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Abstract 

Measuring relative fitness by pairwise competition experiments is laborious and 

expensive. Accordingly, many investigators estimate fitness from the maximum 

growth rate during exponential growth. However, maximum growth rates have been 

shown to be an unreliable measure of fitness as indicated by discrepancies between 

these parameters and the outcomes of pairwise competition experiments. Here we 

propose a new method that estimates relative fitness by predicting the results of 

competition experiments from single strain growth curves.  
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Introduction 

Growth curves 

Growth curves are commonly used to estimate fitness in microbiology, genetics, 

and evolutionary biology. Growth curves are acquired by measuring the optical 

density (OD) of one or more populations of cells over a range of time periods. The 

simplest way to infer fitness from growth curves is to estimate the growth rate during 

the exponential growth phase. This is done by taking the log of the mean of the 

growth curves during the exponential growth phase and using linear regression to 

estimate the slope of the curve as a measure of the growth rate (Hall et al. 2014). 

Indeed, growth rates can be proxies of the selection coefficient, s, which is a standard 

approach for representing relative fitness in population genetics (Crow and Kimura 

1970; Chevin 2011). However, the selection coefficient can be affected by other 

phases of a growth curve such as the lag phase and the stationary phase. Thus, it is not 

surprising that growth rates can be poor estimates of relative fitness (Concepción-

Acevedo et al. 2015).   

Competition experiments 

Competition experiments infer relative fitness in a manner that accounts for all 

growth phases. In competition experiments, two or more strains are grown together in 

the same vessel – a reference strain and one or more strains of interest (for example, a 

wild-type reference strain and a mutant strain of interest). The frequency of each 

strain in the population is measured during the course of the experiment. This is done 

classically by plating assays that distinguish the strains using phenotypic markers 

(Wiser and Lenski 2015).  More recently, flow cytometry has been used with 

fluorescently marked cells (Gallet et al. 2012) and deep sequencing read counts have 

been used to determine the frequencies of different alleles in the population (Bank et 

al. 2014; Levy et al. 2015). The selection coefficient of the strains of interest can then 

be estimated from changes in the frequencies of the different strains during 

competition experiments. These are good methods to infer relative fitness, as they 

directly estimate fitness from changes in frequencies over time. However, competition 

experiments are more laborious than growth curves experiments and are typically 

more expensive, requiring the construction and assaying of genetic or phenotypic 
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markers (Concepción-Acevedo et al. 2015 and references therein). Therefore, many 

investigators prefer to use proxies of fitness such as growth rates. 

Predicting competition results from growth curves 

Here we propose a new framework for fitness inference. We fit growth models to 

growth curves data and use the fitted growth models to predict the results of 

competition experiments. The predicted competitions can then be used instead of 

empirical ones to estimate selection coefficients. 

We implemented our method in an open source Python package called Curveball 

(http://curveball.yoavram.com). 

Model and Results  

Our method includes three stages: (i) fitting growth models to growth curves data, 

(ii) using the fitted models to predict the results of competition experiments, and (iii) 

estimating selection from the predicted competition results. 

Growth model 

Because we are interested in several growth phases – the lag phase, the exponential 

phase, and the stationary phase – we use an extension of the standard logistic model, 

the Baranyi-Roberts model (Baranyi and Roberts 1994; Baranyi 1997). 

The Baranyi-Roberts model is defined by the following single species ordinary 

differential equation [see eqs. 1c, 3a, and 5a in (Baranyi and Roberts 1994)]: 

 

𝑑𝑁

𝑑𝑡
= 𝑟𝛼(𝑡)𝑁 (1 − (

𝑁

𝐾
)

𝜈

)                                           (1a) 

𝑁(0) = 𝑁0                                                        (1b) 

𝛼(𝑡) =
𝑞0

𝑞0+𝑒−𝑚𝑡                                                    (1c) 

 

where 𝑁 is the population density, 𝑟 is the per capita growth rate, 𝑡 is time, 𝛼(𝑡) is the 

adjustment function (see below), 𝐾 is the maximum density, and 𝜈 is a deceleration 

parameter (see below for 𝑞0 and 𝑚). 

The term (1 − (𝑁 𝐾⁄ )𝜈) is used to describe the deceleration in the growth of the 

population as it nears the maximum density 𝐾. When the deceleration parameter 𝜈 is 
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unity (𝜈 = 1), the deceleration is the same as in the standard logistic model and the 

density at the time of the maximum growth rate (
𝑑2𝑁

𝑑𝑡2
(𝑡) = 0) is half the maximum 

density, 
𝐾

2
. When 𝜈 > 1 or 0 < 𝜈 < 1, the deceleration is slower or faster, 

respectively, and the density at the time of the maximum growth rate is 
𝐾

(1+𝜈)
1
𝜈

 

(Richards 1959, substituting W = N, A = K, ν = m-1, k = r ⋅ ν). 

The adjustment function 𝛼(𝑡) is used to describe the adjustment of the population 

to growth conditions at the beginning of the growth curves experiment. Typically, 

microorganisms are grown in overnight culture to stationary phase and diluted into 

fresh media. Therefore, populations that are adjusted to stationary phase must now 

adjust to growth conditions, and this might take some time. This adjustment phase is 

called the lag phase. The specific adjustment function we use here (eq. 1c) was 

suggested by Baranyi and Roberts (1994) due to being both computationally 

convenient and having a biological meaning: 𝑞0 is the initial amount of some 

molecule (nutrient, enzyme, etc.) that is required for growth; 𝑚 is the rate in which 

this molecule is accumulated in the cell. 

The Baranyi-Roberts differential equation has a closed form analytical solution: 

 

𝑁(𝑡) =
𝐾

[1−(1−(
𝐾

𝑁0
)

𝜈
)𝑒−𝑟 𝜈𝐴(𝑡) ]

1
𝜈⁄
                                                 (2a) 

𝐴(𝑡) ∶= ∫ 𝛼(𝑠) 𝑑𝑠
𝑡

0
= 𝑡 +

1

𝑚
log (

𝑒−𝑚𝑡+𝑞0

1+𝑞0
),                                     (2b) 

 

where 𝑁0 ≡ 𝑁(0) is the initial population density. 

We use four forms of the Baranyi-Roberts model. The full model is described by 

eq. 2 and has six parameters. A five parameter form of the model has the deceleration 

parameter 𝜈 set to unity, as in the standard logistic model. A four parameter form of 

the model has no lag phase, with 1 𝑚⁄ = 0 ⇒ 𝐴(𝑡) ≡ 𝑡. This is also known as the 

Richards model (Richards 1959) or the generalized logistic model. This form of the 

model is useful in cases where there is no observed lag phase: either because the 

population adjusts very rapidly or because it is already adjusted prior to the growth 

experiment, usually by priming it in fresh media before the experiment. The fourth 

form is the standard logistic model, in which 𝜈 = 1 and 1 𝑚⁄ = 0. 
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Model fitting and selection 

We fit all four model forms to the mean growth curve of each strain in the data 

using non-linear curve fitting (Newville et al. 2014). The standard deviation at each 

time point is used to weight the curve fitting so that time points with lower variance 

are more heavily weighted and therefore better fitted.  

We then calculate the Bayesian Information Criteria (BIC) of each model fit: 

𝐵𝐼𝐶 = 𝑛 ⋅ log (
∑ (𝑁(𝑡𝑖)−𝑁̂(𝑡𝑖))

2𝑛
𝑖=1

𝑛
) + 𝑘 ⋅ log 𝑛, 

where 𝑘 is the number of parameters of the model, 𝑛 is the number of time points 𝑡𝑖, 

𝑁(𝑡𝑖) is the average density at time point 𝑡𝑖, and 𝑁̂(𝑡𝑖) is the expected density at time 

point 𝑡𝑖 according to the model. We select the model form with the lowest BIC. 

As a sanity check, we also fit the data using a linear model (𝑁(𝑡) = 𝑎 ⋅ 𝑡 + 𝑏) and 

check that the BIC of our selected model form is smaller than the BIC of the linear 

model by at least 6 [See (Kass and Raftery 1995) for significance of BIC differences]. 

We repeat the model fitting procedure for the growth curves data of each strain to 

produce estimates for all six parameters as well as confidence intervals on these 

estimates (Fig. 1B). 

Competition prediction 

We introduce the double strain Baranyi-Roberts model, which has not been used 

before to the best of our knowledge: 

𝑑𝑁1

𝑑𝑡
= 𝑟1𝛼1(𝑡)𝑁1 (1 − (

𝑁1

𝐾1
)

𝜈1

− (
𝑁2

𝐾2
)

𝜈2

 )                                           (3a) 

𝑑𝑁2

𝑑𝑡
= 𝑟2𝛼2(𝑡)𝑁2 (1 − (

𝑁1

𝐾1
)

𝜈1

− (
𝑁2

𝐾2
)

𝜈2

)                                           (3b) 

𝛼𝑖(𝑡) =
𝑞0,𝑖

𝑞0,𝑖+𝑒−𝑚𝑖𝑡                                                                 (3c) 

𝑁𝑖(0) = 𝑁0,𝑖 ,                                                                   (3d) 

where 𝑁𝑖 is the density of strain 𝑖 and 𝑟𝑖, 𝐾𝑖, 𝜈𝑖, 𝛼𝑖 , 𝑞0,𝑖, and 𝑚𝑖 are the values of the 

corresponding parameters for strain 𝑖 which we get from the model fitting procedure. 

This equation system is then solved by numerical integration, resulting in a prediction 

of the competition dynamics (Fig. 1C). 

This double strain competition model explicitly assumes that all the interactions 

between the two strains can be attributed to resource competition. Therefore, all 
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interactions are described by the deceleration of the growth rate of each strain in 

response to growth of the other strain. We do not however assume the same limiting 

resource or resource efficiency for both strains, as we use different maximum 

densities 𝐾𝑖 for each strain. 

 

 

Figure 1. Example of the method applied on growth curves of two Escherichia coli strains (A) 

Growth curves data of MG1655 in orange (top lines) and DH12S in purple (bottom lines). Each line 

(12 per strain) represents a series of OD595 measurements from a single well in a 96-well microplate 

(Costar), taken every 10 minutes. Cells of either strain with Kan
+
Cap

+
 plasmids were diluted 1:20 from 

overnight culture and grown in 100 µl LB with 50 mg/ml Kanamycin and 34 mg/ml Chloramphenicol 

at 30°C in an automatic plate reader (Tecan Infinite 200Pro). The OD of cell-free wells was ~0.13. (B) 

Solid line: model fit; markers and error bars: mean and standard deviation of OD595 measurements from 

12 wells per strain. Fitted parameters for MG1655: N0=0.134, r=0.416, ν=2.73, K=0.588, q0=0.053, 

m=2.37, lag duration=1.714, maximum growth rate=0.357; for DH12S: N0=0.13, r=0.876, ν=1, 

K=0.505, q0=0.15, m=0.772, lag duration=1.691, maximum growth rate=0.279. Note that the maximum 

growth rate (𝐦𝐚𝐱
𝒅𝑵

𝒅𝒕
) is a function of r, ν, and K. (C) Predicted OD in competitions between the two 

strains, calculated by solving eq. 3. Initial OD of both strains was set to 0.067, half of the average 

estimated N0 in both strains. (D) The frequency of MG1655 during the predicted competitions (dashed 

line). The estimated selection coefficient is s~0.186, calculated with eq. 4 and t=12. Note that the 

frequency of MG1655 initially declines slightly due to a longer lag phase, but then increases due to 

faster growth and a higher maximum density. Calculating the selection coefficient from the maximum 

growth rates would have yielded s~0.192 (Chevin 2011, eq. 2.3). 
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Selection coefficient inference 

One common method for estimating relative fitness or selection coefficients from 

pairwise competition results is (Wiser and Lenski 2015): 

𝑠 = log (
𝑁1(𝑡)

𝑁1(0)
) log (

𝑁2(𝑡)

𝑁2(0)
)⁄ − 1,                                         (4) 

where 𝑁1 and 𝑁2 are the densities of the strains and 𝑡 is time, usually chosen to be 24 

hours. Eq. 4 can be applied to the predicted competition results to infer the selection 

coefficient of the strain of interest (Fig. 1D). 

Discussion 

We present a new computational method to predict the results of competitions 

between two strains from the separately measured growth curves of each strain. This 

method should be useful, because growth curve experiments require much less effort 

and resources than pairwise competition experiments (Concepción-Acevedo et al. 

2015; Wiser and Lenski 2015; Hegreness et al. 2006; Gallet et al. 2012). As automatic 

96-well microplate readers become more and more common in microbiology labs, 

growth curve experiments can be set up in less than 30 minutes, after which the 

measurements are automatically collected by the plate reader (Hall et al. 2014; 

Concepción-Acevedo et al. 2015). 

Current methods for estimation of fitness from growth curves use the growth rate 

as a proxy of fitness. The growth rate and other proxies of fitness have several 

disadvantages: (i) they can't capture the full scope of effects contributing to 

differences in fitness; (ii) they are dependent upon specific experimental conditions 

that differ for different organisms and from lab to lab; and (iii) they can't be used as 

parameters in standard population genetics models that test hypotheses and predict 

evolutionary dynamics. In contrast, our method integrates several growth phases into 

the fitness estimation, and our growth model can be extended to include other phases 

and factors of growth, such as biphasic growth and cell death. 

The growth model that we use - the Baranyi-Roberts model - has a differential 

equation form (eq. 1) and a closed form analytical solution (eq. 2). Hence, it is very 

useful for our method: the closed form is used to fit to the growth curve data, while 

the differential equation is used to predict the competition dynamics. 
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Our method assumes that the two strains interact solely via resource competition; 

that is, only through the factor (1 − 𝑁1 𝐾1⁄ + 𝑁2 𝐾2⁄ ). If the investigators know or 

suspect that additional interactions exist (i.e., density-dependent interactions such as 

social or sexual selection, mutualism, and interference), our model can serve as a null 

hypothesis: the results of competition experiments can be compared to model 

predictions and a goodness of fit test can be used to decide if additional interactions 

are significant. Moreover, these additional interactions can be measured, either in 

terms of the difference in selection coefficients (between the coefficient calculated 

from the empirical results and coefficient calculated from the model prediction) or by 

fitting the empirical results to an extended model that includes density-dependent 

interactions (Masel 2014).   

Conclusions 

We propose a new method to analyze growth curves, predict competition results, 

and estimate relative fitness. Our method improves fitness estimation from growth 

curves, has a clear biological interpretation, and can be used as a null model for the 

interpretation of competition experiments. 
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