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Abstract

When reporting research findings, scientists document the steps they followed so that
others can verify and build upon the research. When those steps have been described in
sufficient detail that others can retrace the steps and obtain similar results, the research is
said to be reproducible. Computers play a vital role in many research disciplines and
present both opportunities and challenges for reproducibility. Computers can be
programmed to execute analysis tasks, and those programs can be repeated and shared
with others. Due to the deterministic nature of most computer programs, the same analysis
tasks, applied to the same data, will often produce the same outputs. However, in practice,
computational findings often cannot be reproduced due to complexities in how software is
packaged, installed, and executed—and due to limitations in how scientists document
analysis steps. Many tools and techniques are available to help overcome these challenges.
Here we describe seven such strategies. With a broad scientific audience in mind, we
describe strengths and limitations of each approach, as well as circumstances under which
each might be applied. No single strategy is sufficient for every scenario; thus we

emphasize that it is often useful to combine approaches.
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Introduction

When reporting research, scientists document the steps they followed to obtain their
results. If the description is comprehensive enough that they and others can repeat the
procedures and obtain semantically consistent results, the findings are considered to be
"reproducible”1-6. Reproducible research forms the basic building blocks of science, insofar

as it allows researchers to verify and build on each other's work with confidence.

Computers play an increasingly important role in many scientific disciplines’-19. For
example, in the United Kingdom, 92% of academic scientists use some type of software in
their research, and 69% of scientists say their research is feasible only with software
tools!l. Thus efforts to increase scientific reproducibility should consider the ubiquity of

computers in research.

Computers present both opportunities and challenges for scientific reproducibility. On one
hand, due to the deterministic nature of most computer programs, many computational
analyses can be performed such that others can obtain exactly identical results when
applied to the same input datal?. Accordingly, computational research can be held to a high
reproducibility standard. On the other hand, even when no technical barrier prevents
reproducibility, scientists often cannot reproduce computational findings due to
complexities in how software is packaged, installed, and executed—and due to limitations

in how scientists document these steps!3. This problem is acute in many disciplines,
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including genomics, signal processing, and ecological modeling'4-16, where data sets are
large and computational tools are evolving rapidly. However, the same problem can affect
any scientific discipline that requires computers for research. Seemingly minor differences
in computational approaches can have major influences on analytical outputs!?17-21 and

the effects of these differences may exceed those that result from experimental factors?2.

Journal editors, funding agencies, governmental institutions, and individual scientists have
increasingly made calls for the scientific community to embrace practices that support
computational reproducibility?3-39. This movement has been motivated, in part, by
scientists' failed efforts to reproduce previously published analyses. For example,
loannidis, et al. evaluated 18 published research studies that used computational methods
to evaluate gene-expression data but were able to reproduce only 2 of those studies3!. In
many cases, a failure to share the study's data was the culprit; however, incomplete
descriptions of software-based analyses were also common. Nekrutenko and Taylor
examined 50 papers that analyzed next-generation sequencing data and observed that
fewer than half provided any details about software versions or parameters32. Recreating
analyses that lack such details can require hundreds of hours of effort33 and may be
impossible, even after consulting the original authors. Failure to reproduce research may

also lead to careerist effects, including retractions34.

Noting such concerns, some journals have emphasized the value of placing computer

source code in open-access repositories, such as GitHub (https://github.com) or BitBucket

(https://bitbucket.org). In addition, journals have extended requirements for "Methods"
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sections, now asking researchers to provide detailed descriptions of 1) how to install
software and its dependencies and 2) what parameters and data-preprocessing steps are
used in analyses10.23. A recent Institute of Medicine report emphasized that, in addition to
computer code and research data, "fully specified computational procedures" should be
made available to the scientific community?4. They elaborated that such procedures should
include "all of the steps of computational analysis" and that "all aspects of the analysis need
to be transparently reported”?4. Such policies represent important progress. However, it is
ultimately the responsibility of individual scientists to ensure that others can verify and

build upon their analyses.

Describing a computational analysis sufficiently—such that others can reexecute it,
validate it, and refine it—requires more than simply stating what software was used, what
commands were executed, and where to find the source code32635-37 Software is executed
within the context of an operating system (for example, Windows, Mac OS, or Linux), which
enables the software to interface with computer hardware (Figure 1). In addition, most
software relies on a hierarchy of software dependencies, which perform complementary
functions and must be installed alongside the main software tool. One version of a given
software tool or dependency may behave differently or have a different interface than
another version of the same software. In addition, most analytical software offers a range of
parameters (or settings) that the user can specify. If any of these variables differs from
what the original experimenter used, the software may not execute properly or analytical

outputs may differ considerably from what the original experimenter observed.
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Scientists can use various tools and techniques to overcome these challenges and to
increase the likelihood that their computational analyses will be reproducible. These
techniques range in complexity from simple (e.g., providing written documentation) to
advanced (e.g., providing a "virtual" environment that includes an operating system and all
software necessary to execute the analysis). This review describes seven strategies across
this spectrum. We describe strengths and limitations of each approach, as well as
circumstances under which each might be applied. No single strategy will be sufficient for
every scenario; therefore, in many cases, it will be most practical to combine multiple
approaches. This review focuses primarily on the computational aspects of reproducibility.
The related topics of empirical reproducibility, statistical reproducibility, and data sharing
have been described elsewhere38-44, We believe that with greater awareness and
understanding of computational-reproducibility techniques, scientists—including those
with limited computational experience—will be more apt to perform computational

research in a reproducible manner.

Narrative descriptions are a simple but valuable way to support

computational reproducibility

The most fundamental strategy for enabling others to reproduce a computational analysis
is to provide a detailed, written description of the process. For example, when reporting
computational results in a research article, authors customarily provide a narrative that
describes the software they used and the analytical steps they followed. Such narratives

can be invaluable in enabling others to evaluate the scientific approach and to reproduce
6
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the findings. In many situations—for example, when software execution requires user
interaction or when proprietary software is used—narratives are the only feasible option
for documenting such steps. However, even when a computational analysis uses open-
source software and can be fully automated, narratives help others understand how to

reexecute an analysis.

Although most research articles that use computational methods provide some type of
narrative, these descriptions often lack sufficient detail to enable others to retrace those
steps 3132, Narrative descriptions should indicate the operating system(s), software
dependencies, and analytical software that were used and how to obtain them. In addition,
narratives should indicate the exact software versions used, the order in which they were
executed, and all non-default parameters that were specified. Such descriptions should
account for the fact that computer configurations differ vastly, even for computers that use
the same operating system. Because it can be difficult for scientists to remember such
details after the fact, it is best to record this information throughout the research process,

rather than at the time of manuscript preparation?.

The following sections describe techniques for automating computational analyses. These
techniques can diminish the need for scientists to write narratives. However, because it is
often impractical to automate all computational steps, we expect that, for the foreseeable

future, narratives will play a vital role in enabling computational reproducibility.
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Custom scripts and code can automate a research analysis

Scientific software can often be executed in an automated manner via text-based
commands. Using such commands—via a command-line interface—scientists can indicate
which software program(s) should be executed and which parameter(s) should be used.
When multiple commands must be executed, they can be compiled into scripts, which
specify the order in which the commands should be executed (Figure 2). In many cases,
scripts also include commands for installing and configuring software. Such scripts serve as
valuable documentation not only for individuals who wish to reexecute the analysis but
also for the researcher who performed the original analysis#®. In these cases, no amount of

narrative is an adequate substitute for providing the actual commands that were used.

When writing command-line scripts, it is essential to explicitly document any software
dependencies and input data that are required for each step in the analysis. The Make
utility*6 provides one way to specify such requirements3>. Before any command is
executed, Make verifies that each documented dependency is available. Accordingly,
researchers can use Make files (scripts) to specify a full hierarchy of operating-system
components and dependent software that must be present to perform the analysis (Figure
3). In addition, Make can be configured to automatically identify any commands that can be
executed in parallel, potentially reducing the amount of time required to execute the
analysis. Although Make was designed originally for UNIX-based operating systems (such
as Mac OS or Linux), similar utilities have since been developed for Windows operating

systems*’. Box 1 lists various utilities that can be used to automate software execution.
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Box 1: Utilities that can be used to automate software execution.

®  GNU Make*® and Make for Windows*’: Tools for building software from source
files and for ensuring that the software's dependencies are met.

®  Snakemake*® = An extension of Make that provides a more flexible syntax and
makes it easier to execute tasks in parallel.

®  BPipe# = A tool that provides a flexible syntax for users to specify commands to
be executed; it maintains an audit trail of all commands that have been executed.

®  GNU Parallel®® = A tool for executing commands in parallel across one or more
computers.

®  Makeflow5! = A tool that can execute commands simultaneously on various types
of computer architectures, including computer clusters and cloud environments.

® SCONS>? = An alternative to GNU Make that enables users to customize the
process of building and executing software using scripts written in the Python
programming language.

® (MAKE?®3 = A tool that enables users to execute Make scripts more easily on
multiple operating systems.

In addition to creating scripts that execute existing software, many researchers also create
new software by writing computer code in a programming language such as Python, C++,
Java, or R. Such code may perform relatively simple tasks, such as reformatting data files or
invoking third-party software. In other cases, computer code may constitute a manuscript's

key intellectual contribution.

Whether analysis steps are encoded in scripts or as computer code, scientists can support
reproducibility by publishing these artefacts alongside research papers. By doing so, the

authors enable readers to evaluate the analytical approach in full detail and to extend the


https://doi.org/10.1101/022707
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/022707; this version posted March 17, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

analysis more readily>4. Although scripts and code may be included alongside a manuscript
as supplementary material, a better alternative is to store them in a version-control system

(VCS)8245 and to share these repositories via Web-based services like GitHub

(https://github.com) or Bitbucket (https://bitbucket.org). With such a VCS repository,
scientists can track different versions of scripts and code that have been developed as the
research project evolved. In addition, outside observers can see the full version history,
contribute revisions to the code, and reuse the code for their own purposes>>. When
submitting a manuscript, the authors may “tag” a specific version of the repository that was

used for the final analysis described in the manuscript.

Software frameworks enable easier handling of software dependencies

Virtually all computer scripts and code rely on external software dependencies and
operating-system components. For example, suppose that a research study required a
scientist to apply Student’s t-test. Rather than write code that implements this statistical
test, the scientist would likely find an existing software library that implements the test and
then invoke that library from her code. A considerable amount of time can be saved with
this approach, and a wide range of software libraries are freely available. However,
software libraries change frequently—invoking the wrong version of a library may result in
an error or an unexpected output. Thus to enable others to reproduce an analysis, it is

critical to indicate which dependencies (and versions thereof) must be installed.

10
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One way to address this challenge is to build on a preexisting software framework. Such
frameworks make it easier to access software libraries that are commonly used to perform
specific types of analysis task. Typically, such frameworks also make it easier to download
and install software dependencies and ensure that the versions of software libraries and
their dependencies are compatible with each other. For example, Bioconductor>¢, created
for the R statistical programming language®’, is a popular framework that contains
hundreds of software packages for analyzing genomic data>¢. The Bioconductor framework
facilitates versioning, documenting, and distributing code. Once a software library has been
incorporated into Bioconductor, other researchers can find, download, install, and
configure it on most operating systems with relative ease. In addition, Bioconductor installs
software dependencies automatically. These features ease the process of performing a
bioinformatic analysis and enabling other scientists to reproduce the work. Various
software frameworks exist for other scientific disciplines>8-63. General-purpose tools for

managing software dependencies also exist (e.g., Apache Ivy®* and Puppet®>).

Literate programming combines narratives directly with code

Although narratives, scripts, and computer code support reproducibility individually,
additional value can be gained from combining these entities. Even though a researcher
may provide computer code alongside a research paper, other scientists may have difficulty
interpreting how the code accomplishes specific tasks. A longstanding way to address this
problem is via code comments, which are human-readable annotations interspersed

throughout computer code. However, code comments and other types of documentation
11
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often become outdated as code evolves throughout the analysis process®. One way to
overcome this problem is to use a technique called literate programming®’. With this
approach, the scientist writes a narrative of the scientific analysis and intermingles code
directly within the narrative. As the code is executed, a document is generated that includes
the code, narratives, and any outputs (e.g., figures, tables) that the code produces.
Accordingly, literate programming helps ensure that readers understand exactly how a
particular research result was obtained. In addition, this approach motivates the scientist
to keep the target audience in mind when performing a computational analysis, rather than
simply to write code that a computer can parse®’. Consequently, by reducing barriers of
understanding among scientists, literate programming can help to engender greater trust

in computational findings.

One popular literate-programming tool is Jupyter®. Using its Web-based interface,
scientists can create interactive "notebooks" that combine code, data, mathematical
equations, plots, and rich media®®. Originally known as IPython and previously designed
exclusively for the Python programming language, Jupyter’ now makes it possible to
execute code in many different programming languages. Such functionality may be
important to scientists who prefer to combine the strengths of different programming

languages.

knitr’! has also gained considerable popularity as a literate-programming tool. It is written
in the R programming language and thus can be integrated seamlessly with the array of

statistical and plotting tools available in that environment. However, like Jupyter, knitr can

12
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execute code written in multiple programming languages. Commonly, knitr is applied to
documents that have been authored using RStudio’?, an open-source tool with advanced

editing and package-management features.

Jupyter notebooks and knitr reports can be saved in various output formats, including
HTML and PDF (see examples in Figures 4-5). Increasingly, scientists include such
documents with journal manuscripts as supplementary material, enabling others to repeat

analysis steps and recreate manuscript figures73-76,

Scientists typically use literate-programming tools for data analysis tasks that can be
executed in a modest amount of time (e.g., minutes or hours). Itis possible to execute
Jupyter or knitr at the command line; thus longer-running tasks can be executed on high-
performance computers. However, this approach runs counter to the interactive nature of
notebooks and require additional technical expertise to configure and execute the

notebooks.

Literate-programming notebooks are suitable for research analyses that require a modest
amount of computer code. For analyses that require larger amounts of code, more
advanced programming environments may be more suitable—perhaps in combination

with a “literate documentation” tool such as Dexy (http://www.dexy.it).

13
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Workflow-management systems enable software execution via a

graphical user interface

Writing computer scripts and code may seem daunting to many researchers. Although
various courses and tutorials are helping to make this task less formidable”7-80, many
scientists use "workflow management systems" to facilitate the process of executing
scientific software8l. Typically managed via a graphical user interface, workflow
management systems enable scientists to upload data and process it using existing tools.
For multistep analyses, the output from one tool can be used as input to additional tools,

potentially resulting in a series of commands known as a workflow.

Galaxy®%%3 has gained considerable popularity within the bioinformatics community—
especially for performing next-generation sequencing analysis. As users construct
workflows, Galaxy provides descriptions of how software parameters should be used,
examples of how input files should be formatted, and links to relevant discussion forums.
To help with processing large data sets and computationally complex algorithms, Galaxy
also provides an option to execute workflows on cloud-computing services4. In addition,
researchers can share workflows with each other85; this feature has enabled the Galaxy
team to build a community that helps to encourage reproducibility, define best practices,

and reduce the time required for novices to get started.

Various other workflow systems are freely available to the research community (see Box
2). For example, VisTrails is used by researchers from many disciplines, including climate

science, microbial ecology, and quantum mechanics®¢. It enables scientists to design

14
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workflows visually, connecting data inputs with analytical modules and the resulting
outputs. In addition, VisTrails tracks a full history of how each workflow was created. This
capability, referred to as "retrospective provenance", makes it possible for others not only
to reproduce the final version of an analysis but also to examine previous incarnations of

the workflow and examine how each change influenced the analytical outputs®’.

Box 2: Workflow management tools freely available to the research community.

Galaxy®8283 - https://usegalaxy.org

VisTrails8¢ - http: //www.vistrails.org

Kepler®® - https://kepler-project.org

iPlant Collaborative®8? - http://www.iplantcollaborative.org

GenePattern?9°1 - http: //www.broadinstitute.org/cancer/software/genepattern
Taverna®? - http://www.taverna.org.uk

LONI Pipeline®3 - http://pipeline.bmap.ucla.edu

Although workflow-management systems offer many advantages, users must accept
tradeoffs. For example, although the teams that develop these tools often provide public
servers where users can execute workflows, many scientists share these limited resources,
so the public servers may not have adequate computational power or storage space to
execute large-scale analyses in a timely manner. As an alternative, many scientists install
these systems on their own computers; however, configuring and supporting them
requires time and expertise. In addition, if a workflow tool does not yet provide a module

to support a given analysis, the scientist must create a new module to support it. This task
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constitutes additional overhead; however, utilities such as the Galaxy Tool Shed®* are

helping to facilitate this process.

Virtual machines encapsulate an entire operating system and software

dependencies

Whether an analysis is executed at the command line, within a literate-programming
notebook, or via a workflow-management system, an operating system and relevant
software dependencies must be installed before the analysis can be performed. The process
of identifying, installing, and configuring such dependencies consumes a considerable
amount of scientists' time. Different operating systems (and versions thereof) may require
different installation and configuration steps. Furthermore, earlier versions of software
dependencies, which may currently be installed on a given computer, may be incompatible

with—or produce different outputs than—newer versions.

One solution is to use virtual machines, which can encapsulate an entire operating system
and all software, scripts, code, and data necessary to execute a computational analysis?®>96
(Figure 6). Using virtualization software—such as VirtualBox or VMWare (see Box 3)—a
virtual machine can be executed on practically any desktop, laptop, or server, irrespective
of the main ("host") operating system on the computer. For example, even though a
scientist's computer may be running a Windows operating system, the scientist may
perform an analysis on a Linux operating system that is running concurrently—within a

virtual machine—on the same computer. The scientist has full control over the virtual

16
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("guest") operating system and thus can install software and modify configuration settings
as necessary. In addition, a virtual machine can be constrained to use specific amounts of
computational resources (e.g., computer memory, processing power), thus enabling system
administrators to ensure that multiple virtual machines can be executed simultaneously on
the same computer without impacting each other's performance. After executing an
analysis, the scientist can export the entire virtual machine to a single, binary file. Other
scientists can then use this file to reconstitute the same computational environment that
was used for the original analysis. With a few exceptions (see Discussion), these scientists
will obtain exactly the same results that the original scientist obtained. This process
provides the added benefits that 1) the scientist must only document the installation and
configuration steps for a single operating system, 2) other scientists need only install the
virtualization software and not individual software components, and 3) analyses can be
reexecuted indefinitely, so long as the virtualization software remains compatible with
current computer systems?’. Also useful, a team of scientists can employ virtual machines
to ensure that each team member has the same computational environment, even though

the team members may have different configurations on their host operating systems.

One criticism of using virtual machines to support computational reproducibility is that
virtual-machine files are large (typically multiple gigabytes), especially if they include raw
data files. This imposes a barrier for researchers to share virtual machines with the
research community. One option is to use cloud-computing services (see Box 4). Scientists
can execute an analysis in the cloud, take a "snapshot" of their virtual machine, and share it

with others in that environment?>98, Cloud-based services typically provide repositories
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where virtual-machine files can be stored and shared easily among users. Despite these
advantages, some researchers may prefer that their data reside on local computers, rather
than in the cloud—at least while the research is being performed. In addition, cloud-based
services may use proprietary software, so virtual machines may only be executable within
each provider's infrastructure. Furthermore, to use a cloud-service provider, scientists may

need to activate a fee-based account.

Another criticism of using virtual machines to support computational reproducibility is
that the software and scripts used in the analysis will be less easily accessible to other
scientists—details of the analysis are effectively concealed behind a “black box”??. Although
other researchers may be able to reexecute the analysis within the virtual machine, it may
be more difficult for them to understand and extend the analysis®. This problem can be
ameliorated when all narratives, scripts, and code are stored in public repositories—
separately from the virtual machine—and then imported when the analysis is executed100.
Another solution is to use a prepackaged virtual machine, such as Cloud BioLinux, that

contains a variety of software tools commonly used within a given research community101.

Scientists can automate the process of building and configuring virtual machines using
tools such as Vagrant or Vortex (see Box 3). For either tool, users can write text-based
configuration files that provide instructions for building virtual machines and allocating
computational resources to them. In addition, these configuration files can be used to
specify analysis steps100. Because these files are text based and relatively small (usually a

few kilobytes), scientists can share them easily and track different versions of the files via
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source-control repositories. This approach also mitigates problems that might arise during
the analysis stage. For example, even when a computer's host operating system must be
reinstalled due to a computer hardware failure, the virtual machine can be recreated with

relative ease.

Box 3: Virtual-machine software.

Virtualization hypervisors:

® VirtualBox (open source) - https://www.virtualbox.org
® Xen (open source) - http://www.xenproject.org
® VMWare (partially open source) - http://www.vmware.com

Virtual-machine management tools:

® Vagrant (open source) - https://www.vagrantup.com
® Vortex (open source) - https://github.com /websecurify /node-vortex

Box 4: Commercial cloud-service providers.

Amazon Web Services - http://aws.amazon.com

Rackspace Cloud - http://www.rackspace.com/cloud
Google Cloud Platform - https://cloud.google.com/compute
Windows Azure - https://azure.microsoft.com
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Software containers ease the process of installing and configuring

dependencies

Software containers are a lighter-weight alternative to virtual machines. Like virtual
machines, containers can encapsulate operating-system components, scripts, code, and
data into a single package that can be shared with others. Thus, as with virtual machines,
analyses executed within a software container should produce identical outputs,
irrespective of the underlying operating system or whatever software may be installed
outside the container (see Discussion for caveats). As is true for virtual machines, multiple
containers can be executed simultaneously on a single computer, and each container may
contain different software versions and configurations. However, whereas virtual machines
include an entire operating system, software containers interface directly with the
computer's main operating system and extend it as needed (Figure 3). This design provides
less flexibility than virtual machines because containers are specific to a given type of
operating system; however, containers require considerably less computational overhead

than virtual machines and can be initialized much more quickly192.

The open-source Docker utility193—which has gained popularity among informaticians
since its release in 2013—provides the ability to build, execute, and share software
containers for Linux-based operating systems. Users specify a Docker container's contents
using text-based commands. These instructions can be placed in a "Dockerfile," which other
scientists can use to rebuild the container. As with virtual-machine configuration files,

Dockerfiles are text based, so they can be shared easily and can be tracked and versioned in
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source-control repositories. Once a Docker container has been built, its contents can be
exported to a binary file; these files are generally smaller than virtual-machine files, so they

can be shared more easily—for example, via DockerHub%4,

A key feature of Docker containers is that their contents can be stacked in distinct layers (or
"images"). Each image includes software component(s) that address a particular need (see
Figure 7 for an example). Within a given research lab, scientists might create general-
purpose images that support functionality for multiple projects, and they might create
specialized images that address the needs of specific projects. Docker's modular design
provides the advantage that when images within a container are updated, Docker only
needs to track the specific components that have changed; users who wish to update to a
newer version must download a relatively small update. In contrast, even a minor change

to a virtual machine would require users to export and reshare the entire virtual machine.

Scientists have begun to share Docker images with others who are working in the same
subdiscipline. For example, nucleotid.es is a catalog of genome-assembly tools that have
been encapsulated in Docker images105106, Genome-assembly tools differ considerably in
the dependencies that they require and in the parameters that they support. This project
provides a means to standardize these assemblers, to circumvent the need to install
dependencies for each tool, and to perform benchmarks across the tools. Such projects may

help to reduce the reproducibility burden on individual scientists.

The use of Docker containers for reproducible research comes with caveats. Individual

containers are stored and executed in isolation from other containers on the same
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computer; however, because all containers on a given machine share the same operating
system, this isolation is not as complete as it is with virtual machines. This means, for
example, that a given container is not guaranteed to have access to a specific amount of
computer memory or processing power—multiple containers may have to compete for
these resources!92. In addition, containers may be more vulnerable to security breaches02.
Another caveat is that Docker containers can only be executed on Linux-based operating
systems. For other operating systems, Docker containers must be executed within a virtual
machine (for example, see http://boot2docker.io). Although this configuration offsets some
benefits of using containers, combining virtual machines with containers may provide a
happy medium for many scientists, allowing them to use a non-Linux host operating

system, while receiving the benefits of containers within the guest operating system.

Efforts are ongoing to develop and refine software-container technologies. Box 5 lists
various tools that are currently available. In coming years, these technologies promise to

play an influential role within the scientific community.

Box 5: Open-source containerization software.

Docker - https://www.docker.com

Linux Containers - https://linuxcontainers.org

Imctfy - https://github.com/google /Imctfy

OpenVZ - http://openvz.org

Warden - http://docs.cloudfoundry.org/concepts/architecture /warden.html
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Discussion

Scientific advancement requires trust. This review provides a comprehensive, though
inexhaustive, list of techniques that can help to engender such trust. Principally, scientists
must perform research in such ways that they can trust their own findings345. Science
philosopher Karl Popper contended that "[w]e do not take even our own observations
quite seriously, or accept them as scientific observations, until we have repeated and tested
them"2. Indeed, in many cases, the individuals who benefit most from computational
reproducibility are those who performed the original analysis. But reproducible practices
can also help scientists garner each other's trust*>197, When other scientists can reproduce
an analysis and determine exactly how its conclusions were drawn, they may be more apt
to cite the work and build upon it. In contrast, when others fail to reproduce research
findings, it can derail scientific progress and lead to embarrassment, accusations, and

retractions.

We have described seven tools and techniques for computational reproducibility. None of
these approaches is sufficient for every scenario in isolation. Rather scientists will often
find value in combining approaches. For example, a researcher who uses a literate-
programming notebook (which combines narratives with code) might incorporate the
notebook into a software container so that others can execute it without needing to install
specific software dependencies. The container might also include a workflow-management
system to ease the process of integrating multiple tools and incorporating best practices for

the analysis. This container could be packaged within a virtual machine to ensure that it
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can be executed on many operating systems (see Figure 8). In determining a
reproducibility strategy, scientists must evaluate the tradeoff between robustness and

practicality.

The call for computational reproducibility relies on the premise that reproducible science
will bolster the efficiency of the overall scientific enterprisel?8. Although reproducible
practices may require additional time and effort, these practices provide ancillary benefits
that help offset those expenditures*. Primarily, the scientists who perform a study may
experience increased efficiency#>. For example, before and after a manuscript is submitted
for publication, it faces scrutiny from co-authors and peer reviewers who may suggest
alterations to the analysis. Having a complete record of all analysis steps and being able to
retrace those steps precisely, makes it faster and easier to implement the requested
alterations*>109, Reproducible practices can also improve the efficiency of team science
because colleagues can more easily communicate their research protocols and inspect each
other's work; one type of relationship where this is critical is that between academic
advisors and mentees!%°. Finally, when research protocols are shared transparently with
the broader community, scientific advancement increases because scientists can learn

more easily from each other's work and duplicate each other's efforts less frequently109.

Reproducible practices do not necessarily ensure that others can obtain results that are
perfectly identical to what the original scientists obtained. Indeed, this objective may be
infeasible for some types of computational analysis, including those that use randomization

procedures, floating-point operations, or specialized computer hardware®®110, In such
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cases, the goal may shift to ensuring that others can obtain results that are semantically
consistent with the original findings®>¢. In addition, in studies where vast computational
resources are needed to perform an analysis or where data sets are distributed
geographically!11-113, full reproducibility may be infeasible. Alternatively, it may be
infeasible to reallocate computational resources for analyses that are highly
computationally intensive8. In these cases, researchers can provide relatively simple
examples that demonstrate the methodology®. When legal restrictions prevent researchers
from sharing software or data publicly, or when software is available only via a Web
interface, researchers should document the analysis steps as well as possible and describe

why such components cannot be shared?4.

Computational reproducibility does not guarantee against analytical biases or ensure that
software produces scientifically valid results!14. As with any research, a poor study design,
confounding effects, or improper use of analytical software may plague even the most
reproducible analyses!14115, On one hand, increased transparency puts scientists at a
greater risk that such problems will be exposed. On the other hand, scientists who are fully
transparent about their scientific approach may be more likely to avoid such pitfalls,
knowing that they will be more vulnerable to such criticisms. Either way, the scientific

community benefits.

Lastly, we emphasize that some reproducibility is better than none. As Voltaire said, the
perfect should not be the enemy of the good!16. Although some of the practices described in

this review require more technical expertise than others, these practices are freely
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accessible to all scientists and provide long-term benefits to the researcher and to the

scientific community. Indeed, as scientists act in good faith to perform these practices,

where feasible, the pace of scientific progress will surely increase.
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Figures

Figure 1: Basic computer architecture. Computer hardware consists of hardware
devices, including central processing units, hard drives, random access memory, keyboard,
mouse, etc. Operating systems enable software to interface with hardware; popular
operating-system families are Windows, Mac 0S, and Linux. Users interact with computers
via software interfaces. In scientific computing, software enables users to execute
algorithms, analyze data, generate graphics, etc. To execute properly, most software tools
depend on specific versions of software dependencies, which must be installed on the same

operating system.
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#!/bin/bash

# Download software, reference genome, and FASTQ files

wget http://downloads.sourceforge.net/project/bio-bwa/bwakit/bwakit—0.7.12_x64-1inux.tar.bz2
wget -0 refGenomeFiles.zip https://ndownloader.figshare.com/files/4841809

wget -0 FASTQ.zip https://ndownloader.figshare.com/articles/3114454/versions/1

o~NOOUTSAE WN -

# Extract software and reference genome files
9  tar -jxvf bwakit-0.7.12_x64-1linux.tar.bz2

10 unzip refGenomeFiles.zip

11 unzip FASTQ.zip

13  # Align FASTQ data to reference genome and save to SAM file
14  bwa.kit/bwa mem KJ660346.fa SRR1972917_1.fastq SRR1972917_1.fastq > SRR1972917_aligned.sam

16 # Convert SAM file to BAM file
17  bwa.kit/samtools view -bS SRR1972917_aligned.sam > SRR1972917_aligned.bam

19 # Sort BAM file
20 bwa.kit/samtools sort SRR1972917_aligned.bam SRR1972917_aligned_sorted

22 # Index BAM file
23 bwa.kit/samtools index SRR1972917_a1igned_sorted.baﬂ

Figure 2: Example of a command-line script. This script can be used to align DNA
sequence data to a reference genome. First it downloads software and data files necessary
for the analysis. Then it extracts (“unzips”) these files, aligns the data to a reference

genome for Ebolavirus. Finally, it converts, sorts, and indexes the aligned data.
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1 all: download prepare align buildbam

2

3 buildbam: SRR1972917_aligned.sam

4 # Convert SAM file to BAM file

5 bwa.kit/samtools view —-bS SRR1972917_aligned.sam > SRR1972917_aligned.bam

6

7 # Sort BAM file

8 bwa.kit/samtools sort SRR1972917_aligned.bam SRR1972917_aligned_sorted

9

10 # Index BAM file

11 bwa.kit/samtools index SRR1972917_aligned_sorted.bam

12

13 align: bwa.kit/bwa SRR1972917_1.fastq SRR1972917_2.fastq KJ660346.fa

14 # Align FASTQ data to reference genome and save to SAM file

15 bwa.kit/bwa mem KJ660346.fa SRR1972917_1.fastq SRR1972917_1.fastq > SRR1972917_aligned.sam
16

17  download:

18 # Download software, reference genome, and FASTQ files

19 wget http://downloads.sourceforge.net/project/bio-bwa/bwakit/bwakit-0.7.12_x64-1linux.tar.bz2
20 wget -0 refGenomeFiles.zip https://ndownloader.figshare.com/files/4841809
21 wget -0 FASTQ.zip https://ndownloader.figshare.com/articles/3114454/versions/1
22
23 prepare: refGenomeFiles.zip FASTQ.zip bwakit-@.7.12_x64-linux.tar.bz2
24 # Extract software and reference genome files
25 tar —jxvf bwakit-@.7.12_x64-linux.tar.bz2
26 unzip refGenomeFiles.zip
27 unzip FASTQ.zip

Figure 3: Example of a Make file. This file performs the same function as the command-
line script shown in Figure 2, except that it is formatted for the Make utility. Accordingly, it
is structured so that specific tasks must be executed before other tasks, in a hierarchical
structure. For example, the “download” target must be completed before the downloaded
files can be prepared (“prepare” target). The “all” target specifies all of the targets that

must be executed, in order.
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: J u pyter Example (autosaved) P on (‘D)

File Edit View Insert Cell Kernel Help | Python 3 O

<>

+ x @& B 44 ¥ M B C  Code 4 Cell Toolbar: None

In [1]: get_ipython().magic('matplotlib inline')
import matplotlib.pyplot as plt
from numpy.random import normal

In [2]: nums = normal(size=1000)
plt.hist(nums, color="#99C1C2")

plt.show
250
200
150
100
50
o I I 1 1 1 1 I
-3 -2 -1 0 1 2 3

In [ ]:

Figure 4: Example of a Jupyter notebook. This example contains code (in the Python
programming language) for generating random numbers and plotting them in a graph
within a Jupyter notebook. Importantly, the code and output object (graph) are contained

within the same document.
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R Markdown Example

1. Set the random seed.
set.seed(99)

2. Generate 1000 random normal numbers
norm <- rnorm(1000)

3. Plot them as a histogram

hist(norm, col="#99Clc2")

Histogram of norm

200
|

150
|

Frequency
100
|

50
|

r———r———[___ ‘___1___ﬁ
| T T 1
-2 0 2 4

Figure 5: Example of a document that has been created using knitr. This example
contains code (in the R language) for generating random numbers and plotting them in a
graph. The knitr tool was used to generate the document, which combines the code and the

output object (figure).
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Analytical Analytical
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Operating Operating
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Virtualization Software

Figure 6: Architecture of virtual machines. Virtual machines encapsulate analytical
software and dependencies within a "guest" operating system, which may be different than
the main ("host") operating system. A virtual machine executes in the context of
virtualization software, which executes alongside whatever other software is installed on

the computer.
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Software Software
Dependencies Dependencies

Figure 7: Architecture of software containers. Software containers encapsulate
analytical software and dependencies. In contrast to virtual machines, containers execute

within the context of the computer's main operating system.
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Figure 8: Example of a Docker container that could be used for genomics research.
This container would enable researchers to preprocess various types of molecular data,
using tools from Bioconductor and Galaxy, and to analyze the resulting data within an
IPython notebook. Each box within the container represents a distinct Docker image. These
images are layered such that some images depend on others (for example, the Bioconductor
image depends on R). At its base, the container includes operating-system libraries, which
may not be present (or may be configured differently) on the computer's main operating

system.
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