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Abstract

Current sequencing of mRNA can provide estimates of the levels of in-
dividual isoforms within the cell, where isoforms are the different distinct
mRNA products or proteins created by a gene. It remains to adapt many
standard statistical methods commonly used for analyzing gene expres-
sion levels to take advantage of this additional information. One novel
question is whether we can find groupings or clusters of samples that are
distinguished not by their gene expression but by their isoform usage.
Such clusters in tumors, for example, could be the result of shared disrup-
tion to the splicing system that creates the different isoforms. We propose
a novel approach to clustering mRNA-Seq data that identifies clusters of
samples with common isoform usage. We show via simulation that our
methods are more sensitive to finding clusters of similar alternative splic-
ing patterns than standard clustering techniques applied directly to the
estimates of isoform levels. We further demonstrate that clustering on
isoform usage is more accurate than clustering directly on isoform levels
by examining real data that contains a technical artifact that resulted in
different batches having different isoform usage patterns. Clustering,
mRNA-Seq, Alternative splicing

1 Introduction

Clustering techniques are widely used in gene expression studies, ranging from
visualization of the data (in the form of heatmaps) to more formal detection of
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underlying subpopulations. Cancer studies, for example, often rely on clustering
to detect subtypes of tumors based on the expression patterns of genes (see for
example Perou and others (2000); Sorlie and others (2001)). These subtypes
can have important clinical properties, creating an important link between the
biological mechanisms of tumor cells with the phenotypes observed in tumor
patients.

There are obviously many methods for clustering of gene expression, and
classical techniques such as hierarchical clustering and k-means or mediods are
frequently used. Traditionally, gene expression studies were based on microarray
studies, but now even large studies often measure gene expression levels by
sequencing of mRNA (Hammerman and others, 2012; The Cancer Genome Atlas
Research Network, 2013).

Measuring gene expression using mRNA-sequencing, rather than microar-
ray technologies, introduces some added statistical complexity to a clustering
analysis. The most obvious is that RNA-sequencing often results in estimates
that are the count of the number of sequences from each gene (depending on
how the estimates are determined). These estimates are integer valued and non-
negative, and do not follow the standard log-normal assumptions of microarray
data. In the context of estimating differential expression between pre-defined
groups, there has been much work in accounting for the statistical properties
of these estimates (Robinson and Smyth, 2007; Anders and Huber, 2010; Zhou
and others, 2011; Yang and others, 2012; Wu and others, 2013; Yu and others,
2013; Leng and others, 2013). In the context of clustering, there has been some
work in utilizing appropriate model-based methods for count data, including the
Poisson and Negative binomial distributions (Witten, 2011; Si and others, 2014),
though it is still quite common to log-transform the data and apply standard
clustering techniques.

Another novel aspect of using mRNA-sequencing for measuring expression
levels is that sequencing provides a wealth of information about alternative splic-
ing within the cell. Alternative splicing is the process by which a single gene
codes for multiple mRNA products (or isoforms) by the process of including or
excluding portions of the DNA of a gene (examples of which include exon skip-
ping, intron retention, or alternative 5’ and 3’ splice sites). Different isoforms
within a gene often have different functions which are location and development
specific. Some proteins even have isoforms that have antagonisti functions; for
example, the gene VEGF has one isoform that is used by cancer cells to encour-
age new vasculature near tumors and also an anti-angiogenic form that inhibits
tumor growth (Qiu and others, 2009).

With mRNA-sequencing, expression levels of individual isoforms can be es-
timated, rather than just the cumulative level from the entire gene. Despite the
possible importance of individual isoforms, clustering on mRNA-Seq data often
still relies on gene estimates – i.e. the total amount of mRNA, summed over all
isoforms of the gene – rather than individual isoform-level expression data. If
there are not many genes with isoform differences in the samples under consid-
eration, then a clustering based upon thousands of genes is unlikely to change
regardless of whether clustering is based on isoform or gene expression levels.
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However, in some settings, there might be large scale changes in splicing. For
example, in the setting of cancer studies, there is evidence of abnormalities in
tumors that might have a wide spread effect on the splicing across many genes.
For example, dysregulation in the machinery of the cell that controls splicing
(the spliceosome) could have splicing impacts on many isoforms; significantly
mutated genes that are members of the spliceosome have been found in several
tumors (Yoshida and others, 2011; Je and others, 2013; Makishima and others,
2012). An example is the gene SF3B1 which encodes for a subunit of the spliceo-
some, and has been found to have mutations that lead to aberrant splicing in
around 15-20% and 10% of uveal melanoma and chronic lymphocytic leukemia
tumors, respectively (Furney and others, 2013; Gentien and others, 2014; Que-
sada and others, 2012). However, mutation is just one in which function of a
gene can be disregulated in tumors; it is well known that similar phenotypes in
tumors can be the result of abnormalities other than mutations. This suggests
that unsupervised clustering techniques, which do not rely on identifying the
source of the abnormality, could provide greater ability to detect dysregulated
splicing on tumors. This is particularly true given that significant mutations
in the spliceosome have been found at much lower prevelance for other tumors,
such as gene U2AF1 which is found mutated at a prevalence of only around
5% in acute myleoid lymphoma or lung adenocarcinoma (The Cancer Genome
Atlas Research Network, 2013; Cancer Genome Atlas Research Network, 2014).

There are multiple ways to incorporate the information provided by indi-
vidual isoform estimates into clustering. The most obvious is to cluster based
on isoform estimates, rather than gene estimates. Isoform estimates are similar
in structure to that of gene estimates and therefore such clustering could make
use of similar existing procedures. Our strategy here, however, is on evaluating
the relative isoform usage within a gene: a measure of the tendency of a gene
to prefer one isoform over another. This leads to a data structure where the
isoforms are grouped by gene. This is a different data structure than the tra-
ditional n× p data matrix, for which the corresponding clustering methods are
not appropriate.

While the focus of this paper is entirely on the biological application of clus-
tering isoform usage, it can be helpful to posit this problem into a more general
framework. This question of clustering relative isoform usage can be stated more
generally as the problem of clustering data when the features are known to have
a predefined grouping assignment. Using this terminology, gene estimates are
then a summary statistic (the sum) of the features in the group. Then gene
expression clustering is clustering of a summary statistic of the group mem-
bers, while isoform clustering is clustering of the individual features ignoring
the group membership.

We propose a clustering strategy that uses the group structure in a flexible
manner. We assume that within each group there is a natural notion of distance
between samples based on the features in that group; for isoform usage, as we
discuss below, we use the distance between the estimates of proportional isoform
usage within the gene. We then create distance metrics separately for each group
(or gene), and then aggregate the distances across groups and apply standard
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clustering techniques on the aggregate distance. This creates a flexible clustering
strategy that allows the feature information to contribute to the clustering only
in the context of its relationship to other features in the group. Our focus in
what follows will be entirely on the specific example of clustering of isoform
usage, but it is useful to note that other choices of distances with a group could
capture different kinds of relationships for clustering.

We evaluate this clustering strategy on simulated isoform expression data
and show that it has improved performance in detecting isoform usage changes,
as compared to clustering on the individual features (isoform clustering) or to
clustering on the summary statistic (gene clustering). We also demonstrate our
clustering technique on a mRNA-Seq dataset that has a clear technical artifact
which appears to have affected the isoform usage; using this as a gold-standard,
we show that our clustering strategy detects the underlying clustering more
accurately than the other two strategies.

1.1 Brief Biological background

We give a brief biological background to alternative splicing so as to make clear
the biological terms we use.

Alternative Splicing The DNA that contains the genetic code for proteins
must be first copied or transcribed into a free floating messenger RNA (mRNA)
that is then transported to the ribosomes and converted into a protein. In
eukaryotic cells, the process of copying the DNA into mRNA has itself stages so
that a copy of the DNA is first made (called pre-mRNA) which is then changed
into the final mRNA that makes the protein. In many eukaryotes, the changes
induced on the pre-mRNA includes selectively cutting out portions of the pre-
mRNA so that the final (mature) mRNA transcript is no longer an exact copy
of the code found in the DNA of the cell. The process of cutting out portions of
the pre-mRNA is called splicing. In many complex organisms, including human
and many common model organisms like fruit flies and mice, there is additional
complexity so that there are multiple ways in which the same pre-mRNA can
be spliced; in addition, there are also multiple pre-mRNA that can be made
from the same gene, depending on which of several starting points and ending
points are used in copying DNA into pre-mRNA. The end result is that a single
gene representing a stretch of code on the DNA can result in many different
transcripts, or isoforms of the gene.

Sequencing of mRNA Previously, large-scale quantification of the amount
of mRNA in a cell (also called mRNA expression) was via microarray technol-
ogy; expression measurements from microarrays quantified all mRNA from a
gene without distinguishing between different isoforms of the gene. The rapid
expanse in sequencing technologies has allowed for direct sequencing of mRNA
in order to determine the amount of each unique mRNA in a cell, and therefore
opens up the ability to quantify not just the cumulative amount of expression
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from a gene region, but also that of individual isoforms within a gene. However,
it is important to note that current commonly used sequencing technologies still
do not allow for the entire mRNA to be sequenced; instead the mRNA must be
cut into smaller fragments that are then sequenced. This means that estimates
of the amount of individual isoforms are not the simple result of counting how
many sequences came from particular isoform, but must be indirectly estimated
via deconvolution methods (Denoeud and others, 2008; Jiang and Wong, 2009;
Trapnell and others, 2010; Richard and others, 2010; Salzman and others, 2010;
Katz and others, 2010). Such methods provide with an estimate of the under-
lying rate of transcription of each isoform, which can then be translated into
“estimated counts” so that they are on the same scale as if one could have
uniquely identified the sequences to isoforms and simply counted them.

2 Methods

We are interested in the effect of clustering based on isoform usage, by which we
mean the relative percentage within each gene that an isoform is used. Using our
terminology from the introduction, our features are individual isoforms which
are grouped a priori into genes. Specifically, for a single sample, each group
consists of a vector of features, one for each isoform of the gene. We can think
of the gene as defining a grouping of the isoforms, and we want the comparisons
between isoforms to be within the gene group so that comparisons of isoforms
across genes is mediated by their relative behavior within the gene. In what
follows, we will focus our method and terminology solely on clustering based on
differential isoform usage, though the concepts could be generalized.

More formally, for each sample i and gene j we observed not a single value,
but a vector of values pij ∈ RKj , where Kj is the number of features or isoforms
in gene j. We note that Kj varies across genes, and we only consider genes with
multiple isoforms so that Kj > 1. In the data we considered, Kj ranged from 2
isoforms up to instances of more than 30 expressed isoforms.

Let the estimates of isoform expression for individual i in gene j be denoted

as xij1, ..., xijKj
and let xij =

∑Kj

k=1 xijk be the total expression in gene j, i.e.
the estimate of gene expression. Then our estimate of isoform usage within
gene j for sample i is given by the relative proportion of each isoform within

the gene, pij =
(

xij1

xij
, ...,

xijKj

xij

)
. We note that for our clustering method we

could consider any vector pij that is a function of our isoform information,
including for example the original, untransformed vector of isoform expression
values, but our focus is on the relative expression within the gene so we focus
on the proportion. Gonzàlez-Porta and others (2012) similarly conver isoform
estimates to proportions per gene to quantify variability in splicing and identify
those genes with varying splicing ratios.

As a result, our data of isoform usage is clearly not a simple n × p matrix
assumed by many clustering programs. Of course, many clustering techniques
need simply a distance matrix between the n samples for clustering, but it is
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also not obvious how to create a distance matrix between the samples when
each of the vectors pij lies in an entirely different dimensional space.

However, for a single gene (or group), there are numerous distances defined
between vectors that lie on the simplex. Therefore, we take the strategy of cal-
culating per gene distances dj(pij , pi′j) and aggreagate the different dj(pij , pi′j)
across genes. There are obviously also many choices for aggregating the J dis-
tance matrices, and a straightforward strategy is to define a aggregate distance
based on a (weighted) average of the different distance matrices,

D(i, i′) =

p∑
j=1

wjdj(pij , pi′j); where

p∑
j=1

wj = 1. (1)

In the results that follow, we ultimately weighted each feature equally so that
D(i, i′) was a simple average of the distances calculated per gene – that is,
wj = 1

p .
This same strategy is suggested by the objective functions of many cluster-

ing routines, where the objective function to be minimized can be written as an
average over individual terms that involve only the per feature distance matri-
ces. For example, for K-means clustering the standard objective function is to
determine clusters Ck that minimize the within cluster distances; for standard
Euclidean distance, which can be written as d(i, i′) =

∑
j dj(i, i

′), this implies
(Witten and Tibshirani, 2010),

K∑
k=1

1

nk

∑
(i,i′)∈Ck

d(i, i′)

=

p∑
j=1

K∑
k=1

1

nk

∑
(i,i′)∈Ck

dj(i, i
′)

For other clustering techniques, the resulting aggregate distance object,
D(i, i′) can be converted via multidimensional scaling (MDS) into a two-dimensional
data matrix preserving the distances, which could also be used as input into
clustering algorithms.

By adopting this framework, we now only need to define a distance for rela-
tive isoform usage per feature. This means that we simply need a relevant dis-
tance between vectors of proportions, for which there are many options (see Deza
and Deza, 2013, for a review); Gonzàlez-Porta and others (2012) use Hellinger’s
distance in their analysis of isoform proportions. We consider some of the most
popular: χ2 distance, euclidean distance, Jeffrey’s divergence, and Hellinger’s
distance; we also consider a distance based on the log-likelihood (Berninger and
others, 2008; Witten, 2011) to account for the difference in variability due to
different counts (see Supplemental Text, Section 1 for more details).

Weighting of features In our implementation, we ultimately weighted each
feature equally, but as we note above, different weights for each group, or gene,
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can be used rather than a simple average of the individual group distances. As
only a small fraction of features differ between clusters, identifying and weighting
these genes based on the data may lead to improved clustering and interpretable
weights; Witten and Tibshirani (2010) proposed a sparse clustering technique
that tries to find a sparse set of such weights by putting a L1 penalty on the
weights and iteratively finding the best weights. When we generalizing the
sparse methods of (Witten and Tibshirani, 2010) to find weights automatically
in our clustering, this added an enormous amount of variability in our clustering
results and therefore did not perform well even in simple situations.

Relationship to Kernel Methods Our strategy is also related to kernel
strategies. Specifically, because of the relationship between distances and ker-
nels, we can see this approach as defining a separate kernel for each gene, and
then combining the kernels via (weighted) averaging. Methods for combining
multiple kernels have been proposed and how to choose functionals that com-
bine multiple kernels is termed the multiple kernel learning problem (see Gönen
and Alpaydin, 2011, for a review), and weighted combinations like we describe
are common, Many of these methods have computational difficult for the large
numbers of features we have here. Zeng and Cheung (2010) propose creating
a sparse multiple kernel for each feature for unsupervised clustering, with the
similar goal as Witten and Tibshirani (2010) of finding sparse weights for the
linear combinations of the kernels for each feature.

3 Results

3.1 Simulation Study

We evaluate via simulation the performance of clustering on gene expression,
isoform expression, or proportion levels. To test the ability of the gene, iso-
form, and proportion clustering algorithms, we jointly simulated gene counts
and corresponding isoform proportions under the following scenarios for how a
gene could show clustering,

1. The gene expression counts different between groups, while the proportion
levels are constant across groups. In this case, the isoform expression will
also vary but will be consistent with changes in gene expression. We would
expect the gene and isoform clustering methods to distinguish these groups
but the proportion clustering method to not differentiate them.

2. The gene expression is constant across samples, while the proportion levels
vary between groups. In this case, the isoform expression levels will also
vary due to the changes in isoform relative frequency. We expect the
proportion and isoform clustering methods to distinguish these groups
but the gene clustering method to not distinguish them.

3. Both the gene expression and proportion levels vary across groups. In this
case, isoform expression will vary due to changes in both gene expression
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and isoform relative frequency. We expect all methods (gene, isoform, and
proportion), to distinguish clustering patterns, though not necessarily the
same clusters depending if the proportion and gene clusters do not overlap.

3.1.1 Description of Simulation

We set up simulations of 5,000 genes across 135 samples, with the number of
isoforms within each gene simulated from a Poisson(2) distribution, truncated
to be strictly greater than 2; this was to roughly mimid the distribution seen in
real mRNA Seq data. For each simulation, a percentage of the genes were given
a set clustering pattern in their gene expression and/or isoform proportions
depending on which of the above scenarios was being considered, while the
remaining genes had both constant gene and isoform expression (no clustering
signal). In order to see how sensitive the algorithm was, the percentage of genes
with the pattern varied from 0.5%, 1%, 2%, 4%, 8%, and 10%. When both
gene and proportion differences were seen in the same gene, we defined distinct
clusters for gene expression from those of proportional isoform usage, where
the proportional usage clusters were either nested within the gene expression
clusters, or spaned across the gene clusters.

We also consider a more complicated scenario where different genes behave
differently, with some showing clustering, as in Case 1 above, with only gene
expression differences, and other showing both gene and alternative splicing
differences, as in Case 3 from above. This is probably more realistic biologi-
cally, since there are likely to be many genes with gene expression differences
without differences in isoform usage. To examine the effects of these conflicting
signals, we simulated 5,000 genes where 25% of the genes had differential gene
expression, while a varying number of genes (0.5%, 1%, 2%, 4%, 8%, and 10%)
showed both differential gene expression and differential alternative splicing in
their clustering, with the remaining genes simulated to have no clustering signal
in their gene expression nor isoform usage. Again the gene expression clusters
and the proportional usage clusters were distinct from each other, as described
above.

To create the data, we simulated proportion vectors by randomly sampling
isoform values and calculating their relative proportions. We then generated
gene counts by similarly randomly sampling from isoform values and calculating
their sums. The proportion vectors and gene counts were multiplied to return
the final simulated isoform counts. These two separate stages (rather than
just directly sampling isoform counts and getting both proportion and gene
measures from those) allows us to separately control the gene level and the
proportion level which permited more complicated interactions between the two.
The isoform values in both cases were generated from a negative binomial and
the clusters were created by changing the parameters of the negative binomial
between clusters (whether between proportion or gene clusters); the parameters
were based on means and dispersion parameters estimated from TCGA count
data.

For further details regarding the simulations, see the Supplemental Text,
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Section 2.

3.1.2 Results

The results of the simulations show that the proportion clustering reliably finds
proportion clusters even when the pattern represents a low percentage of genes
in the data (around 2% of genes, Figure 1a). Moreover, the proportion clus-
tering finds the pattern even with different complicated backgrounds of other
clustering signals based on gene expression differences (Figure 1b). These are
both important characteristics, since we expect that differences in alternative
splicing will affect a comparatively small numbers of genes and differences in
overall gene expression will dominate.

In compare differences between choices in the proportion clustering, we see
that hierarchical clustering tends to do slightly better than K-mediods clustering
(Supplementary Figure S3). Similarly, Jeffrey’s divergence performs slightly
better than Hellinger distance. The distance based on log-likelihood performs
poorly, often not finding the clusters at all. Chi-squared distance and Euclidean
distances perform similarly to Jeffrey’s divergence and Hellinger, respectively
(Supplementary Figure S1), and for simplicity are not shown on most of the
figures from the simulations.

We next consider the performance of proportion clustering with that of clus-
tering isoform expressions directly. Clustering on the isoform levels directly
captures groups differences in overall gene expressions quite readily. This is
clearly true when the only signal in the data comes from differences in over-
all gene expression, where clustering on isoforms has equivalent performance to
that of gene (Supplemental Figure S2). And even when there are competing
signals, corresponding to differences in relative proportional isoform use within
the gene, the isoform generally finds the clusters with differing gene expressions
well (Figure 1b and Supplemental Figures S4 and S5), except for the case when
the proportional usage clusters clash with that of the gene clusters.

In contrast, clustering on isoform expression does not do as good of a job
of finding clusters that differ in proportional isoform usage. When the only
clustering differences are based on proportional isoform usage, clustering on
the isoforms does not find the clusters until the genes with the signal are a
relatively larger percentage of the data (Figure 1a). This is in contrast with the
performance of proportion clustering, where the groups are found even when a
small percentage of the genes show the signal.

In the more complicated settings we examine, where gene expression and
proportional usage clusters co-exist, the isoform clustering performs slightly
better, though still not as good as the clustering on the proportional isoform
usage. The improvement is likely due to the fact that the proportional usage
clusters share some clustering signal with the gene expression clusters, so that
the isoform’s detection of the gene expression clustering improves its perfor-
mance. Clustering on the isoform expression patternss only starts to have high
concordence with the true proportional usage clusters when about 7-10% of the
genes show that pattern – a much higher required percentage than that of the
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proportion clustering which finds the pattern reliably even when only 2% of the
genes show the pattern.

These result indicate that proportion clustering has the potential to be more
sensitive to finding clustering based on this type of alternative splicing, and
particularly when there are a mix of gene and alternative splicing signals as
would be expected in true biological data.

3.2 Clustering of LAML data

In general, it is difficult to compare clustering methods on real data absent
knowledge of true groupings in the sample. Finding data with such groupings
is quite difficult for our method, since it is difficult to know a priori that there
are differences in relative isoform usage. However, in analyzing mRNA-Seq
data of Acute Myeloid Leukemia (LAML) tumors, sequenced as part of the The
Cancer Genome Atlas (TCGA) project (The Cancer Genome Atlas Research
Network, 2013), we discovered an unreported batch effect in the data. Further
exploration of this batch effect suggests that the effect on the data was likely
to have resulted in different relative levels of isoform abundance within genes,
as we explain below. This gives us a gold-standard to which we can compare
the efficiency of our our clustering methods. We find that clustering on the
relative isoform usage (i.e. proportions) in this dataset gives a practically exact
correspondence to this batch effect and performs much better in finding this
batch effect than clustering based on isoform levels.

3.2.1 Implementation of the Clustering:

We normalize the LAML samples by TMM normalization (Robinson and Osh-
lack, 2010), and we perform an initial filtering of the data to remove extremely
lowly expressed isoforms. Using the isoform counts, we create the three different
types of features: gene counts, isoform counts, and isoform proportions. The
number of isoforms and genes provided is still quite large – 28,014 expressed
isoforms and 12,218 expressed genes. We then apply a variance filter to reduce
the size of the datasets to the 5,000 most variable isoforms or genes (which is a
common practice in clustering of gene expression datasets). In the case of the
isoform proportions, we filter by calculating the distance matrix for all features
(i.e. genes) and chose the 5,000 genes with the largest summed distance matrix.

To provide greater stability in our clustering and to not be influenced by
outlying samples, we performed consensus clustering (Monti and others, 2003)
on top of our clustering routines. Briefly, this involves repeated subsampling of
the entire dataset and enumerating how frequently individuals were clustered to-
gether in a consensus matrix. After performing 1000 subsamples, the consensus
matrix is clustered to achieve our final clustering.

See Supplementary Text, Section 3 for further details regarding the imple-
mentation of the clustering methods on the LAML data.
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3.2.2 Results:

In Figure 2 we compare the clustering assignments from clustering on the the
three different features (gene, isoform, and proportion) in order to demonstrate
the differences in how the samples are clustered. In Figure 2 we have also
superimposed the “plate” from which the sample originated, which signifies the
batch in which the samples were sent to be sequenced. We can see that all
of the methods’ cluster assignments have a significant relationship with plate;
plate 734 clusters together in all of the methods. Observing such an effect not
terribly surprising, since effects due to different batches are quite common in
large projects such as these, though the accompanying AML paper from which
this data is drawn explicitly states that this data did not show a batch effect
due to plate (The Cancer Genome Atlas Research Network, 2013).

In comparing the performance of the methods in detecting the plate effect, it
is clear that proportion clustering is almost perfectly detecting the plate effect,
which is clearly its primary signal. The other two methods do not have as clear
a correspondence with plate, regardless of what K is used or the method of
clustering (kmeans or hierarchical). This is true for K-means clustering as well
(Supplemental Figure S6), though the accordence of proportion clustering with
the plate effect is not quite as good as with hierarchical clustering. Removal
of the plate effect with the batch correction tool ComBat (Johnson and others,
2007), results in quite different clusterings, and the resulting clusterings have
a much closer relationship with the other clinical data on the samples. This
suggests that this effect is a technical artifact and has an adverse affect on the
clustering results (the correlation between clinical variables and the clustering
results shown in the accompanying AML paper closely match our results after
we removed the plate effect, perhaps suggesting that they did perform some
batch removal with their data, contrary to their statement).

While it is encouraging to find strong concordence with an known grouping
of the observations, it is unclear whether this demonstrates that the clustering
of proportions is doing better at finding clusters of differential isoform usage. In
particular, it is not clear why the plate effect would have anything to do with
isoform usage within the gene. However, when we examine the plate effect more
closely, we see that the differences in these plates can be clearly seen by looking
at statistics that quantify the 5’ to 3’ bias of the mRNA-Seq data. The 5’ to
3’ bias refers to the fact that the technical steps in sequencing the data has the
effect that the 3’ end of a transcript (i.e. the terminal end of the transcript)
is more likely to be captured and sequenced than the 5’ end (the beginning) of
a transcript, creating a bias in the amount of expression detected in different
parts of the gene. Isoforms often differ in their starting and ending exons, and
therefore different relative coverage of the beginning or end of a gene due to
technical artifacts can mean that isoforms will get assigned different relative
expression levels.

In Figure 3 we show a plot of the relative proportion of the mRNA-Seq
sequences that came from the beginning of the transcript (5’ end) versus the
end of the transcript (3’ end), as calculated by RSeQC (Wang and others,
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2012). It is clear from this plot, that plate 734 has greater relative coverage
of the beginning of the gene compared to the the other plates; Figure 3 shows
short genes (0-1000 base pairs) but the effect can be seen in a range of gene
lengths (Supplemental Figure S7), though it appears to perhaps be an effect
seen on a fixed number of base pairs at beginning of the gene, since its seen in
smaller and smaller percentiles of the beginning of the gene. Some differences
can also be seen in the 3’ end of the genes, though not as consistently (again
see Supplemental Figure S7).

Therefore, it is plausible that the 5’/3’ differences in the plates have created
different relative expression of the isoforms, which the proportion clustering
captures more accurately than the other methods.

4 Discussion

We have presented a method for clustering on isoform relative proportions so
as to find shared patterns in alternative splicing. We demonstrate on simulated
data that clustering on the proportions can more accurately detect changes in
isoform usage within a gene than just clustering on isoform expression levels,
even in the absense of any conflicting signal from gene expression. We further
apply the method to a mRNA-Seq dataset which we demonstrate has a clear
batch effect, and we see that clustering on relative proportions clusters the data
by this batch effect, unlike the clustering from isoform or gene, which both
imperfectly find the batch effect. Because the batch effect appears to create
technical artifacts in the data that would influence isoform relative expression,
this suggests that clustering on isoform relative proportions is more sensitive to
correctly clustering the samples by differences in isoform usage.

Our method can be stated as a general strategy for clustering on features
that have natural grouping structure, in this case where isoforms are grouped
into genes. Our technique uses this grouping structure to define the relevant
measure for comparing the features (or isoforms), and in this way focus the
clustering on differences of features relative to the groups.

5 Supplementary Materials

The reader is referred to the on-line Supplementary Materials for supplementary
text and figures.
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Campo, Eĺıas and others. (2012, January). Exome sequencing identifies re-
current mutations of the splicing factor SF3B1 gene in chronic lymphocytic
leukemia. Nature genetics 44(1), 47–52.

Richard, Hugues, Schulz, Marcel, Sultan, Marc, Nurnberger, Asja,
Schrinner, Sabine, Balzereit, Daniela, Dagand, Emilie, Rasche,
Axel, Lehrach, Hans, Vingron, Martin, Haas, Stefan and others.
(2010, Jun). Prediction of alternative isoforms from exon expression levels in
RNA-seq experiments. Nucleic Acids Research 38(10), e112.

Robinson, Mark and Oshlack, Alicia. (2010). A scaling normalization
method for differential expression analysis of RNA-seq data. Genome Biol-
ogy 11(3), R25–R25.

Robinson, Mark and Smyth, Gordon. (2007, Nov). Moderated statistical
tests for assessing differences in tag abundance. Bioinformatics 23(21), 2881.

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 30, 2015. ; https://doi.org/10.1101/021733doi: bioRxiv preprint 

https://doi.org/10.1101/021733


Salzman, Julia, Jiang, Hui and Wong, Wing Hung. (2010, March). Sta-
tistical modeling of RNA-SEQ data. Technical Report BIO-252, Division of
Biostatistics, Stanford University, Palo Alto.

Si, Yaqing, Liu, Peng, Li, Pinghua and Brutnell, Thomas P. (2014,
January). Model-based clustering for RNA-seq data. Bioinformatics (Oxford,
England) 30(2), 197–205.

Sorlie, Therese, Perou, Charles M, Tibshirani, Robert, Aas,
Turid, Geisler, Stephanie, Johnsen, Hilde, Hastie, Trevor, Eisen,
Michael B, van de Rijn, Matt, Jeffrey, Stefanie S, Thorsen,
Thor, Quist, Hanne, Matese, John C, Brown, Patrick O, Botstein,
David, Lønning, Per Eystein and others. (2001). Gene Expression Pat-
terns of Breast Carcinomas Distinguish Tumor Subclasses with Clinical Im-
plications. Proceedings of the National Academy of Sciences of the United
States of America 98(19), 10869–10874.

The Cancer Genome Atlas Research Network. (2013, May). Genomic
and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. The
New England journal of medicine 368(22), 2059–2074.

Trapnell, C, Williams, B A, Pertea, G, Mortazavi, A, Kwan, G,
van Baren, M J, Salzberg, S L, Wold, B J and Pachter, L. (2010,
May). Transcript assembly and quantification by RNA-seq reveals unanno-
tated transcripts and isoform switching during cell differentiation. Nature
Biotechnology 28(5), 511.

Wang, L., Wang, S. and Li, W. (2012). Rseqc: quality control of rna-seq
experiments. Bioinformatics 28, 2184–2185.

Witten, D M. (2011, December). Classification and clustering of sequencing
data using a Poisson model. The Annals of Applied Statistics 5(4), 2493–2518.

Witten, D M and Tibshirani, R. (2010, June). A framework for fea-
ture selection in clustering. Journal of the American Statistical Associa-
tion 105(490), 713–726.

Wu, Hao, Wang, Chi and Wu, Zhijin. (2013, April). A new shrinkage
estimator for dispersion improves differential expression detection in RNA-
seq data. Biostatistics 14(2), 232–243.

Yang, Xin, Todd, John A., Clayton, David and Wallace, Chris. (2012,
November). Extra-binomial variation approach for analysis of pooled DNA
sequencing data. Bioinformatics 28(22), 2898–2904.

Yoshida, Kenichi, Sanada, Masashi, Shiraishi, Yuichi, Nowak,
Daniel, Nagata, Yasunobu, Yamamoto, Ryo, Sato, Yusuke, Sato-
Otsubo, Aiko, Kon, Ayana, Nagasaki, Masao, Chalkidis, George,

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 30, 2015. ; https://doi.org/10.1101/021733doi: bioRxiv preprint 

https://doi.org/10.1101/021733


Suzuki, Yutaka, Shiosaka, Masashi, Kawahata, Ryoichiro, Ya-
maguchi, Tomoyuki, Otsu, Makoto, Obara, Naoshi, Sakata-
Yanagimoto, Mamiko, Ishiyama, Ken, Mori, Hiraku, Nolte, Flo-
rian, Hofmann, Wolf-Karsten, Miyawaki, Shuichi, Sugano, Sumio,
Haferlach, Claudia, Koeffler, H Phillip, Shih, Lee-Yung, Hafer-
lach, Torsten, Chiba, Shigeru, Nakauchi, Hiromitsu, Miyano,
Satoru and others. (2011, October). Frequent pathway mutations of splicing
machinery in myelodysplasia. Nature 478(7367), 64–69.

Yu, Danni, Huber, Wolfgang and Vitek, Olga. (2013, May). Shrinkage
estimation of dispersion in Negative Binomial models for RNA-seq experi-
ments with small sample size. Bioinformatics 29(10), 1275–1282.

Zeng, Hong and Cheung, Yiu-ming. (2010, November). Feature Selection
and Kernel Learning for Local Learning Based Clustering. IEEE transactions
on pattern analysis and machine intelligence 33(8), 1532–1547.

Zhou, Y H, Xia, K and Wright, F A. (2011, September). A powerful and
flexible approach to the analysis of RNA sequence count data. Bioinformatics
(Oxford, England) 27(19), 2672–2678.

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 30, 2015. ; https://doi.org/10.1101/021733doi: bioRxiv preprint 

https://doi.org/10.1101/021733


2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

●

●

●

● ● ●

Pattern (%)

Ja
cc

ar
d 

S
co

re

(a) Only proportion differences
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(b) Gene and proportion differ-
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Figure 1: Jaccard Scores from Simulation Study. Plotted are the mean
Jaccard Scores over 1,000 simulations (y-axis) against the percent of genes with
the clustering pattern varies (x-axis). The Jaccard score is the proportion of
pairs of samples correctly co-clustered, with one indicating perfect detection of
the clusters. Different lines correspond to different clustering methods, indi-
cated by the legend. ‘Hellinger’, ‘Jeffrey’s’ and ‘Loglikelihood’ refer to different
choices for the distance taken in clustering on the proportions; ‘Isoform’ and
‘Gene’ refer to standard clustering on the isoform or gene expression estimates
directly. Vertical bars stretch to ± 2 standard errors. (a) shows the results of the
clustering when the only clustering signal comes from changes in proportional
isoform usage within the gene (as expected, there is no signal from gene clus-
tering). (b) shows the results of clustering when there are a complicated mix of
clustering signals; specifically 25% of the genes show different gene expressions
according to 3 gene expression clusters, and a varying percentage of different
genes (as indicated in the x-axis) show both the different gene expression pat-
terns according to the 3 gene expression clusters as well as different proportional
isoform usage according to 6 non-nested proportional usage clusters (see Supple-
mental Text, Section 2 for a more complete description). The dotted lines show
the Jaccard scores when trying to find the gene clusters, while solid lines show
those from trying to find the proportional usage clusters. Shown here are the
results from K-mediods as the clustering method; results from other scenarios
and from hierarchical clustering are shown in Supplemental Figures S2-S5.
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Figure 2: Comparison of Clustering Assignment. Each column corre-
sponds to a sample and each row to a clustering method. The cluster assign-
ments of the three different clusterings (isoform, gene and proportion) are shown
for K = 2 groups by coloring the sample according to its clustering in the above
plot. We also show K = 3 for gene clustering, since this is the point at which
the gene clustering starts to have clusterings corresponding to the plate. The
samples have been ordered to highlight the similarity between the clusterings.
The top row shows the plate assignment of each sample, showing an almost
perfect correspondence with proportion clustering. This clustering is based on
concensus clustering of hierarchical clustering.
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Figure 3: 5’ to 3’ bias differs by plate. Here we show the results of RSeQC
(Wang and others, 2012) calculation of the average coverage of the mRNA-Seq
data; shown here are the results of the calculation for 318 housekeeping genes
that have only a single isoform and have total length in the range of 0-1000bp.
This calculation divides the gene into equally spaced bins and calculates the
number of sequences falling in the bin, relative to the overall number sequences
assigned to the gene region. The x-axis shows the percentile of the gene body
that the bin falls in (referenced from the beginning, or 5’ end, of the gene). This
plot shows a closeup of the results at the 5’ start of the gene; the plot showing
the rest of the gene as well as plots showing genes of longer lengths are shown
in Supplemental Figure S7.
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