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Abstract 
 

Background: Event-Related Potentials (ERPs) are widely used in Brain Computer Interfaces 

applications and in neurology and psychology for the study of cognitive process, mental disorders, 

attention deficit, schizophrenia, autism, etc. Because the spontaneous noisy EEG activity is 

uncorrelated with the ERP waveform, the noise will decrease in the order of 1/√(N) (inverse of 

square root of N), where N is the number of averaged epochs. Since the background EEG activity 

has a higher amplitude than ERPs waveform, the averaging technique highlights ERPs and 

attenuates the noise. This is the easiest strategy currently used to detect ERPs. 

 

New Method: In this paper, a new method is proposed, called GW6, in order to calculate the ERP 

using a mathematical routine based only on Pearson's Correlation. 

 

Results: The result is a graphic with the same time-resolution of the classic ERP that shows positive 

peaks representing the increase of correlation of the EEG signal in correspondence to the stimuli. 

 

Comparison with Existing Methods: the GW6 method allows highlighting other components of 

ERP response, usually hidden in the standard and simple method based on the averaging of all the 

phase and time-locked epochs. For this reason, this new method could be very helpful to investigate 

these hidden components of the ERP response and to develop applications for medical purposes. 

 

Conclusions:  The method we are proposing can be directly used in the form of software written in 

Visual Basic and easily and quickly implemented in any other programming language. 

 

 

Highlights 

 A new method is proposed, called GW6, in order to calculate the ERP (Event-Related 

Potential) using a mathematical routine based only on Pearson's Correlation 

 The result is a graphic with the same time-resolution of the classic ERP that shows positive 

peaks representing the increase of correlation of the EEG signal in correspondence to the 

stimuli 

 The method we are proposing can be directly used in the form of software written in Visual 

Basic and easily and quickly implemented in any other programming language. 
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Introduction 
 

The Event-Related Potential (ERP) is an electroencephalographic (EEG) signal recorded from 

multiple brain areas, in response to a single short stimulus such as visual, auditory, or muscle 

movement (Linden, 2005; Sanei and Chambers, 2013; Aydin, 2008). 

ERPs are widely used in Brain Computer Interfaces (BCIs) applications and in neurology and 

psychology for the study of cognitive process, mental disorders, attention deficit, schizophrenia, 

autism, etc. 

ERPs are weak signals in comparison with the spontaneous EEG activity, with very low signal-to-

noise ratio (SNR) (Linden, 2005; Croft and Barry, 2000), and are typically constituted by two to 

four waves of low amplitude (4-10 microvolts) with a characteristic positive wave called P300, 

which occurs with a latency of about 300 milliseconds in response to the stimulus. The detection of 

ERPs is an important problem and several methods exist to distinguish these weak signals. Indeed, 

ERP analysis has become a major part of brain research today, especially in the design and 

development of BCIs (Sano and Bakardjian, 2009). 

Since ERP is considered a reproducible response to a stimulus, with relatively stable amplitude, 

waveform and latency, the standard method to extract ERPs is based on the repeated presentation of 

the stimulus for about 80-100 times, with a random inter-stimulus time of few seconds. This 

strategy allows calculating the ERPs averaging several epochs that are time-locked and phase-

locked. 

In this paper, we will not consider the fast evoked potentials (EVP), like the brainstem auditory 

EVP, which require a fast sampling rate (around 1000 Hz) with averaging of perhaps 1000 

responses and a band-pass filtering with an upper cutoff frequency reaching 100 to 1000 Hz. 

Using the simple adaptive model of the deterministic signal (ERP waveform) and the spontaneous 

noisy EEG activity (zero-mean stocastic process) uncorrelated with the ERP waveform, averaging 

operation gives the noise decreased in the order of 1/SQR(N) (inverse of square root of N), where N 

is the number of averaged epochs. Since the background EEG activity has a higher amplitude than 

ERPs waveform, the averaging technique highlights ERPs and attenuates the noise. This is the 

easiest strategy currently used to detect ERPs. 

In general, to calculate ERPs by the averaging method, essentially three conditions or hypotheses 

must be satisfied: 

1) The signal is time-locked and waveform-locked. 

2) The noise is uncorrelated with the signal. 

3) The latency is relatively stable (low jitter). 

The GW6 method requires these three conditions, but it is less restrictive about the stability of the 

latency, and it is also less sensitive to residual artifacts present in the EEG signals. 
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The EEG preprocessing 

 

The average of epochs is nevertheless only the last step of ERPs calculation. Several preprocessing 

stages are usually necessary because strong artifacts very easily affect the EEG signals, due to eye 

movements, heartbeat (ECG artifacts), head movements, bad electrode-skin contacts, etc. All these 

artifacts can be several times larger (up to 10-20 times or more)  than the underlying ERPs, 

therefore they are able to destroy every average with random waves and peaks which can hide the 

true ERP waveform. 

The first preprocessing step includes the use of a band-pass filter in the range of 1 to 20 Hz obtained 

with a digital filter, which must not change the phase of signals. The Reverse Fourier Transform is 

suitable for this purpose, among other methods. Many researchers have suggested that the P300 

component is primarily formed by transient oscillatory events in delta, theta and alpha band and 

therefore a 1 to 14 Hz band-pass could be sufficient (Wastell, 1977). In our analysis, we used a 1 to 

20 Hz band-pass filtration. 

The successive step includes a variety of methods: among the most used, it is included the 

Independent Component Analysis (ICA) algorithm (Makeig, 1996; Vorobyov and Cichocki, 2002), 

which allows separating true EEG signal from its undesirable components (twitch, heartbeat, etc.). 

In general, this method requires a decision-making on what signal component (after separation) has 

to be considered undesirable and what should not. 

Blind Source Separation (Joyce, Gorodnitsky and Kutas, 2004) is a technique based on the 

hypothesis that the observed signals from a multichannel recording are generated by a mixture of 

several distinct source signals. Using this method, it is possible to isolate the original source signal 

by applying some kind of complex transform to the set of observed signals. 

Discrete Wavelet Transform is another method that can be used to analyze the temporal and spectral 

properties of non-stationary signals (Wang, MaierLeopold, Logothetis and Liang, 2007; Quiroga 

and Garcia, 2003; Hu et al., 2011). 

The artificial neural network, known as Adaptive Neuro-Fuzzy Inference System, was described for 

P300 detection (Ramírez-Cortes, Alarcon-Aquino, Rosas-Cholula, Gomez-Gil and Escamilla-

Ambrosio, 2010). Moreover, the Adaptive Noise Canceller (Ahirwal, Kumar and Singh, 2014) can 

detects ERPs. You should note that these algorithms are generally very complicated. 

The so-called winsorization is a routine which reduces the effects due to eye blinks, voluntary and 

involuntary eye movements, muscle activity, or subject’s movements, that can cause large amplitude 

outliers in the recorded signal. To reduce the effects of such artifacts, the data from each channel are 
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elaborated and the amplitude values exceeding a lower and a higher percentile threshold, are 

replaced respectively by the lower and upper percentile (Dixon and Tukey, 1968). 

A good description of the ERP technique and waves components, is made by Steven J. Luck (2005). 

 

In our software, we currently used two fast and uncomplicated preprocessing routines: the 

Normalization and another that we named Artifacts Reduction (by means of) Standard Deviation 

(ARSD). 

 Normalization of signals (see Appendix 1): signals from each 3 or 4 second epoch S(x) were 

normalized as S(x) = K* (S(x)-mean)/Std where S(x) is firstly reduced to a zero-mean signal, 

where mean is the mean value of the signal in the epoch, Std is the corresponding standard 

deviation and K is an experimental factor which restores the averaged optimized amplitude of 

the EEG signal. This normalization step created an epoch with a shape identical to that of the 

original EEG signal, but translated it into a uniform scale, with comparable amplitude for every 

epoch. The Normalization procedure subtracts to the entire signal its DC component which can 

be caused by external artifacts (variations of the electrode impedance caused by unwanted 

movements of the subject or saturation of the first amplifier stage caused by electrical 

coupling). 

 A useful variant is the ARSD routine described in the same section. With our experimental 

data, the ARSD routine followed by Normalization obtains the best results, but the 

Normalization, in general, is sufficient. 

 Exclusion from the average of all epochs with an amplitude overcoming a fixed threshold, 

for example 80 microvolts. A drawback of this technique is that a large number of signals could 

be discarded and consequently the average could be calculated on insufficient data. 

 

 

Materials and Methods 

 

In this paper, the GW6 method is described as step-by-step procedure and using a routine written in 

Visual Basic language (see Appendix). Finally this method is applied to true EEG signals recorded 

using a low-cost EEG device, the Emotiv EPOC® EEG Neuroheadset. This is a wireless headset 

and consists of 14 electrodes and 2 reference electrodes, located and labeled according to the 

international 10-20 system. Channel names are: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 

F8 and AF4. The acquired EEG signals are transmitted wirelessly to the computer by means of 

weak radio signals in the 2.4 GHz band. The Emotiv’s sampling frequency is 128 Hz for every 

channel and the signals are encoded with a 14-bit definition. 
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Moreover, the Emotiv hardware operates on the signals with a preliminary band-pass filter in the 

0.1 to 43 Hz band, consequently the output signals are relatively free from the 50 Hz power-line 

frequency, but they are often rich in artifacts. 

The Emotiv EPOC® headset was successfully used to record ERPs (Badcock et al., 2013) although 

it is not considered a medical-grade device. Emotiv EPOC® was moreover widely used for several 

researches in the field of Brain Computer Interface (BCI) (Boutani et al. 2013, Liu Y. et al. 2012). 

We collected and recorded the raw signals from the Emotiv EPOC® headset using a homemade 

software and a special data-type format based on the .CSV format. The same homemade software 

was used to give the necessary auditory and/or visual stimulus to the subject. 

ERPs were induced by an auditory stimulus (pure 500 Hz sine wave), and a contemporary light 

flash given using an array of 16 red high-efficiency LEDs. The stimulus length was of 1 second, and 

the stimuli were repeated from 100 up to 128 times. 

Participants were all healthy volunteers, preliminarily informed about the experimentation’s 

purpose. Each participant granted a written consensus. Using the native EEG reference electrode of 

Emotiv EPOC® headset, we recorded a first set of ERPs. Another set of EEG files, of better quality, 

were recorded with the reference electrodes connected to the earlobes, a variant that assures better 

quality of the signals, rather than in the standard configuration of Emotiv EPOC® headset, where 

the reference electrodes are located in an active zone of the head. 

 

 

The new algorithm 

 

In this paper, we are going to illustrate a new method useful to detect ERPs even among particularly 

noisy signals and with significant variations of the latency known as “latency jitter”. 

Our method, named GW6, is less restrictive regarding the issue of jitter. It also allows detecting an 

ERP when the standard approach, based on the average, fails or gives unsatisfactory result due to 

several artifacts. 

Yet the GW6 method do not reproduce the typical biphasic waveform of the ERP but rather an 

always-positive waveform. For this reason, this procedure is useful together with the classic 

averaging technique, rather as an alternative to the latter. 

The GW6 method uses extensively the Pearson's Correlation among all EEG signals recorded by a 

multichannel EEG device. By using the averaging method, it is possible to work also with a single 

EEG channel, while the GW6 method works with a multichannel EEG device, from a minimum of     

8 channels. It is also possible to calculate successively the ERP of each channel. 
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In many papers describing a mathematical method to analyze something, complex mathematical 

formulas are usually given, which must be successively translated in a computer-language, for 

example C, C++, Visual Basic, Java, Python, or else. This step could be very complicated and limit 

the diffusion and application of some useful methods. In this paper, we will describe this new 

algorithm as step-by-step procedure and in an easy and simple well know language, Visual Basic 6, 

in order to facilitate its application. 

We describe the basic idea of this new method in Figures 1 and 2: 

 

 

Fig. 1: The upper tracks represents the raw signals of two EEG channels, in time-locked epochs, 

whereas the lower track is the average of a sufficient number (about 100) of epochs for each 

channel (ERP is not in scale). The figure shows a positive peak about 300 ms after the stimulus 

onset (P300 wave). The ERP has typically a length of about 300-500 ms, depending on the kind of 

stimulus and band-pass filtering of the signal. 

 

 

Fig. 2: The data-windows of length L is shifted progressively along the two tracks, and the 

corresponding Pearson's Correlation is calculated and stored in the vector R(x) 

 

Let us now consider the Figure 2 and the data-window of length L (about 270 ms) centered in the 

point X of the signal. We can calculate the Linear Pearson's Correlation between these two data-

segments and the result will be a number r represented by the vector R(x), which can be calculated 

for every point X simply by shifting progressively the windows of one unity of sample (running 

windows). In general, the averaged value of R(x) will change from the pre-stimulus zone to the 

stimulus zone because the (auditory or/and visual) stimulus changes the correlation between the two 

EEG signals, which represent the activity of different parts of the brain. An interval about 270 ms 
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long was selected because it represents the typical delay for a conscious response corresponding to 

the P300 wave, but different intervals could be selected with fast Evoked Potentials. 

This change of correlation can appear or as an increase or a decrease with respect to the baseline 

(the zone preceding the stimulus). Let us consider a true example, based on the Emotiv EPOC® , 

where the number of channels is NC = 14, the sampling frequency is 128 samples/second, the 

stimulus length is one second, and the epoch length is 3 seconds. In this case, it is possible to 

calculate the vector R(x) in a number of pair combinations Nt = NC*(NC - 1)/2 = 91. 

The result could be expressed using an array R(I, X) where I = 1... 91, and X = 1... 384. 

This last number arises from a 3-seconds length epoch and 128 samples/second, with the stimulus 

given at sample number 128, and stopped at sample number 256, after one second. In general, we 

can  represent the raw signals as a time-locked array of V(C, X, J) type, where C = 1... 14 are the 

EEG channels, X = 1... 384 are the samples along 3 seconds, and J is the number of stimulations 

given to the subject, usually about 100. The entire GW6 procedure is better described in the Visual 

Basic routine (see Appendix 3). 

The following are the stages of elaboration based on the 14-channels Emotiv EPOC® device, but 

not limited to this specific device (the numbers here described are only examples): 

 

 Stage 1: collection of the raw EEG data in a time-locked way, V(C, X, J);   C = 1... 14 , 

J = 1... 100 is the typical number of stimulation, X = 1… 384 are the samples. Our customized 

software collects the raw signals and performs this stage. 

 Stage 2: filtration in a selected band (example: 1-20 Hz, and Normalization or ARSD or both, 

see Appendix) giving the filtered array: V(C, X, J) + filtration → W(C, X, J). 

 Stage 3: calculus of the simple average of W(C, X, J) among all epochs, giving the final array 

Ev(C, X), where: C= 1... 14 and X= 1… 384, which is the simple and classic ERP for each 

channel. This array is used as comparison with the result of our method. 

 Stage 4: calculus of all the Pearson's Correlations combinations using a running-window 270 ms 

long. The result is the array R(I, X), I = 1..91, which is already the average of all stimuli. 

 Stage 5: calculus of the mean value of baseline for each Nt combination (baseline is balanced 

and calculated as the average of pre-stimulus plus post-stimulus), and subtraction of this baseline 

from the array R(I, X) taking the absolute value R'(I, X) = Abs[R(I, X – Baseline)]. 

 Stage 6: average along all the Nt combinations (and all the stimulation), giving the final array 

Sync1(X), which represents the global variation of the EEG correlations during an epoch of 3 

seconds. It is also possible to calculate an equivalent array Sync2(C, X) for each channel C. 
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Sync2(C, X) and the global array Sync1(X) will show a positive peak in ERP’s zone, as 

represented in Fig. 3. These peaks are examples of the typical results provided by this method: 

 

 

Fig.3: In these pictures, given as example, on the left is shown the classic ERP (amplitude in 

microvolts). On the right is shown the corresponding GW6 graphic; the result is expressed as R-

Pearson value multiplied by 100. All these graphics are the global average of 14 EEG channels and 

about 120 stimuli; the EEG data were filtered in the band 1-20 Hz and submitted to the routines 

Normalization or ARSD, or both. In all cases a positive peak is observed in coincidence with the 

P300 maximum peak, but in several cases, the majority, the positive peak of GW6 graphic is larger 

than the corresponding classic ERP (see, for example, cases B, C and D). 

 

In order to better inquire the properties of GW6 routine, we wrote an emulation software. In this 

software, a simple artificial ERP's waveform was added to a random noise, and suitably filtered 

(low-pass filter) in order to reproduce the typical frequency distribution of the EEG signal. The 

artificial ERP signal was mixed with a variable amount of this random signal and submitted both to 

the classic average and to the GW6 routines (Fig. 4). 

 

 

Fig. 4: Artificial ERP signal mixed with a variable amount of a random signal and submitted both 

to the classic average and to the GW6 routines 
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Fig.5. Example of the ERP + Random signal emulation for four levels of noise-to-signal ratio. 

 

Fig.5 shows the results of the classical average routine and of the GW6 routine for a progressive 

increase of the noise-to-signal ratio, average of 100 ERPs on a single channel. Whereas the final 

amplitude of the ERP waveform do not change, but becomes progressively noisier, the GW6 

graphic amplitude (red curve) drops progressively but with stable residual noise. Very interesting is 

the emulation of these two routines in presence of the so called “latency jitter”, which is an unstable 

ERP time latency that in some cases could affect the ERPs. 

 

 

Fig. 6: ERP with stable latency on the left and with latency jitter on the right 
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When the ERP latency is stable (Fig. 6, left picture), its average is stable too and shows the 

maximum amplitude. Nevertheless, if latency jitter is present (due to some physiological cause) the 

corresponding average decreases because each ERP do not combine with the same phase and 

consequently ERPs show the tendency to cancel reciprocally. This effect is more pronounced as the 

jitter is increasing. 

In the software emulation of Fig. 7 a stable noise-to-signal ratio (3 / 1) was used, but with a random 

jitter progressively incremented. Moreover, the jitter was random between the ERPs, but was 

constant for all the channels in each ERP. The results show that the GW6 routine is more resistant 

to jitter than the simple classic average. 

 

 

 

Fig. 7: A stable noise-to-signal ratio (3/1) but with a random jitter progressively incremented. 

 

Whereas the classic ERP waveform disappears rapidly increasing the jitter, the GW6 routine gives a 

result still identifiable (the red curve), where the amplitude is decreasing but not so rapidly, and the 

width of the curve is increasing. 

This interesting property is very important, because suggests some other possibility about the large 

GW6 peaks observed in Fig. 3, in particular in B, C and D cases. 

Following an intuition, we added a new and simple routine in our software used to analyze the true 

ERP with the classic and the GW6 routine. At the end of the elaboration, which gives the typical 
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result shown in Fig. 3, we created another routine where to the set of EEG signals W(C, X, J), the 

classic ERP average was subtracted (see the routine SWXX in Appendix) giving a new array: 

 W'(C, X, J) = W(C, X , J) - Ev(C, X), then this new data-set was submitted to the stages 3, 4, 5 and 

6 previously described. Including this strange operation in our emulation software, and successively 

performing the same 3, 4, 5 and 6 stages, as a result none ERP appears, and none significant GW6 

peak appears. This is obvious because we have canceled the ERP component from the random 

noise, and consequently nothing is waiting to appear, but that is true only if jitter is zero (Figures 8 

and 9). 

 

 

Fig.8 - Case 1. Left: W(C, X, J) from ERP pure wave + random noise, Jitter = 0, average of 100 

ERPs. Right: with the same elaboration of the corresponding W'(C,X,J) array both graphics 

disappear. 

 

 

Fig. 9 - Case 2. Left: W(C, X, J) from ERP pure wave + random noise, Jitter = 78ms (from 0 to 78 

ms, random), average of 100 ERPs. Right: with the same elaboration of the corresponding 

W'(C,X,J) array only the classic ERP disappears. In presence of Jitter, the GW6 routine always 

shows an ERP. 

 

We performed a new variant in the emulation software: beside the pure ERP wave + random signal, 

we added also a random common signal (RCS) to every channel only in a limited zone near the 

ERP, but this RCS is random between the ERPs. In this variant of emulation, we hypothesized that 

the stimulus given to the subject could cause not only a simple brain response based on a stable 

waveform with low jitter (the classic ERP) but also a non-stable waveform very similar or identical 

in all the EEG channels. The simple average does not reveal this kind of electric response, because 

waveform is near random, but it is easily revealed by the GW6 routine, which is based on the 

computation of the variation of correlation among all the EEG channels during the stimulus. 
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Fig. 10 - Case 3. Left: W(C, X, J) from ERP pure wave + random noise, Jitter = 0, CRS width about 

400 ms, average of 100 ERPs. Right: with the same elaboration of the W'(C X, J) array only the 

classic ERP disappears, not that due to CRS. 

 

 

Fig. 11 - Case 4. Left: W(C, X, J) from ERP pure wave + random noise, Jitter = 78 ms, CRS width 

about 400 ms, average of 100 ERPs. Right: with the same elaboration of the W'(C, X, J) array, now 

both peaks are  visible. 

 

 

 

Fig. 12 - Case 5. Left: W(C, X, J) from ERP pure wave + random noise, Jitter =78ms, CRS width 

about 860 ms, average of 100 ERPs. Right: with the same elaboration of the W'(C, X, J) array, now 

both peaks are overlapped and visible. 

 

We suggest that the two last cases (4 - Fig. 11 and 5 - Fig. 12) are the most representative of the true 

experimental ERPs. It is easily possible calculating a great number of combinations using our 

demonstrative software. 

Now, if we submit our true experimental ERPs to the same procedure, i.e. analysis of the W(C, X, J) 

data followed by the transform into the W'(C, X, J) data-set and a new analysis, we obtain these 

typical results (Fig.13): 
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Fig.13: Results of the true experimental ERPs analysis of the W(C, X, J) data followed by the 

transform into the W'(C , X, J) data-set. 

 

In the greater part of cases, after the subtraction of the classic ERP waveform from the EEG data, 

the GW6 routine (red graphic) shows a reduction in amplitude in correspondence with the standard 

ERP wave, but other peaks are little changed, and in several cases, the entire graphic is not much 

changed. 

This result could mean that there is some amount of jitter in coincidence with the classic ERP, 

and/or also other non-phase-locked components, like those hypothesized in the emulation software, 

both under the classic ERP peak and in other zones of the graphic. 
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Conclusions 

 

This new method allows calculating ERPs as variations of the global correlations among all the 

EEG channels, with respect to the pre-stimulus and post-stimulus zone. 

Moreover, the method shows significant peaks in the P300 zone larger than the peaks calculated 

with the standard averaging procedure. In presence of significant jitter (instability of latency) the 

new method is superior to classic and show peaks also in this case.  

In particular, it is possible  to disclose  non-time-locked components of  ERP, but phase-locked 

among all the EEG channels. Our method is also intrinsically more resistant to artifacts because the 

Pearson's Correlation depends only on signal phase and not amplitude, while the artifacts are mainly 

due to strong signal amplitude variations. 

Nevertheless the purpose of this paper is not at present time to inquire accurately about the EEG 

response to a specific stimulus, but only to propose a new routine for the ERPs’ detection, that 

could become very important for future research about the nature, origin and characteristic of ERPs, 

on the light of the preliminary result here presented. 

In particular, this new method could be very useful to inquire about the hidden components of the 

ERP response, with possible important application for medical purposes and in the fields of 

neurophysiology and psychology. 

Moreover, we emphasize also the choice to give the routines directly in a simple programming 

language, in order to facilitate the method's application in independent software and Research. 
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APPENDIX 
 

Routines of data elaboration written in VB6 language. 
 

Note: the symbol ‘:’ represents the separation between two successive instructions, the declarations 

about arrays and variables are sometime omitted (in general, they are of Currency or Integer type). 

Several instructions are written on the same line for compactness reasons. 

Now suppose that the V(C, X, J) array represents all the raw data to be analyzed , where C is the 

number of channels (14 in the Emotiv Epoc),  X the samples from X = 1 to 384, equivalent to 3 

seconds at 128 samples/second,  J = 1 to Ns is the number of stimulus given to the subject (usually 

Ns = 100). 

Moreover, we suppose that the stimulus is given at X = 128 and stops at  X = 256 (duration: 1 

second). 

Some other support array and variables are used in this routine. Data in the V(C, X, J) array must be 

with zero-average (easy to implement, here omitted).  The unity of the V(C, X, J) data could be in 

microvolts, or raw data at 10, 12, 16 bit, etc. 

 

 

Appendix 1: preprocessing of EEG data with the method here called “Normalization” 
 

Private Sub Normalize() 

Dim A  As Currency,  Sd As Currency, X  As Integer, C  As Integer, J  As Integer 

' The input array with the raw signals is V(C, X, J), the output is the array W(C, X, J) 

' This normalization step create epochs with a shape identical to that of the original EEG 

' signal but transformed into a uniform scale to allow epochs to be easy combined and analyzed 

' across the subjects. Moreover, the original signal amplitude is recovered using a constant K 

' where K is the Standard Deviation of a good quality signal , experimentally found with the 

' specific instrument used. Here the number K = 20 is used. 

' The array V(C, X, J) must be at zero-average in each channel. 

' N1= number of samples, NC=14 number of channels, Ns = number of  stimula 

 

N1 = 384 :  NC = 14 :  Ns = 100  'definition of the value of data 

For J = 1  To  Ns 

     For  C = 1  To  NC  :  A = 0  :  Sd = 0 

         For  X = 1  To  N1  :  A = A + V(C, X, J)  :  Next X 

        A = A / N1   'average of signal  

            For  X  =  1  To  N1  :  Sd = Sd + (V(C, X, J) - A) ^ 2  :  Next X 

           Sd = Sd / N1  :  Sd = Sqr(Sd)  'standard deviation of each channel 

          If  Sd = 0 Then  Sd = 1 

         For  X = 1  To  N1  :  W(C, X, J) = 20 * (V(C, X, J) - A) / Sd  :  Next X 

   Next  C 

Next  J 

 

End Sub 
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Appendix 2: preprocessing of EEG data with the method named “ARSD” 
 

Private Sub ArtefARSD() 

Dim A  As  Currency, B  As  Currency,  Pm(20)  As  Single 

Dim Iter As Integer,  Fux  As  Integer,  X  As  Integer, C  As  Integer,  J  As  Integer 

' This routine works like the Normalization but with some differences. In several cases it 

' works better or is very similar to Normalization. This routine reduces big artifacts 

' to smaller artifacts. Good quality signals are unchanged. The best is to use the  ARSD, followed  

' by Normalization. The variables are here used with the same previous meaning.  

' The input is the array V(C, X, J), the  output is the preprocessed array W(C, X, J) 

' The array V(C, X, J) must be at zero-average in each channel.  

N1 = 384  : NC = 14  : Ns = 100  'definition of the data-value  

 

For  J = 1  To  Ns 

     For C = 1  To NC 

          For  Iter = 1  To 20 

          A = 0 :  B = 0 :  Pm(C) = 0 

          For  X = 1  To N1  :  A = A + V(C, X, J)  :  Next X 

         A = A / N1  :  B = 0 

         For  X = 1  To   N1  :  B = B  +  (V(C, X, J) - A) ^ 2  :  Next X 

         B = B / N1  :  Pm(C) = Sqr(B)   'Standard Deviation for each channel 

' the original data are corrected until a threshold <= 34 where the number 34 

' is about 1.7* Sd ( Standard Deviation) of a good signal experimentally found with 

' the device used. In our device, good  Sd is  20  and then 1.7*20 = 34 

        Fux = 0 

        If  Pm(C) >  34 Then 

            Fux = 1 

            For  X = 1  To  N1 

            If  Abs(V(C, X, J) ) >=  Pm(C)  Then  V(C, X, J)  =  0.7 * V(C, X, J ) 

            Next X 

         End If 

        If  Fux  =  0  Then  Exit  For 

        Next  Iter 

        ' the resulting signal is amplified by the factor 1.4 to recover the correct amplitude 

        For  X = 1  To  N1  :  V(C, X, J ) = 1.4 * V(C, X, J)  :  Next X 

    Next  C 

Next  J 

' The mean-zero value of signal is restored 

For  J  = 1  To  Ns 

For  C = 1  To  NC :  A = 0 

For  X = 1  To  N1 :  A = A  +  V(C, X, J)  :  Next X 

A = A / N1 

For  X =  1  To  N1 :  W(C, X, J) = V(C, X, J)  – A  :  Next X 

Next  C 

Next J 

 

End Sub 

 

Observation: The use of ARSD + Normalization (in this order) greatly reduces the artifacts in the 

EEG signals without changing the phase and with a minimum change in the frequency distribution. 

This combination is very fast, efficient and easy to implement in any software language. 
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Appendix 3: the essential core of the GW6 routine 
 

Note:  in this routine we must suppose that the W(C, X, J) array previously described, should have 

data also in the range from X= - 30 to (N1 + 30), so the precedent routines should be modified in 

order to fill the entire set of data. 

Private Sub GW6() 

Dim  V1(800) As Single,  V2(800) As Single,  A1(800) As Single 

Dim F1  As Single,  F2 As Single,  F3 As Single,  I As Integer,  J As Integer 

Dim XM  As Single,  YM As Single,  R  As  Single,  X  As Integer 

Dim  Ax  As Integer,  Bx  As Integer,  Np As Integer,  C  As Integer 

Dim Nz  As Integer,  A  As Integer,  A2(200) As Single,  U As Integer 

' the array Cm(92, 800) and the variable Nt should be declared in the Option Explicit of VB6 

' moreover each element of the array Cm(92, 800) must be put to zero before this routine 

N1  =  384  :  NC = 14  :  Ns = 100 'definition of the value of data 

Np  =  34      ' 34 is a windows of about 270 ms, at 128 samples/s , could be changed 

Nt  =  (NC ^ 2 - NC) / 2   ‘Nt = 91 in our case is the number of combination with 14 channels 

For  J  =  1  To  Ns   'for all the stimuli given 

    U = 0  :  I = 0 

    For  Ax  =  1  To  (NC - 1) 

        For  Bx  =  (Ax + 1)  To  NC 

        I  =  I + 1  ‘counter of the progressive combinations of two channels 

            For  U = 1  To  N1 

            X1  =  U - (Np / 2)  :  X2 = U + (Np / 2)  :  A = 0 

            For  X  =  X1  To  X2  :  A = A + 1 

           V1(A)  =  W(Ax, X, J ) :  V2(A) = W(Bx, X, J)  :  Next X 

           Nz  =  A 

           GoSub  Correlas 

           A1(U) = R  :  A = 0 

           Next U 

           For  X = 1  To  N1  :  Cm(I, X) = Cm(I, X) + A1(X)  :  Next X 

        Next  Bx 

    Next  Ax 

Next  J 

For  I = 1   To   Nt  'averaging along all the Ns stimuli 

   For  X = 1  To  N1  :  Cm(I, X) = Cm(I, X) /Ns  :  Next X 

Next  I 

' now we have the array of output   Cm(I , X) where I =  1...91,   X = 1...384 

' This array could be submitted to some low-pass filtration, see the routine ClassicERP 

Exit Sub 

Correlas:  ‘Pearson’s correlation  

F1 = 0 :  F2 = 0 :  F3 = 0  :  XM = 0 :  YM = 0 

For  X = 1  To  Nz  :  XM = XM + V1(X)  :  YM = YM + V2(X)  :  Next X 

XM = XM / Nz  :  YM = YM / Nz 

For   X = 1  To  Nz  :   F1 = F1 + (V1(X) - XM) * (V2(X) - YM) 

F2 = F2  +  (V1(X) - XM) ^ 2  :  F3 = F3 + (V2(X) - YM) ^ 2 

Next  X 

F1 = F1 / Nz  :  F2 = F2 / Nz  :  F3 = F3 / Nz 

If  F2 = 0   Or   F3 = 0  Then  R = 0  :  Return 

R = 100 * F1 / Sqr(F2 * F3) ' the r of Pearson is multiplied by 100 

Return 

End Sub 
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Appendix 4: successive elaboration of the GW6 output array Cm(I, X) 
 

Private Sub FinalElab() 

Dim Bs(100) As Single , B1  As Single, B2  As Single , C  As Integer,  J As Integer, 

Dim X  As Integer,  I As Integer 

'The array Sync1(X) and Sync2(C, X) should be defined in the Option Explicit section of VB6 

' Nt = 91 is defined in the previous routine, this variable should be declared in Option Explicit 

B1= 128  :  B2 = B1+ 128  :  N1 = 384 

' the values B1 and  B2 are the  definition of the zone for balanced baseline calculation 

' in particular, the first zone is the pre-stimulus (from X=1 to B1, a second zone is  

' the post-stimulus zone, it is important for good results to calculate baseline from both zones. 

' each element of the array Sync1(X) and Sync2(C,X) are put to zero 

For  X = 1  To  N1  :  Sync1(X) = 0 : Next X 

For  C = 1  To   NC 

    For  X = 1  To   N1  :  Sync2(C, X) = 0 :  Next X 

Next C 

For   J = 1   To   Nt  :  Bs(J)=0 :  A=0   'baseline calculus 

    For   X = 1   To   B1  :  A = A + 1  :  Bs(J) = Bs(J) + Cm(J, X)  :  Next X 

    For   X = B2  To  N1  :  A = A + 1  :  Bs(j) = Bs(J) + Cm(J, X)  :  Next X 

    Bs(J) = Bs(J) / A  ' baseline for each combination 

Next  J 

For   J = 1   To  Nt 

  For  X = 1  To  N1   :  Sync1(X) = Sync1(X) + Abs(Cm(J, X) - Bs(J))  :  Next X 

Next   J 

For  X = 1  To  N1  :  Sync1(X) = Sync1(X) / Nt  :  Next X 

' Now the array Sync1(X) is the average (global average) of Correlation in all the Nt combinations     

' and  for all the  Ns number  of  ERPs 

' Calculus of the array Sync2(C, X) for each channel 

J = 0 

For   Ax = 1  To   (NC – 1) 

     For   Bx = (Ax + 1)  To  NC 

         J =  J + 1   'counter of all the combinations of the channels 

         For  U = 1  To  NC 

        If  (U = X)   Or   (U = Bx)  Then 

            For  X = 1  To   N1   :   Sync2(U, X) = Sync2(U, X) + Abs(Cm(J, X) – Bs(J))  :  Next X 

       End If 

       Next  U 

   Next  Bx 

Next  Ax 

For  C = 1   To   NC 

    For  X = 1  To  N1  :  Sync2(C, X)  =  Sync2(C, X) / (NC-1)  :  Next X 

Next  C 

' Now  the  array  Sync2(C, X) is  the  Correlation  for  each  channel. 

' Each  channel  is  the average  of  (NC-1)  data. 

 

End Sub 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 12, 2015. ; https://doi.org/10.1101/022046doi: bioRxiv preprint 

https://doi.org/10.1101/022046
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

Appendix 5:  classic calculus of  ERP by simple averaging, from the array W(C, X, J) 
Private Sub  ClassicERP() 

Dim  J  As  Integer,  C  As  Integer,  X  As  Integer,  K  As  Single 

' The array  Ev(C,X) should be declared in the Option Explicit section of VB6 

For  C = 1  To  NC 

    For  X = 1  To  N1  :  Ev(C, X) = 0  :  Next X 

Next C 

For  J = 1  To  Ns          'for all the stimuli 

    For  C = 1  To  NC    'for all the channels 

         For  X = 1  To   N1  :  Ev(C, X) = Ev(C, X) + W(C, X, J)  :  Next X 

    Next  C 

Next  J 

For  C = 1  To  NC 

    For  X = 1  To  N1  :  Ev(C, X) = Ev(C, X) / Ns  :  Next X 

Next  C 

' Now the array Ev(C, X) is the classic ERP ; this array could be also submitted to some low-pass        

' filter like this here described: the value 0.5 is arbitrary, more higher, more lower-pass filtered. 

K = 0.5 

For   C = 1  To  NC  :  Ev(C, 0) = Ev(C, 1)  :  Ev(C, N1+1) = Ev(C, N1) 

   For X = 1  To  N1 

    Ev(C, X) = (Ev(C, X)  +  K*Ev(C, X-1)  +  K*Ev(C, X + 1)) / (1 + 2*K) 

   Next X 

Next C 

End Sub 

 

 

 

 

Appendix 6: subtraction of the classic ERP from the array  W(C, X, J)  
(described only for research purpose, this routine is not to be used normally with the GW6 routine) 

Private Sub SWXX() 

Dim  X  As  Integer,   J  As Integer,   C  As  Integer 

' very simple routine to subtract the classic  ERP component from the EEG data 

For   J = 1  To  Ns         'for all the erps 

    For  C = 1  To  NC    'for all the channels 

          For X = 1  To  N1  :   W'(C, X, J) = W(C, X, J) -  Ev(C, X)  :  Next X 

     Next  C 

Next  J 

End Sub 
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