xr, which introduces
a small error if r > 1 and the integer x is very small. We provide results for both forms of
propensity.

1.4 Moment equations

Suppose given a function M : Zn≥0 → R (to be taken as a monomial when computing moments).
The definition of expectation gives:

E [M(X(t))] =
∑
k∈Zn

≥0

pk(t)M(k)

because P [X(t) = k] = pk(t). We have:

d

dt
E [M(X(t))] =

∑
k∈Zn

≥0

dpk
dt

(t)M(k) =
∑
k∈Zn

≥0

 m∑
j=1

ρj(k − γj) pk−γj −
m∑
j=1

ρj(k) pk

M(k) .
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Note this equality, for each fixed j:∑
k∈Zn

≥0

pk−γj (t)ρj(k − γj)M(k) =
∑
k∈Zn

≥0

pk(t)ρj(k)M(k + γj)

(by definition, ρj(k−γj) = 0 unless k ≥ γj , so one may perform a change of variables k̃ = k−γj).
There results:

d

dt
E [M(X(t))] =

∑
k,j

pk(t)ρj(k)M(k + γj) −
∑
k,j

pk(t)ρj(k)M(k)

=
∑
k∈Zn

≥0

pk(t)
m∑
j=1

ρj(k) [M(k + γj)−M(k)] .

Let us define, for any γ ∈ Zn≥0, the new function ∆γM given by (∆γM)(k) := M(k+γ)−M(k).
With these notations,

d

dt
E [M(X(t))] =

m∑
j=1

E
[
ρj(X(t)) ∆γjM(X(t))

]
. (6)

We next specialize to a monomial function:

M(k) = ku = ku11 ku22 . . . kunn

where u ∈ Zn≥0. In this case,

(∆γjM)(k) = M(k + γj)−M(k)

= (k1 + γ1j)
u1(k2 + γ2j)

u2 . . . (kn + γnj)
un − ku11 ku22 . . . kunn .

Expanding each binomial (ki + γij)
ui for which γij 6= 0, distributing, and canceling out the

leading term, results in

(∆γjM)(k) =
∑

ν∈S(u,j)

dνk
ν

for appropriate coefficients dν , where

S(u, j) := set of indices ν = u− µ ∈ Zn≥0
where µ ∈ Zn≥0 satisfies:

u ≥ µ 6= 0 (7)

(inequalities “≥” in Zn≥0 are understood coordinatewise), and

µi = 0 for each i such that γij = 0 . (8)

Thus, if ρj(k) = κj k
aj as in (5), then:

d

dt
E [X(t)u] =

m∑
j=1

∑
ν∈S(u,j)

dνκj E
[
X(t)ν+aj

]
. (9)

More generally, if

ρj(k) =
∑
cj≤aj

κcj k
cj

as in (4) then:

d

dt
E [X(t)u] =

m∑
j=1

∑
cj≤aj

∑
ν∈S(u,j)

dνκcj E
[
X(t)ν+cj

]
. (10)
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2 A set of transformations

For each multi-index u ∈ Zn≥0, we define R0(u) = {u},

R1(u) := {ν + aj , 1 ≤ j ≤ m, ν ∈ S(u, j)}

if using definition (5), or

R1(u) := {ν + cj , 1 ≤ j ≤ m, cj ≤ aj , ν ∈ S(u, j)}

if using definition (4), and, more generally, for any ` ≥ 1,

R`+1(u) := R1(R`(u))

where, for any set U , R`(U) :=
⋃
u∈U R`(u). Finally, we set

R(u) :=

∞⋃
i=0

Ri(u) .

Each set R`(u) is finite, but the cardinality #(R(u)) may be infinite. It is finite if and only if
there is some L ≥ 0 such that R(u) =

⋃L
i=0Ri(u), or equivalently RL+1(u) ⊆

⋃L
i=0Ri(u).

Equation (9) (or (10)) says that the derivative of the u-th moment can be expressed as a linear
combination of the moments in the set R1(u). The derivatives of these moments, in turn, can
be expressed in terms of the moments in the set R1(u′), for each u′ ∈ R1(u), i.e., in terms of
moments in the set R2(u). Iterating, we have the following:

Main Lemma. Suppose that N := #(R(u)) < ∞, and write R(u) = {u1, . . . , uN}, with
u1 = u. Then, there exists a matrix A ∈ RN×N such that, for any sample path X(·), and
letting

x(t) := (E [Xu1(t)] , . . . ,E [XuN (t)])′ ,

it holds that ẋ(t) = Ax(t) for all t ≥ 0.

This motivates the following problem: characterize those chemical reaction networks for which
#(R(u)) <∞ for all u ∈ Zn≥0.

One trivial sufficient condition is that all reactions be or order 0 or 1, which means that
⊕aj ∈ {0, 1}. In that case, since µ > 0 in the definition of S(u, j), it follows that ⊕aj ≤ ⊕µ for
every index j. Therefore, ⊕(ν+aj) = ⊕u+⊕aj−⊕µ ≤ ⊕u for all u, and the same holds for ν+cj
if cj ≤ aj . In summary, the degree of all elements in R(u) is ≤ ⊕u, so indeed #(R(u)) < ∞.
A generalization to “weighted L1 norms” where one uses instead ⊕v = β1v1 + . . . + βnvn for
non-unity coefficients will be described next.

2.1 Lyapunov-like functions

Definition. A function V : Zn≥0 → R≥0 will be called a Lyapunov-like function with respect
to a given chemical network if the following two properties hold:

1. for each u, v: v ∈ R1(u) ⇒ V (v) ≤ V (u) [nondecreasing property],

2. for each α ≥ 0: Vα := {v |V (v) ≤ α} is finite [properness].
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Theorem. For every chemical network, the following two statements are equivalent:

• There exists a Lyapunov-like function.

• #(R(u)) <∞ for all u ∈ Zn≥0.

Proof. Sufficiency is clear: pick any u, and let α := V (u); iterating on the nondecreasing
property, V (v) ≤ α for all v ∈ R(u), meaning that R(u) ⊆ Vα, and thus #(R(u)) <∞.

To prove the converse, assume that #(R(u)) < ∞ for all u. Define V (u) := maxw∈R(u)⊕w.
Since #(R(u)) < ∞, it follows that V (u) < ∞. As u ∈ R(u), it follows from the definition of
V that ⊕u ≤ V (u). Now pick any u, v so that v ∈ R1(u). Since R(v) ⊆ R(u), it follows that
{⊕w,w ∈ R(v)} ⊆ {⊕w,w ∈ R(u)}. Therefore V (v) ≤ V (u) (nondecreasing property). Now
pick any α ≥ 0, which we may take without loss of generality to be a nonnegative integer, and
any element v ∈ Vα. Since ⊕v ≤ V (v), it follows that ⊕v ≤ α. So Vα is a subset of the set of
all nonnegative vectors v such that ⊕v ≤ α, which has

(
α+n
n

)
elements.

2.2 Linear V ’s

The nonincrease requirement means, using the definition of R1(u), that

V (u− µ+ cj) ≤ V (u) (11)

for all cj ≤ aj (1 ≤ j ≤ m) under definition (4) for propensities, or just for cj = aj if propensities
have the simplified form (5), and every µ for which (7) and (8) hold, i.e., every µ for which
u ≥ µ 6= 0 and µi = 0 for every i such that γij = 0. Pick any reaction index j and for this index
pick any species index i such that the species Si changes, that is, γij 6= 0. Now pick u = µ = ei,
the canonical unit vector with a “1” in the ith position (this choice of µ is allowed, since it is
false that γij = 0) and apply (11). that a necessary condition for decrease is that

γij 6= 0 ⇒ V (cj) ≤ V (ei) (12)

for all cj ≤ aj , or simply for cj = aj in the simplified case (5).

We now consider the special case of Lyapunov-like functions which can be extended to an
additive map V : Zn → R. In this case, (12) equivalent to (11). Indeed, to see that (12) implies
(11), pick any u, any reaction index j, and any µ such that (7) and (8) hold. Since µ 6= 0 and
µ ≤ u, there is some species index i such that γij 6= 0 and µi 6= 0, i.e., µ ≥ ei. Applying (12)
with this choice of i:

V (u− µ+ cj) ≤ V (u) + V (ei − µ) + V (cj − ei) ≤ V (u) ,

where we used that V (µ− ei) ≥ 0.

A map V : Zn≥0 → R≥0 that extends to an additive function V : Zn → R is necessarily of the
form

V (u) = βu = β1u1 + . . .+ βnun (13)

for some β = (β1, . . . , βn) ∈ Zn≥0 and it automatically satisfies the properness property provided
that all βi 6= 0, which we assume from now on. Thus, #(R(u)) < ∞ will be satisfied for all u
if V has this form and satisfies (12). This condition can be made a little more explicit in the
linear case. Let ∆j := {i | γij 6= 0}. Then a linear Lyapunov-like function amounts to picking a
β such that

i ∈ ∆j ⇒ βaj ≤ βi . (14)
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2.3 Special case: multi-layer feedforward networks

A general class for which there is a linear Lyapunov-like function, and hence #(R(u)) <∞ for
all u, is that of multi-layer feedforward networks with linear reactions in the first layer. These are
defined as follows. We find it convenient to separate degradations from more general reactions.
So we will assume that there are reactionsRj , j ∈ {1, 2, . . . ,m}, which are partitioned into p ≥ 1
layers: R1, . . . ,Rp. Species Si, i ∈ {1, 2, . . . , n}, are also partitioned into p layers S1, . . . ,Sp.
In addition, we allow additional “pure degradation” reactions Dj : Sij → 0, j ∈ {1, . . . , d} (so
the total number of reactions is m′ = m+ d).

We assume that the reactions Rj that belong to the first layer R1 are all of order zero or one,
i.e. they have ⊕aj ∈ {0, 1}. (This first layer might model several independent separate chemical
subnetworks; we collect them all as one larger network.) More generally, for reactions at any
given layer π, the only species that appear as reactants in nonlinear reactions are those in layers
< π and the only ones that can change are those in layer π, that is:

if Rj ∈ Rπ :

{
aij 6= 0 and ⊕ aj > 1 ⇒ Si ∈

⋃
1≤s<π Sπ

γij 6= 0 ⇒ Si ∈ Sπ .
(15)

This means that except for order zero or one reactions, every reaction Rj at layer 1 < π ≤ p
has the form:

ai1jSi1 + . . . aiqjSiq → ai1jSi1 + . . . aiqjSiq + biq+1jSiq+1 + . . . biq+q′jSiq+q′

with Si1 , . . . , Siq in layers < π and Siq+1 , . . . , Siq+q′ in layer π.

We claim that there is a linear Lyapunov-like function for any such network, Note that, for a
degradation reaction Dj : Sij → 0, the entry γij of the stoichiometry vector is nonzero (and
equal to −1) only when i = ij , and for this index we have aij = 1. Thus condition (14) simply
requires βi ≤ βi and hence is automatically satisfied no matter what is the choice of β. Thus
we may ignore degradations and assume from now on that only the reactions Rj are present.
We prove the claim by induction on the number of layers p. If p = 1, all reactions have order
0 or 1, so we can take βi = 1 for all i. Arrange the species indices so that Sr+1, . . . , Sn are
the species in Sp; these do not appear any reactions belonging to Rπ for π < p. So layers Rπ

for π < p and species in Sπ for π < p define a network with p − 1 layers, and we may assume
by induction that a linear V0 has been defined for that network. This means that we have a
vector of positive numbers β0 = (β1, . . . , βn−r) such that (14) holds for this subnetwork, which
means, for any extension to a vector β = (β0, ?) with n components (since the coefficients of aj
are zero for indices r + 1, . . . , n) that βaj ≤ βi whenever i ∈ ∆j , when j, i index reactions and
species in the first p− 1 layers.

So all that is needed is to define the additional coefficients βi, i ∈ {r + 1, . . . , n}, such that the
inequality βaj ≤ βi holds for all pairs (i, j) such that (1) Rj ∈ Rp or Si ∈ Sp and (2) γij 6= 0.
We show that it suffices to pick all these βi equal to a common value β̄ := maximum of β0a0j
over all reactions Rj ∈ Rp, where a0j is the restriction of the vector aj to its first r components.

If Rj ∈ Rp and Si 6∈ Sp, the second condition in (15) (with π = p) says that (2) is not satisfied.
Thus, we only need to consider Si ∈ Sp, i.e. i ∈ {r+ 1, . . . , n}. Suppose first that ⊕aj > 1. The
first condition in (15) (with π = p) insures that aij = 0 for all such i. Thus, aj = (a0j , 0) where

the vector 0 has length n− r. it follows that βaj = β0a0j ≤ β̄. Next, suppose that ⊕aj ≤ 1. If

⊕aj = 0, then aj = 0 ≤ β̄. So assume ⊕aj = 1 and pick the unique index i′ such that ai′j = 1.
If Si′ ∈ Sπ, with π < p, then once again aij = 0 for all i ∈ {r + 1, . . . , n} and βaj = β0a0j ≤ β̄.

Finally, assume that aj = ei with i ∈ {r + 1, . . . , n}. Now β̄ = βaj ≤ β̄ is trivially satisfied.
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2.4 Examples

Let us start with the system shown in [1] to have moment closure:

R1 : 0→ S1 , R2 : S1 → S1 + S2 , R3 : S1 + S2 → S1 + S2 + S3 ,

D1 : S1 → 0 , D2 : S2 → 0 , D3 : S3 → 0 .

This is a three-layer system with one reaction in each layer, plus degradations. As we said, we
may ignore degradations, so we consider:

a1 = (0, 0, 0)′, a2 = (1, 0, 0)′, a3 = (1, 1, 0)′,

and we have ∆1 = {1}, ∆2 = {2}, ∆3 = {3}. We must find a positive vector β = (β1, β2, β3)
such that βai ≤ βi, i ∈ {1, 2, 3}, i.e., β1 ≤ β2 and β1 + β2 ≤ β3. We may pick β = (1, 1, 2).

Here is a more complicated example involving several reversible first order reactions as well as
some dimeric and trimeric reactions:

R1 : S1 → S2 , R2 : S2 → S1 , R3 : S3 → S4 , R4 : S4 → S3 ,

R5 : 2S1 + S2 + S3 → 2S1 + S2 + S3 + S5 ,

R6 : S1 + 3S5 → S1 + 3S2 + S6 .

We have three layers: R1 = {R1,R2,R3,R4}, R2 = {R5}, R3 = {R6}, and S1 = {S1, S2, S3, S4},
S2 = {S5}, S3 = {S6}. Using ei to denote canonical unit vectors:

aj = ej , j ∈ {1, 2, 3, 4}, a5 = (2, 1, 1, 0, 0, 0)′, a6 = (1, 0, 0, 0, 3, 0)′,

and
∆1 = ∆2 = {1, 2}, ∆3 = ∆4 = {3, 4}, ∆5 = {5}, ∆6 = {6}.

We must find a positive vector β such that βa1 ≤ β1, βa1 ≤ β2, βa2 ≤ β1, βa2 ≤ β2, βa3 ≤ β3,
βa3 ≤ β4, βa4 ≤ β3, βa4 ≤ β4, βa5 ≤ β5, βa6 ≤ β6, i.e. so that β1 = β2, β3 = β4, 2β1+β2+β3 ≤
β5, and β1 + 3β5 ≤ β6. These constraints can be satisfied with β1 = β2 = β3 = β4 = 1, β5 = 4,
β6 = 13.

2.5 Special case: conserved variables

In some applications, one is interested in computing the moments E [X(t)u] only for trajectories
X(t) which remain in some specified subset C ⊆ Zn≥0. When this subset has the form

C = C1 × Zn2
≥0 ⊂ Zn1

≥0 × Zn2
≥0 (16)

and the subset C1 is finite, the right-hand side of equation (10) (or (9)) can be simplified.

For example, suppose that the first two species S1 and S2 indicate the activity of a specified gene
(inactive and active, respectively), with S1 and S2 reacting according to S1 → S2, S2 → S1,
and no other reactions involve a change in S1 and S2. (This does not rule out reactions such
as S1 → S1 + S3 which would model transcription from the active conformation, since such a
reaction does not change S1 nor S2.) It is the case that X1(t)+X2(t) remains constant in time,
so X1(t) +X2(t) = X1(0) +X2(0) for all t. Moreover, given the biological motivation for these
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equations, we are only interested in the cases where (X1(0), X2(0)) = (1, 0) or = (0, 1). Thus,
we have that X1(t) +X2(t) = 1 for all t. This restricts the components (X1(t), X2(t)) of X(t)
to take values in the finite set C1 = {(1, 0), (0, 1)}, and hence all moments can be assumed to
have the first two exponents equal to one:

E [X1(t)
u1X2(t)

u2Xu3
3 . . . Xun

n ] = E [X1(t)X2(t)X
u3
3 . . . Xun

n ] .

More generally, for any positive integers r and L, let LL,r := {0, . . . , L}r. Then, for any finite
subset C ⊂ Zr≥0, there is some integer L with the property:

∀ v ∈ Zr≥0 ∃ {pd ∈ R, d ∈ LL,r} so that kv =
∑

d∈LL,r

pdk
d for all k ∈ C . (17)

In other words, every monomial can be expressed as a linear combination of monomials with
exponents ≤ L.

To prove (17), observe that the set F of functions C → R is a finite-dimensional vector space
(canonically identified with R#(C), where #(C) is the cardinality of C). Introduce for each i the
subspace Fi,r of F spanned by the monomial functions k 7→ kd, d ∈ Li,r. Since F0,r ⊆ F1,r ⊆
F2,r ⊆ . . . is a nondecreasing sequence of subspaces, there is some L such that FL′,r = FL,r for
all L′ > L (in fact, one may take L = #(C)− 1) and this proves the result.

A lower exponent may suffice for a proper subset of {0, . . . , L}r. For example, consider the
set C1 = {(2, 0), (1, 1), (0, 2)} ⊂ {0, 1, 2}2. Then every monomial function on C1 is a linear
combination of f1(x, y) = x, f2(x, y) = xy, and f3(x, y) = y. For example, g(x, y) = x3 can
be written as g = 4f1 − 3f2, as can be verified by plugging-in the three elements of C1. More
generally, for r = 2 and two species satisfying X1 +X2 ≡ L, we may write X1 = L−X2, and,
using the inverse of the Vandermonde matrix of order L and evaluated at {0, . . . , L}, we may
express Xi

2 in terms of 1, . . . , XL
2 , for any i > L.

Now given any set as in (16) with #(C1) <∞, we may apply the above observation to C1, and
this means that all moments X1(t)

u1X2(t)
u2Xu3

3 . . . Xun
n can be written as a linear combination

of moments for which the first n1 exponents are ≤ L. The remaining reactions could be a
feedforward network, and now moments are all determined by a finite set of linear differential
equations, so long as we only care about initial conditions in a finite invariant set.

A simple example is as follows. We consider the following set of chemical reactions:

R1 : S1
u−→ S2 , R2 : S2

k2−→ S1 , R3 : 0
k3u−−→ S3 , R4 : S2 + S3

k4−→ S2

where we think of “u” as an external input. This is basically the incoherent feedforward loop
considered in [2] to study adaptation and the fold-change detection property in stochastic
systems. The only difference is that in that paper we used separate creation and degradation
reactions 0 → S2 → 0 (the first with rate u), but here, in order to impose a conservation law,
we think of S2 as being an active form of a kinase (the input controlling the change to active
form), which can be constitutively de-activated by a reverse reaction. The effect of u on S3 is
incoherent, in the sense that u promotes formation of S3, as well as degradation, because the
larger u, the larger the active concentration of S2, which degrades S3. Observe that we have

ρ1 = uS1, ρ2 = k2S2, ρ3 = k3u, ρ4 = k4S2S3,

and
a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (0, 0, 0), a4 = (0, 1, 1),
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γ1 = (−1, 1, 0), γ2 = (1,−1, 0), γ3 = (0, 0, 1), γ4 = (0, 0,−1) .

Note that X1(t) +X2(t) is constant along all solutions. Suppose that X1(0) +X2(0) = 2 (any
number will work, but the formulas are more involved). Let us obtain a linear differential
equation for the mean of X3(t). We introduce these notations:

xi = E
[
Xi

2X3

]
, i = 0, 1, 2 , yi = E

[
Xi

2

]
, i = 1, 2 .

We are interested in x0(t). In general (omitting arguments t),

ẋi = −k4E
[
X1+i

2 X3

]
+k3E

[
Xi

2

]
u+k2E

[
X2X3((X2 − 1)i −Xi

2)
]
+E

[
X1X3((X2 + 1)i −Xi

2)
]
u

and
ẏi = −k2E

[
X1+i

2

]
+ k2E

[
X2(X2 − 1)i

]
+ E

[
X1((X2 + 1)i −Xi

2)
]
u .

Using that X1 = 2 − X2 and S3
2 = −2S2 + 3S2

2 (which is valid whenever S2 ∈ {0, 1, 2}), we
conclude that:

ẏ1 = 2u− k2y1 − y1u
ẏ2 = k2y1 + 2u+ 3y1u− 2y2u− 2k2y2

ẋ0 = k3u− k4x1
ẋ1 = k3y1u− k4x2 − k2x1 + 2x0u− x1u
ẋ2 = (k2 + 2k4)x1 + 2x0u− (3k4 + 2k2)x2 + k3y2u+ 3x1u− 2x2u

which may be written in the “bilinear” form Ẋ = (A+uB)X, where X = (y0, y1, y2, x0, x1, x2)
′

with the convention that y0 ≡ 1 and appropriate 5 × 5 matrices A,B. Similar (but larger)
systems may be written for the second and larger moments of X3 as well as mixed moments.

More abstractly, given any finite continuous-time Markov chain with n1 states qi and transition
rates λij , we may introduce n1 species Si and reactions Si → Sj with rate λij . The stoichiometric
matrix consists of columns with exactly one entry equal to 1 and one entry equal to −1, so
the sum X1(t) + . . . + Xn1(t) is conserved (see e.g. Section 4.8 in [3]). Thus, starting from an
initial condition with X1(0) + . . .+Xn1(0) = 1 we have that at all times we have precisely one
Xi(t) = 1. This provides an embedding of the Markov Chain: state is qi at time t if Xi(t) = 1.
This construction is of interest when reaction parameters κi in a network are described by
functions of finite Markov chains (Hidden Markov Models) and the network is of a feedforward
type, to conclude that finite-dimensional ODE’s exist for moments.
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