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Abstract

When sequencing an ancient DNA sample from a hominin fossil, DNA from
present-day humans involved in excavation and extraction will be sequenced
along with the endogenous material. This type of contamination is problem-
atic for downstream analyses as it will introduce a bias towards the popula-
tion to which the contaminating individuals belong. Quantifying the extent
of contamination is a crucial step as it allows researchers to account for pos-
sible biases that may arise in downstream genetic analyses. Here, we present
an MCMC algorithm to co-estimate the contamination rate, sequencing er-
ror rate and demographic parameters - including drift times and admixture
rates - for an ancient nuclear genome obtained from human remains, when the
putative contaminating DNA comes from present-day humans. We assume
we have a large panel representing the putative contaminating population
(e.g. European, East Asian or African). The method is implemented in a
C++ program called ’Demographic Inference with Contamination and Error’
(DICE). The program can also be used to determine the most likely popu-
lation to which the contaminant DNA belongs. We applied it to simulations
and Neanderthal genome data, and we recover accurate estimates of all pa-
rameters, even when the average sequencing coverage is low (0.5X) and the
per-read contamination rate is high (25%).
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1. Introduction1

When attempting to sequence an ancient human genome [1, 2, 3, 4, 5, 6],2

the common practice is to assess the amount of present-day human contam-3

ination in a sequencing library. Several methods exist to obtain a contam-4

ination estimate. First, one can look at ’diagnostic positions’ in the mito-5

chondrial genome at which a particular archaic population may be known to6

differ from all members of the putative contaminant (modern) population.7

Then, one counts how many ’modern’ reads are observed at those positions8

in the archaic genome. This is the most popular technique and has been rou-9

tinely deployed in the sequencing of Neanderthal genomes [7, 1]. However,10

contamination levels in the mithochondrial genome may differ from those in11

the rest of the genome. A second technique involves assessing whether the12

sample was male or female using the ratio of reads that map to the X and the13

Y chromosomes [1]. After determining the biological sex, the proportion of14

reads that are non-concordant with the sex of the archaic individual are used15

to estimate contamination from individuals of the opposite sex (e.g. Y-chr16

reads in an archaic female genome are indicative of male contamination). A17

final technique involves using a maximum likelihood approach to co-estimate18

the amount of contamination, sequencing error and heterozygosity in the au-19

tosomal nuclear genome [1, 3], using a likelihood optimization algorithm, like20

L-BFGS-B [8].21

Afterwards, if the sequenced data is assessed to not be highly contami-22

nated (< ∼2%), demographic analyses are performed on the sequences while23

ignoring the contamination. If the library is highly contaminated, it is usu-24

ally treated as unusable and discarded. Neither of these outcomes is optimal:25

ignoring the contaminating reads may affect downstream analyses, while dis-26

carding the library may waste rich genomic data that could provide important27

demographic insights.28

One way to address this problem was proposed by Skoglund et al. [9], who29

developed a statistical framework to separate contaminant from endogenous30

DNA reads by using the patterns of chemical deamination characteristic of31

ancient DNA. The method produces a score which reflects the likelihood32

that a particular read is endogenous or not. This approach, however, may33

not be able to make a clean distinction between the two sources of DNA,34

especially for young ancient DNA samples, as chemical degradation may not35

have affected all reads belonging to the archaic individual.36

Instead of (or in addition to) attempting to separate the two type of reads37
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before performing a demographic analysis, one could incorporate the uncer-38

tainty stemming from the contaminant reads into a probabilistic inference39

framework. Such an approach has already been implemented in the analysis40

of a haploid mtDNA archaic genome (Renaud et al. in review). However,41

mtDNA represents a single gene genealogy, and, so far, no equivalent method42

has been developed for the analysis of the nuclear genome, which contains43

the richest amount of population genetic information. Here, we present a44

method to co-estimate the contamination rate, per-base error rate and a45

simple demography for an autosomal nuclear genome of an ancient hominin.46

We assume we have a large panel representing the putative contaminant pop-47

ulation, for example, European, Asian or African 1000 Genomes data [10].48

The method uses a Bayesian framework to obtain posterior probabilities of49

all parameters of interest, including population-size-scaled divergence times50

and admixture rates. It can also be used to determine the most probable51

contaminant population, by running it using different contaminant panels52

and finding the panel with the highest posterior probability.53

2. Methods54

2.1. Basic framework for estimation of error and contamination55

We will first describe the probabilistic structure of our inference frame-56

work. We begin by defining the following parameters:57

rc: contamination rate in the ancient DNA sample coming from the con-58

taminant population59

ε: error rate, i.e. probability of observing a derived allele when the true60

allele is ancestral, or vice versa.61

i: number of chromosomes that contain the derived allele at a particular62

site in the ancient individual (i = 0, 1 or 2)63

dj: number of derived reads observed at site j64

d: vector of dj counts for all sites j = {1, ..., N} in a genome65

aj: number of ancestral reads observed at site j66

a: vector of aj counts for all sites j = {1, ..., N} in a genome67

wj: known frequency of a derived allele in a candidate contaminant panel68

at site j (0 ≤ wj ≤ 1)69

w: vector of wj frequencies for all sites j = {1, ..., N} in a genome70

K: number of informative SNPs used as input71

θ: population-scaled mutation rate. θ = 4Neµ, where Ne is the effective72

population size and µ is the per-generation mutation rate.73
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We are interested in computing the probability of the data given the74

contamination rate, the error rate, the derived allele frequencies from the75

putative contaminant population (y) and a set of demographic parameters76

(Ω). We will use only sites that are segregating in the contaminant panel77

and we will assume that we observe only ancestral or derived alleles at every78

site (i.e. we ignore triallelic sites). In some of the analyses below, we will79

also assume that we have additional data (O) from present-day populations80

that may be related to the population to which the sample belongs. The81

nature of the data in O will be explained below, and will vary in each of the82

different cases we describe. The parameters contained in Ω may simply be83

the drift times separating the contaminant population and the sample from84

their common ancestral population. However, Ω may include additional85

parameters, such as the admixture rate - if any - between the contaminant86

and the sample population. The number of parameters we can include in Ω87

will depend on the nature of the data in O.88

For all models we will describe, the probability of the data can be defined89

as:90

P [ a, d | rC , ε,w,Ω,O] =
K∏
j=1

P [aj, dj|rC , ε, wj,Ω,O] (1)

where91

P [aj, dj|rC , ε, wj,Ω,O] =
2∑
i=0

P [aj, dj | i, rC , ε, wj]P [i |Ω,O] (2)

We focus now on computation on the likelihood for one site j in the92

genome. In the following, we abuse notation and drop the subscript j. Given93

the true genotype of the ancient individual, the number of derived and an-94

cestral reads at a particular site follows a binomial distribution that depends95

on the genotype, the error rate and the rate of contamination [1, 3]:96

P [a, d|i, rC , ε, w] =

(
a+ d

d

)
qdi (1− qi)a (3)

where97

q2 = rCw(1− ε) + rC(1− w)ε+ (1− rC)(1− ε) (4)
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q1 = rCw(1− ε) + rC(1− w)ε+ (1− rC)(1− ε)/2 + (1− rC)ε/2 (5)

q0 = rCw(1− ε) + rC(1− w)ε+ (1− rC)ε (6)

In the sections below, we will turn to the more complicated part of the98

model, which is obtaining the probability P [i|Ω,O] for a genotype in the99

ancient sample, given particular demographic parameters and additional data100

available. We will do this in different ways, depending on the kind of data101

we have at hand.102

2.2. Diffusion-based likelihood for neutral drift separating two populations103

First, we will work with the case in which O = y, where y is a vector104

of frequencies yj from an “anchor” population that may be closely related105

to the population of the ancient DNA sample. An example of this scenario106

would be the sequencing of a Neanderthal sample that is suspected to have107

present-day human contamination, from which many genomes are available.108

For all analyses below, we restrict to sites where 0 < yj < 1. Note109

that it is entirely possible (but not required) that y = w, meaning that,110

aside from the ancient DNA sample, the only additional data we have are111

the frequencies of the derived allele in the putative contaminant population,112

which we can use as the anchor population too. However, it is also possible to113

use a contaminant panel that is different from the anchor population (Figure114

1.A). We will assume we have sequenced a large number of individuals from115

a panel of the contaminant population (for example, The 1000 Genomes116

Project panel) and that the panel is large enough such that the sampling117

variance is approximately 0. In other words, the frequency we observe in the118

contaminant panel will be assumed to be equal to the population frequency119

in the entire contaminant population. In this case, Ω = {τC, τA}, where τA120

and τC are defined as follows:121

τA: drift time (i.e. time in generations scaled by twice the haploid effective122

population size) separating the population to which the ancient individual123

belongs from the ancestor of both populations124

τC : drift time separating the anchor population from the ancestor of both125

populations126

We need to calculate the conditional probabilities P [i|Ω,O] = P[i|y, τC, τA]127

for all three possibilities for the genotype in the ancient individual: i =128
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0, 1 or 2. To obtain these expressions, we rely on Wright-Fisher diffusion129

theory (reviewed in Ewens [11]), especially focusing on the two-population130

site-frequency spectrum (SFS) [12]. The full derivations can be found in the131

Appendix, and lead to the following formulas:132

P [ i = 0 | y, τC , τA ] = 1−y∗e−τC− 1

2
∗y∗e−τA−τC +y

(
y − 1

2

)
e−τA−3τC (7)

P [ i = 1 | y, τC , τA ] = y ∗ e−τA−τC + y (1− 2y) e−τA−3τC (8)

P [ i = 2 | y, τC , τA ] = y ∗ e−τC − 1

2
∗ y ∗ e−τA−τC + y

(
y − 1

2

)
e−τA−3τC (9)

We generated 10,000 neutral simulations using msms [13] for different133

choices of τC and τA (with θ = 20 in each simulation) to verify our analytic134

expressions were correct (Figure 2). The probability does not depend on θ,135

so the choice of this value is arbitrary.136

The above probabilities allows us to finally obtain P [i | yj,Ω,O].137

2.3. Estimating drift and admixture in a three-population model138

Although the above method gives accurate results for a simple demo-139

graphic scenario, it does not incorporate the possibility of admixture between140

the contaminant population and the sample population. This is important,141

as the signal of contamination may mimic the pattern of recent admixture.142

We will assume that, in addition to the ancient DNA sample, we also have143

the following data, which constitute O:144

1) A large panel from a population suspected to be the contaminant in145

the ancient DNA sample. The sample frequencies from this panel will be146

labeled w, as before.147

2) Two panels of high-coverage genomes from two “anchor” populations148

that may be related to the ancient DNA sample. One of these populations -149

called population Y - may (but need not) be the same population as the con-150

taminant and may (but need not) have received admixture from the ancient151

population (Figure 1.B). The sample frequencies for this population will be152

labeled as y. The other population - called Z - will have sample frequencies153

labeled z. We will assume the drift times separating these two populations154
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are known (parameters τY and τZ in Figure 1.B). This is a reasonable as-155

sumption as these parameters can be accurately estimated without the need156

of using an ancient outgroup sample, as long as admixture is not extremely157

high.158

We can then estimate the remaining drift parameters, the error and con-159

tamination rates and the admixture time (β) and rate (α) between the archaic160

population and modern population Y . The diffusion solution for this three-161

population scenario with admixture is very difficult to obtain analytically.162

Instead, we use a numerical approximation, implemented in the program163

∂a∂i [14].164

2.4. Markov Chain Monte Carlo method for inference165

We incorporated the likelihood functions defined above into a Markov166

Chain Monte Carlo (MCMC) inference method, to obtain posterior proba-167

bility distributions for the contamination rate, the sequencing error rate, the168

drift times and the admixture rate. Our program - which we called ’DICE’ - is169

coded in C++ and is freely available at: http://grenaud.github.io/dice/170

We assumed uniform prior distributions for all parameters. By default, we171

limit the maximum contamination rate to 50% and the maximum sequencing172

error rate per read to 10%. When incorporating admixture, we also capped173

the maximum possible admixture rate to 50% and generally chose realistic174

admixture time boundaries when analyzing real data. Although these are175

the default boundaries, they can be modified by the user.176

For the starting chain at step 0, an initial set of parameters X0 = {177

rC0, ε0, Ω0 } is sampled randomly from their prior distributions. At step178

k, a new set of values for step k + 1 is proposed by drawing values for each179

of the parameters from Normal distributions. The mean of each of those180

distributions is the value for each parameter at state Xk and the standard181

deviation is the difference between the upper and lower boundary of the prior,182

divided by a constant that can be increased or decreased to achieve a desired183

rate of acceptance of new states [15]. By default, this constant is equal to184

1,000 for all parameters. The new state is accepted with probability:185

P [accept] = min

(
1,
P [a,d | Xk+1]

P [a,d | Xk]

)
(10)

where P [a,d | Xk] is the likelihood defined in Equation 1.186

Unless otherwise stated below, we ran the MCMC chain for 100,000 steps187

in all analyses, with a burn-in period of 40,000 and sampling every 100 steps.188
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The sampled values were then used to construct posterior distributions for189

each parameter.190

2.5. BAM file functionality and multiple error rates191

The standard input for DICE is a file containing counts of particular an-192

cestral / derived read combinations and SNP frequency configurations (see193

README file online). As an additional feature of DICE, we also incorpo-194

rated a module for the user to directly input a BAM file and a file containing195

population frequencies for the anchor and contaminant panels, rather than196

the standard input.197

Fu et al. [5] showed that, when estimating contamination, ancient DNA198

data can be better fit by a two-error model than a single-error model. In that199

study, the authors co-estimate the two error rates along with the proportion200

of the data that is affected by each rate. Therefore, we also included this error201

model as an option that the user can choose to incorporate when running our202

program. Furthermore, we developed an alternative error estimation method203

that allows the user to flag sites that are likely to undergo cytosine deam-204

ination in ancient DNA, and therefore suffer from different types of errors205

than those commonly found in present-day sequencing data. Our program206

can then estimate the two error rates separately, for sites that are prone to207

be deaminated and those that are not.208

3. Results: two-population method209

3.1. Simulations210

We first used the MCMC implementation described above to obtain pos-211

terior distributions from simulated data, under the two-population inference212

framework. We simulated two populations (i.e. an archaic and a modern213

human population) with constant population size that split a number of gen-214

erations ago. For each demographic scenario tested, we generated 20,000215

independent replicates (theta=1) in ms [16], making sure each simulation216

had at least one usable SNP (i.e. segregating in the anchor population(s)).217

In general, this yielded ∼80,000 usable SNPs in total. We then proceeded to218

sample derived and ancestral allele counts using the same binomial sampling219

model we use in our inference framework, under different sequencing coverage220

and contamination conditions. Our simulation framework does not include221

correlated or base-specific sequencing errors, but allows us to concentrate on222

the strengths and limitations of our method in inferring contamination and223
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demographic parameters, rather than on sequencing-specific limitations that224

may vary across platforms and samples. In all simulations, the contaminant225

panel was the same as the anchor population panel.226

Figure 3 and 4 show parameter estimation results from various demo-227

graphic and contamination scenarios for a low-coverage (3X) and a high-228

coverage (30X) archaic genome, respectively, with low sequencing error (0.1%),229

and a contaminant/anchor population panel of 100 haploid genomes. In both230

cases, the method accurately estimates the error rate, the contamination rate231

and the drift parameters. All parameters are also accurately estimated for232

the same scenarios even if the sequencing error rate is high (10%) (Figure233

S1).234

3.2. Performance under violations of model assumptions235

We also checked what would happen if the modern human panel used was236

small. Figure S4 shows results for cases in which the contaminant/anchor237

panel is made up of 20 haploid genomes. In this case, all parameters are238

estimated accurately, with only a slight bias towards overestimating the drift239

parameters, presumably because the low sampling of individuals acts as a240

population bottleneck, artificially increasing the drift time parameters esti-241

mated.242

Additionally, we simulated a scenario in which only a single human con-243

taminated the sample. That is, rather than drawing contaminant reads from244

a panel of individuals, we randomly picked a set of two chromosomes at each245

unlinked site and only drew contaminant reads from those two chromosomes.246

Figure S5 shows that inference is robust to this scenario, unless the contam-247

ination rate is very high (25%). In that case, the drift of the archaic genome248

is substantially under-estimated, but the error, contamination and anchor249

drift parameters only show slight inaccuracies in estimation.250

We then investigated the effect of admixture in the anchor/contaminant251

population from the archaic population, occurring after their divergence,252

which we did not account for in the simple, two-population model (Figure S2).253

In this case, the error and the contamination rates are accurately estimated,254

but both drift times are underestimated. This is to be expected, as admixture255

will tend to homogenize allele frequencies and thereby reduce the apparent256

drift separating the two populations.257

Finally, we tested performance when the sample is of extremely low av-258

erage coverage (0.5X). We tried different numbers of independent replicate259

simulations and found that the number of sites needed to obtain accurate260
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inferences is higher than when using a sample of higher coverage. At 800,000261

replicates with theta= 20, we obtained approximately 1.6 million valid SNPs262

for inference, which was enough to reach reasonable levels of accuracy (Figure263

S3). We note that this number of SNPs is approximately the same as what is264

available, for example, in the low-coverage (0.5X) Mezmaiskaya Neanderthal265

genome [4], which contains about 1.55 million valid sites with coverage ≥ 1,266

and which we analyze below. We also observed that the MCMC chain in267

some of these simulations needed a longer time to converge than when test-268

ing samples of higher coverage, especially when contamination is very high,269

and so in this set of simulations, we ran it for 1 million steps instead of270

100,000, with a burn-in of 940,000 steps and sampling every 100 steps.271

3.3. Real data272

We first applied our method to published ancient DNA data from two Ne-273

anderthals: a low-coverage genome (0.5X) from Mezmaiskaya Cave in West-274

ern Russia and a high-coverage genome (52X) from Denisova cave in Siberia275

(the Altai Neanderthal) [4]. In both cases, we visually ensured that the276

chain had converged. The demographic, error and contamination estimates277

are shown in Tables 1 and 2, respectively. We used the African (AFR) 1000278

Genomes phase 3 panel [10] as the anchor population. The drift times esti-279

mated for both samples are consistent with the known demographic history280

of Neanderthals and modern humans, and the contamination rates largely281

agree with previous estimates (see Discussion below). We observe a higher282

error rate and a lower contamination rate in the Mezmaiskaya sample than283

in the Altai sample.284

We ran our method with different putative contaminant panels (AFR,285

EAS, AMR, EUR, SAS). For the Altai sample, the most probable contami-286

nant is of European ancestry, as the EUR panel has a much larger posterior287

probability than the other panels (Table 1). For the Mezmaiskaya sample, all288

panels have very similar posterior probabilities (Table 2): the low coverage in289

this case precludes us from clearly distinguishing which was the contaminant290

population.291

We sought to determine the robustness of our results to different levels292

of GC content. We partitioned the Altai Neanderthal genome into three dif-293

ferent regions of low (0% − 30%), medium (31% − 69%) and high (70% −294

100%) GC content, using the ’GC content’ track downloaded from the UCSC295

genome browser [17]. We then used the two-population method to infer con-296

tamination, error and drift parameters, using Africans as the anchor popula-297
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tion and Europeans as the contaminant population (Figure S6). We observe298

that contamination rates are higher in low-GC regions than in medium-GC299

regions (Welch one-sided t-test on the posterior samples, P < 2.2e-16), which300

in turn have higher contamination rates than high-GC regions (P < 2.2e-16).301

The opposite trend occurs in the error estimates, while the drift parame-302

ters are largely unaffected. However, we find that the differences we observe303

across GC levels are almost entirely eliminated by removing CpG sites from304

the input dataset (Figure S6). CpG sites are known to have higher mutation305

rates than the rest of the genome, and are more likely to lead to ancestral306

state misidentification (ASM, Hernandez et al. [18]). For this reason, we rec-307

ommend either filtering them out when testing for contamination on ancient308

DNA datasets (which is what we did in Tables 1 and 2) or developing new309

models that can account for ASM, which we do not pursue here.310

As a negative control, we also tested a present-day Yoruba genome (HGDP00936)311

sequenced to high coverage [4], which should not contain any contamination.312

Indeed, when applying our method, we find this to be the case (Figure S7).313

We infer 0% contamination, regardless of whether we use EUR or AFR as314

the candidate contaminant. Furthermore, the anchor drift time is very close315

to 0 when using AFR as the anchor population (as the sample belongs to316

that same population), while it is non-zero (= 0.22) when using EUR, which317

is consistent with the drift time separating Europeans from the ancestor of318

Europeans and Africans [19]. This also indicates that the method is useful for319

testing samples that have shorter drift times than Neanderthal, like ancient320

modern humans.321

4. Results: three-population method322

4.1. Simulations323

We applied our three-population method to estimate both drift times324

and admixture rates. We simulated a high-coverage (30X) archaic human325

genome under various demographic and contamination scenarios. Each of the326

two anchor population panels contained 20 haploid genomes. The admixture327

time was 0.08 drift units ago, which under a constant population size of328

2N=20,000 would be equivalent to 1,600 generations ago. When running our329

inference program, we set the admixture time prior boundaries to be between330

0.06 and 0.1 drift units ago.331

We find that the admixture time is inaccurately estimated under this332

implementation - likely due to lack of information in the site-frequency spec-333
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trum - so we do not show estimates for that parameter below. For admixture334

rates of 0%, 5% or 20%, the error and contamination parameters are es-335

timated accurately in all cases (Figures 5, S8 and S9, respectively). The336

method is less accurate when estimating the demographic parameters, espe-337

cially the admixture rate which is sometimes under-estimated. Importantly338

though, the accuracy of the contamination rate estimates are not affected by339

incorrect estimation of the demographic parameters.340

We also tested what would happen if the admixture time was simulated341

to be recent: 0.005 drift units ago, or 100 generations ago under a constant342

population size of 2N=20,000. When estimating parameters, we set the prior343

for the admixture time to be between 0 and 0.01 drift units ago. In this last344

case, we observe that the drift times and the admixture rate (20%) are more345

accurately estimated than when the admixture event is ancient (Figure 6).346

4.2. Real data347

We also applied the three-population inference framework to the high-348

coverage Altai Neanderthal genome. We first estimated the two drift times349

specific to Europeans and Africans after the split from each other (τY and350

τZ , respectively), using ∂a∂i and the L-BFGS-B likelihood optimization algo-351

rithm [8], but without using the archaic genome (τAfr = 0.009, τEur = 0.255).352

Then, we used our MCMC method to estimate the rest of the drift times,353

the archaic admixture rate and the contamination and error parameters in354

the Neanderthal genome. We set the admixture time prior boundaries to be355

between 0.06 and 0.1 drift units ago, which is a realistic time frame given356

knowledge about modern human - Neanderthal cohabitation in Eurasia [20].357

As before, we tested different populations for the putative contaminant and358

find Europeans to be the most probable contaminant population.359

Although we attempted to apply the three-population method to the360

low-coverage Mezmaiskaya Neanderthal genome, different contaminant pan-361

els resulted in highly inconsistent drift parameters, even when using the same362

anchor population. This is due to the larger number of parameters that have363

to be explored in the three-population method, which requires more data364

than available in the Mezmaiskaya sample. Therefore, we conclude the two-365

population method is better suited than the three-population method for366

samples of very low coverage367

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2015. ; https://doi.org/10.1101/022285doi: bioRxiv preprint 

https://doi.org/10.1101/022285
http://creativecommons.org/licenses/by-nc-nd/4.0/


5. Discussion368

We have developed a new method to jointly infer demographic parame-369

ters, along with contamination and error rates, when analyzing an ancient370

DNA sample. The method can be deployed using a C++ program (DICE)371

that is easy to use and freely downloadable. We therefore expect it to be372

highly applicable in the field of paleogenomics, allowing researchers to derive373

useful information from previously unusable (highly contaminated) samples,374

including archaic humans like Neanderthals, as well as ancient modern hu-375

mans.376

Applications to simulations show that the error and contamination pa-377

rameters are estimated with high accuracy, and that demographic parameters378

can also be estimated accurately so long as enough information (e.g. a large379

panel of modern humans) is available. The drift time estimates reflect how380

much genetic drift has acted to differentiate the archaic and modern popu-381

lations since the split from their common ancestral population, and can be382

converted to divergence times in generations if an accurate history of pop-383

ulation size changes is also available (for example, via methods like PSMC,384

[21]).385

We also applied our method to real data, specifically to two Neanderthal386

genomes at high and low coverage, and a present-day Yoruba genome. For387

the Yoruba genome, we infer no contamination, as would be expected from388

a modern-day sample, and drift times indicating the Yoruba sample indeed389

belongs to an African population.390

The contamination and sequencing error estimates we obtained for the391

Neanderthals are roughly in accordance with previous estimates [4]. The drift392

times we obtain under the three population model for the African popula-393

tion (τC + τAfr) are all approximately 0.483 + 0.009 = 0.492 drift units. The394

geometric mean of the history of population sizes from the PSMC results in395

Prüfer et al. [4] give roughly that Ne ≈ 21, 818 since the African population396

size history started differing from that of Neanderthals, assuming a mutation397

rate of 1.25 ∗ 10−8 per bp per generation. If we assume a generation time398

of 29 years, and plug in our drift time into the equation relating divergence399

time in generations to drift time (t/(2Ne) ≈ τ), this gives an approximate400

human-Neanderthal population divergence time of 622,598 years. This num-401

ber agrees with the most recent estimates obtained via other methods [4].402

Additionally, the Neanderthal-specific drift time is approximately 5.5 times403

as large as the modern human drift time, which is expected as Neanderthals404
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had much smaller population sizes than modern humans [22, 4]. The admix-405

ture rate from archaic to modern humans that we estimate is 1.29%, which406

is roughly consistent with the rate estimate obtained via methods that do407

not jointly model contamination (1.5− 2.1%) [4]. Our method also allows us408

to obtain the most probable ancestry of the individual(s) who contaminated409

the sample, so long as the sample has high coverage. In the case of the Altai410

Neanderthal, we observe that this corresponds to one or more individuals411

with European ancestry.412

The demographic models used in our approach are simple, involving no413

more than three populations and a single admixture event. This is partly414

due to limitations of known theory about the diffusion-based likelihood of415

an arbitrarily complex demography for the 2-D site-frequency spectrum - in416

the case of the two-population method - and to the inability of ∂a∂i [14] to417

handle more than 3 populations at a time. In recent years, several papers418

have made advances in the development of methods to compute the likelihood419

of an SFS for larger numbers of populations using coalescent theory [23, 24,420

25], with multiple population size changes and admixture events. We hope421

to incorporate some of these techniques in future versions of our inference422

framework.423
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8. Figures518

Figure 1. A) Schematic of two-population modeling framework: at each site, derived
and ancestral reads (a, d) are binomially sampled from the true genotype of the archaic
individual, with some amount of contamination and error. In turn, the true genotype
depends on a demographic model, which can include the contaminant population. B)
Schematic of three-population modeling framework, incorporating admixture between
the archaic population and one of two anchor populations.
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Figure 2. Comparison of analytic solutions to P [i|y, τC , τA] and simulations under
neutrality from msms, for different choices of τA and τC .
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Figure 3. Estimation of parameters for a low-coverage ancient DNA genome (3X) with
low sequencing error (0.1%), no admixture and a large anchor population panel (100
haploid genomes).
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Figure 4. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with low sequencing error (0.1%), no admixture and a large anchor population panel
(100 haploid genomes).
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Figure 5. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 0%. The prior used
for the admixture time was uniform over [0.06, 0.1].
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Figure 6. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 20% and the
admixture time was recent (0.005 drift units ago). The prior used for the admixture time
was uniform over [0, 0.01].
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9. Tables519

Table 1. Posterior modes of parameter estimates under the two-population inference
framework for the Altai Neanderthal autosomal genome. We used different 1000G
populations as candidate contaminants. Africans were the anchor population in all cases,
so the modern human drift is with respect to Africans. Values in parentheses are 95%
posterior quantiles. The panel with the highest posterior probability for being the
contaminant (EUR) is in bold font.

Conta-
minant
panel

An-
chor
panel

Error
rate

Contamination
rate

Modern
human
drift

Neanderthal
drift Log-posterior

AFR AFR 0.234%
(0.232%− 0.234%)

0.75%
(0.747%− 0.755%)

0.455
(0.453− 0.456)

2.481
(2.471− 2.488)

-4822974.862

AMR AFR 0.134%
(0.134%− 0.137%)

0.917%
(0.911%− 0.919%)

0.455
(0.453− 0.456)

2.48
(2.469− 2.485)

-3553563.224

EAS AFR 0.198%
(0.196%− 0.199%)

0.724%
(0.723%− 0.729%)

0.454
(0.452− 0.456)

2.481
(2.47 − 2.488)

-3579030.145

EUR AFR 0.133%
(0.132% − 0.134%)

0.915%
(0.912% − 0.918%)

0.455
(0.453 − 0.456)

2.479
(2.469 − 2.491)

-3546071.79

SAS AFR 0.138%
(0.137% − 0.14%)

0.898%
(0.892%− 0.899%)

0.456
(0.452− 0.456)

2.478
(2.473− 2.488)

-3557872.703

Table 2. Posterior modes of parameter estimates under the two-population inference
framework for the Mezmaiskaya Neanderthal autosomal genome. We used different
1000G populations as candidate contaminants. Africans were the anchor population in
all cases, so the modern human drift is with respect to Africans. Values in parentheses
are 95% posterior quantiles.

Conta-
minant
panel

An-
chor
panel

Error
rate

Contamination
rate

Modern
human
drift

Neanderthal
drift Log-posterior

AFR AFR 2.662%
(2.625%− 2.697%)

0.001%
(0.001%− 0.015%)

0.464
(0.459− 0.465)

2.576
(2.525− 2.659)

-790458.8989

AMR AFR 2.629%
(2.623%− 2.702%)

0.002%
(0.002%− 0.048%)

0.459
(0.459− 0.465)

2.579
(2.522− 2.709)

-790459.797

EAS AFR 2.666%
(2.625%− 2.698%)

0.002%
(0.001%− 0.027%)

0.463
(0.459− 0.466)

2.604
(2.532− 2.677)

-790461.3417

EUR AFR 2.672%
(2.614%− 2.692%)

0.016%
(0.002%− 0.096%)

0.462
(0.459− 0.466)

2.593
(2.528− 2.692)

-790459.0857

SAS AFR 2.657%
(2.622% − 2.70%)

0.002%
(0.001%− 0.024%)

0.46
(0.459− 0.465)

2.594
(2.52 − 2.69)

-790461.2111
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Table 3. Posterior modes of parameter estimates under the three-population inference
framework for the Altai Neanderthal autosomal genome. We used different 1000G
populations as candidate contaminants. In all cases, Africans were the unadmixed anchor
population and Europeans were the admixed anchor population. The ancestral human
drift refers to the drift in the modern human branch before the split of Europeans and
Africans. The post-split European-specific and African-specific drifts were estimated
separately without the archaic genome (τAfr = 0.009, τEur = 0.255). The panel with the
highest posterior probability for being the contaminant (EUR) is in bold font.

Conta-
minant
panel

Unad-
mixed
anchor
panel

Ad-
mixed
anchor
panel

Error
rate

Contamination
rate

Ancestral
human
drift

Neanderthal
drift

Admixture
rate Log-posterior

AFR AFR EUR 0.39%
(0.388%− 0.393%)

0.626%
(0.619%− 0.637%)

0.481
(0.476− 0.484)

2.542
(2.53 − 2.562)

1.255%
(1.158%− 1.275%)

-4813930.165

AMR AFR EUR 0.291%
(0.286%− 0.292%)

0.814%
(0.809%− 0.824%)

0.481
(0.479− 0.486)

2.54
(2.532− 2.562)

1.286%
(1.264%− 1.334%)

-4780699.543

EAS AFR EUR 0.344%
(0.342%− 0.347%)

0.649%
(0.643%− 0.657%)

0.483
(0.479− 0.486)

2.543
(2.532 − 2.56)

1.293%
(1.241%− 1.331%)

-4801849.357

EUR AFR EUR 0.283%
(0.282% − 0.287%)

0.827%
(0.815% − 0.83%)

0.483
(0.479 − 0.486)

2.547
(2.529 − 2.561)

1.29%
(1.265% − 1.337%)

-4774875.983

SAS AFR EUR 0.292%
(0.288%− 0.294%)

0.802%
(0.794%− 0.809%)

0.481
(0.477− 0.485)

2.558
(2.533− 2.568)

1.264%
(1.241%− 1.328%)

-4782524.26
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10. Supplementary Materials520

Figure S1. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with high sequencing error (10%), no admixture and a large anchor population panel
(100 haploid genomes).
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Figure S2. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with low sequencing error (0.1%), a large anchor population panel (100 haploid genomes)
and admixture in the anchor population from the archaic population (5%), using the
two-population inference framework, which does not model admixture.
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Figure S3. Estimation of parameters for an ancient DNA genome of very low coverage
(0.5X) with low sequencing error (0.1%) and a large anchor population panel (100
haploid genomes). Note that unlike the rest of the simulations, the number of SNPs used
in this case was approximately 1.6 million instead of 80,000, and the MCMC chain was
run for 1 million steps instead of 100,000. Using a lower number of SNPs or running the
chain for a shorter time resulted in inaccurate inferences.
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Figure S4. Estimation of parameters for a high-coverage ancient DNA genome (30X)
with low sequencing error (0.1%), no admixture and a small anchor population panel (20
haploid genomes).
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Figure S5. Estimation of parameters for a high-coverage ancient DNA genome (30X),
when the contaminant reads are exclusively drawn from a single diploid individual from
the contaminant panel.
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Figure S6. Estimation of parameters for the Altai Neanderthal genome across different
GC levels using the two-population model, while keeping (black) or removing (red) CpG
sites from the input dataset.
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Figure S7. We tested one of the Yoruba genomes from Prüfer et al. [4] and obtain an
estimate of 0% contamination, regardless of whether we use Europeans or Africans as the
candidate contaminant. The anchor drift time is close to 0 when using Africans as the
anchor population, as the sample belongs to that same population, while it is non-zero
(= 0.22) when using Europeans.
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Figure S8. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 5% and the
admixture time is ancient (0.08 drift units ago). The prior used for the admixture time
was uniform over [0.06, 0.1].
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Figure S9. Estimation of error, contamination and demographic parameters in various
three-population demographic scenarios, where the admixture rate is 20% and the
admixture time is ancient (0.08 drift units ago). The prior used for the admixture time
was uniform over [0.06, 0.1].
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Appendix A. Genotype probabilities conditional on a demography521

Below we derive formulas 7, 8 and 9. Recall that we are interested in522

calculating the conditional probabilities P [i|Ω,O] = P[i|y, τC, τA] for all523

three possibilities for the genotype in the ancient individual: i = 0, 1 or 2.524

These can be obtained from the definition of conditional probability. Let525

fDDy be the joint probability that a site has frequency y (0 < y < 1) in the526

contaminant panel and is homozygous for the derived allele in the ancient527

individual. Let fDAy be the joint probability that a site has frequency y in the528

contaminant panel and is heterozygous in the ancient individual. Finally, let529

fAAy be the joint probability that a site has frequency y in the anchor panel530

and is homozygous for the ancient allele in the ancient individual. Then:531

P [ i = 0 | y, τC , τA ] =
fAAy
fy

=
fAAy

fAAy + fDAy + fDDy

(A.1)

P [ i = 1 | y, τC , τA ] =
fDAy

fy
=

fDAy

fAAy + fDAy + fDDy

(A.2)

P [ i = 2 | y, τC , τA ] =
fDDy

fy
=

fDDy

fAAy + fDAy + fDDy

(A.3)

In the above expressions, the functions f depend on τC and τA, but we532

omit this conditioning for ease of notation. As can be seen, all we need533

to find is the joint probabilities fAAy , fDAy and fDDy . Here is where diffusion534

theory comes into play. Let φ(•, τ |x, 0) be the Kimura solution to the neutral535

forward diffusion equation in the absence of mutation [26], given a frequency536

x at time 0 and an elapsed drift time τ :537

φ(y, τ |x, 0) = 4x(1− x)
∞∑
h=1

2j + 1

j(j + 1)
C

3/2
h−1(1− 2x)C

3/2
h−1(1− 2y)e−j(j+1)τ/2

(A.4)
Here, x is the unknown population frequency of the derived allele in the538

ancestral population and C(3/2)
h−1 (•) is the Gegenbauer polynomial of order h-1539

[27].540

Assuming the ancestral population follows an equilibrium frequency dis-541

tribution g(x) = θ/x, we can write fDDy as follows:542

35

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2015. ; https://doi.org/10.1101/022285doi: bioRxiv preprint 

https://doi.org/10.1101/022285
http://creativecommons.org/licenses/by-nc-nd/4.0/


fDDy =

∫ 1

0

φ(y, τC |x, 0)g(x)

(∫ 1

0

z2φ(z, τA|x, 0)dz

)
dx (A.5)

where z is the unknown population frequency of a derived allele in the543

population to which the ancient individual belongs.544

The expression in parentheses is the second moment of the transition545

density and its solution is known [28]:546 ∫ 1

0

z2φ(z, τA|x, 0)dz = x− x(1− x)e−τA (A.6)

This results in:547

fDDy = θ

∫ 1

0

φ(y, τC |x, 0)[1− (1− x)e−τA ]dx (A.7)

fDDy = θ

[∫ 1

0

φ(y, τC |x, 0)dx− e−τA
∫ 1

0

φ(y, τC |x, 0)dx+ e−τA
∫ 1

0

x φ(y, τC |x, 0)dx

]
(A.8)

The integral of the first two terms of the sum was solved in Chen et al.548

[12]:549 ∫ 1

0

φ(y, τC |x, 0)dx = e−τC (A.9)

The third term of the sum can be solved by noting that, though the550

integrand is an infinite sum (i.e. formula A.4 multiplied by x), only the551

integrals of the first two terms of that infinite sum are not equal to 0. This552

can be seen by integrating the parts of the terms of that infinite sum that553

depend on x:554

∫ 1

0

x2(1− x)C
(3/2)
h−1 (1− 2x)dx =


1/12 h = 1

−1/20 h = 2

0 h ≥ 3

Therefore, after integrating the first two terms of the infinite sum, we555

obtain:556 ∫ 1

0

xφ(y, τC |x, 0)dx =
1

2
e−τC +

(
y − 1

2

)
e−3τC (A.10)
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So we finally arrive at:557

fDDy = θ

[
e−τC − 1

2
e−τA−τC +

(
y − 1

2

)
e−τA−3τC

]
(A.11)

We can obtain fDAy in a similar fashion:558

fDAy =

∫ 1

0

φ(y, τC |x, 0)g(x)

(∫ 1

0

2z(1− z)φ(z, τA|x, 0)dz

)
dx (A.12)

Solving the term in the parentheses:559

∫ 1

0

2z(1−z)φ(z, τA|x, 0)dz = 2

(∫ 1

0

zφ(z, τA|x, 0)dz −
∫ 1

0

z2φ(z, τA|x, 0)dz

)
(A.13)

The first term of the difference is the first moment of the transition den-560

sity, which is equal to x [28], while the second term is the second moment561

(formula A.6). Therefore:562

fDAy = 2θe−τA
[∫ 1

0

φ(y, τC |x, 0)(1− x)dx

]
(A.14)

fDAy = 2θe−τA
[∫ 1

0

φ(y, τC |x, 0)dx−
∫ 1

0

x φ(y, τC |x, 0) dx

]
(A.15)

And after using formulas A.9 and A.10, we obtain:563

fDAy = θ
[
e−τA−τC + (1− 2y) e−τA−3τC

]
(A.16)

To obtain fAAy , we know that, assuming the anchor population to be at564

equilibrium:565

fy = g(y) (A.17)

And therefore:566

fAAy + fDAy + fDDy =
θ

y
(A.18)

So we finally obtain:567
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fAAy = θ

[
1

y
− e−τC − 1

2
e−τA−τC +

(
y − 1

2

)
e−τA−3τC

]
(A.19)

We now have all the elements necessary to obtain the conditional probabil-568

ities from formulas A.1, A.2 and A.3, which immediately lead us to formulas569

7, 8 and 9.570
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